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Statistics of transitions in single molecule kinetics

Irina V. Gopich® and Attila Szabo
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health, Bethesda, Maryland 20892

(Received 16 July 2002; accepted 1 October 2002

When a system is monitored for a finite tinle the  whereV is a matrix whose only nonzero elements and
number of transitions between two states is random. In thi&k’'=K —V. It is interesting to note thak’ describes a ki-
Note, we obtain the probability distribution of the number of netic scheme in which statedecays irreversiblyi.e., not to
transitions that occur in a fixed time for a system whosestatej) with rate constank;; . Clearly, F(15)=G(s). For
dynamics can be described by an arbitrary kinetic scheme. |Q=O, IE(O,s) _ G’(s) where é’(s) =(sI—-K')~L. & s
particular, for long observation times, we show that the Va”]ust the probability of going from staie to stateg in tir’ﬁeT
ance in the number of transitions for all transitions can be?/vithoutmaking ani —| transition. It can be shown that it is

obtained by inverting a modified rate matrix. Our interest inyg|ated to the propagator corresponding to the original ki-
this problem arose in connection with the analysis of singlg,qtjc scheméi.e., Eq.(2)] by

molecule Foster energy transfer studies of protein

folding,}~3 where the number of photons emitted by the do- a A
. . ™ A 2 G,B](S)KJ|G|a(S)
nor and acceptor is monitored. If the transition between two  Gj,(s)=Gg,(s)— - . (4)
states is associated with