
JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 1 1 JANUARY 2003
Statistics of transitions in single molecule kinetics
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When a system is monitored for a finite timeT, the
number of transitions between two states is random. In
Note, we obtain the probability distribution of the number
transitions that occur in a fixed time for a system who
dynamics can be described by an arbitrary kinetic scheme
particular, for long observation times, we show that the va
ance in the number of transitions for all transitions can
obtained by inverting a modified rate matrix. Our interest
this problem arose in connection with the analysis of sin
molecule Fo¨rster energy transfer studies of prote
folding,1–3 where the number of photons emitted by the d
nor and acceptor is monitored. If the transition between t
states is associated with the emission of a photon, then
probability distribution of the number of photons emitte
during a fixed time is related to the distribution of the nu
ber of transitions. Our results should prove useful not o
for single molecule fluorescence spectroscopy but also
other contexts. For example, in the analysis of the dyna
instability of microtubule growth, the statistics of the tran
tions between growing and shrinking phases is of interes
fact the approach we use here is a generalization of the t
nique employed by Bicout and Rubin4 to analyze a simple
model of microtubule growth.

Consider a general kinetic scheme where the rate c
stant of thei→ j transition isK ji . Let Gi j (t) be the Green’s
function or propagator which is the probability of finding th
system in statei at timet provided initially it was in statej .
The matrix of such probabilities satisfies the rate equatio

d

dt
G~ t !5KG ~ t ! ~1!

with initial condition G(0)5I , where I is the unit matrix.
The subsequent analysis is most easily performed in
Laplace domain (f̂ (s)5*0

` f (t)exp(2st)dt) where

Ĝ~s!5~sI2K !21. ~2!

In terms of this function, we now findPba(N,T) @or equiva-
lently its Laplace transformP̂ba(N,s)], which is the prob-
ability that the system, starting in statea and ending up in
stateb at time T, underwentN i→ j transitions. For nota-
tional simplicity, we indicate only the initial and final state
To obtain this quantity, it is convenient to introduce4 a count-
ing parameterl by multiplying the off diagonal elementK ji

of the rate matrix byl. The corresponding Green’s functio
can then be written as

F̂~l,s!5~sI2K 82lV!21, ~3!
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whereV is a matrix whose only nonzero element isK ji and
K 85K2V. It is interesting to note thatK 8 describes a ki-
netic scheme in which statei decays irreversibly~i.e., not to
state j ) with rate constantK ji . Clearly, F̂(1,s)5Ĝ(s). For
l50, F̂(0,s)5Ĝ8(s) where Ĝ8(s)5(sI2K 8)21. Ĝba8 is
just the probability of going from statea to stateb in time T
without making ani→ j transition. It can be shown that it i
related to the propagator corresponding to the original
netic scheme@i.e., Eq.~2!# by

Ĝba8 ~s!5Ĝba~s!2
Ĝb j~s!K ji Ĝia~s!

11K ji Ĝi j ~s!
. ~4!

If the propagatorF̂(l,s) is expanded in powers ofl, the
coefficient of lN is the contribution of all trajectories tha
involve exactlyN i→ j transitions and thus

F̂~l,s!5Ĝ81lĜ8VĜ81l2Ĝ8VĜ8VĜ81¯

5 (
N50

`

lNP̂~N,s!. ~5!

This kind of perturbation expansion is a useful tool for a
swering a variety of questions about kinetic schemes~e.g.,
Cao’s analysis of the distribution of residence times!.5 By
equating coefficients oflN, we have

P̂ba~N,s!5K ji
NĜb j8 ~s!Ĝi j8

N21
~s!Ĝia8 ~s!, N>1 ~6!

and P̂ba(0,s)5Ĝba8 (s) for N50. HereĜba8 (s) is given by
Eq. ~4!. This is the formal solution to our problem.

If systems chosen from an equilibrium distribution a
observed for timeT or if a long trajectory is divided into
bins of lengthT, the probability distribution of observingN
i→ j transitions in a bin is given by

P̂~N,s!5(
a,b

P̂ba~N,s!pa
0

5
K ji

Npi
0Ĝi j

N21~s!

s2~11K ji Ĝi j ~s!!N11
, N>1

5
1

s S 12
K ji pi

0

s~11K ji Ĝi j ~s!!
D , N50, ~7!

where we have used Eqs.~4! and~6!. Herepi
0 is the normal-

ized steady state probability of statei ~i.e., the solution of the
Kp050). This result can be inverted into the time doma
using, for example, the Stehfest algorithm.6
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It is often useful to characterize a complicated proba
ity distribution in terms of only its mean and variance. L
^N(T)& be the mean number ofi→ j transitions that occur
during timeT under steady state conditions. Then

^N̂~s!&5 (
N51

`

NP̂~N,s!5(
a,b

]

]l
F̂ba~l,s!ul51pa

0. ~8!

The derivative atl51 is easily evaluated by noting tha
F̂(l,s)5(sI2K 82lV)215(sI2K2(l21)V)21. In this
way we recover the standard result:

^N~ t !&5K ji pi
0T. ~9!

The variance,sN
2 (T)[^N2(T)&2^N(T)&2, can be found

analytically by evaluating the second derivative ofF̂(l,s) at
l51:

sN
2 ~T!5^N~T!&22~K ji pi

0!2E
0

T

~T2t !
^dni~ t !dnj~0!&

^dnidnj&
dt,

~10!

where dni(t) is the deviation of the population of sta
i from steady state and ^dni(t)dnj (0)&/^dnidnj&
512Gi j (t)/pi is the population cross correlation functio
For long times the variance becomes linear in time:

lim
T→`

sN
2 ~T!5K ji pi

0T~122K ji pi
0t i j !, ~11!

wheret i j is the relaxation time of the population cross r
laxation function. This time is the element of matrixt which
can be shown to be given by

t5~KD1F!212E, ~12!

where we have definedDml5pm
0 dml , Fml5pm

0 pl
0 and matrix

E has all unit elements. This result shows that it is poss
to obtain the variance in the number of transitions for ev
transition at long times by a single matrix inversion.

At long times the probability distribution is Gaussia
with the above mean and variance. We can obtain a be
approximation that is useful for shorter times by using
two-state approximation for the Green’s function:

Gi j ~ t !'pi
0~12e2t/t i j !, iÞ j , ~13!

wheret i j is given by Eq.~12!. This expression is exact att
50,̀ and has the exact ‘‘area.’’ Using this in Eq.~7! in
inverting the Laplace transform we find forN>1,

P~N,T!5
~12g2!NtNe2t

~2g!NN!A8gt/p
$2g~N1t !I N21/2~ t !

1~11g2!tI N11/2~ t !%, ~14!

wheret5T/(2t i j ), g5A124K ji pi
0t i j , andI n(z) are modi-

fied Bessel functions of the first kind. This result is exact
a two state system. AsT→`, it is exact for any system.

As the simplest example of the formalism consider
reactionD
D* whereD ~state 1! andD* ~state 2! are the
ground and excited states of a fluorophore. The system
excited by continuous illumination with rate constantK21.
The rate constant for the decay~both radiative and nonradi
ative! of D* is K12. We are interested in the distribution o
number of photons observed during timet. Suppose that
only a fractionf ~which is the product of the quantum yiel
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and detector efficiency! of the D* →D transitions result in
detectable photons. This can be easily taken into accoun
our general formalism by simply replacingK ji by fK ji in all
our expressions in whichK ji appears explicitly (Ĝ and t
should not be modified!. Thus in this case, the exact distr
bution for observingN photons in timet is given by Eq.~14!
with i 52, j 51, t215(K121K21)

21, p2
05K21/(K121K21),

andK12→fK12.
The above-given analysis can be readily extended to

tain the joint probability of observingN i→ j and M k→ l
transitions during timeT. This is of interest, for example, in
Förster resonance energy transfer where thei→ j and k→ l
transitions are associated with the emission of photons f
donor and acceptor, respectively. To obtain the correspo
ing probability distribution one simply introduces two coun
ing variablesl ~for i→ j ) andm ~for k→ l ) and determines
the coefficient oflNmM in the expansion of the resultin
Green’s function. The general result is a little too messy to
presented here, but a simple expression can be found fo
cross correlation,sNM

2 (T)5^N(T)M (T)&2^N(T)&^M (T)&,
under steady state conditions:

sNM
2 ~T!52K ji Klkpi

0pk
0E

0

T

dt ~T2t !

3S ^dni~ t !dnl~0!&

^dnidnl&
1

^dnk~ t !dnj~0!&

^dnkdnj&
D , ~15!

which for long times becomes

lim
T→`

sNM
2 ~T!52K ji Klkpi

0pk
0T~t i l 1tk j!, ~16!

wheret i j is given by Eq.~12!.
In summary, we have expressed the probability distrib

tion of observingN state-to-state transitions in a fixed tim
in terms of the matrix of conditional probabilities of goin
from one state to another. At long times this probability d
tribution is Gaussian with a mean and variance that dep
only on the rate constant of transition of interest, the ste
state probability of the initial state, and the average ti
required for the initial state to reach steady state when
system starts out in the final state. Finally, we should m
tion that although we presented explicit expressions only
discrete systems, our formalism can be trivially extended
treat Markovian systems in which some of the states
specified by continuous variables~e.g., systems described b
reaction-diffusion equations!.
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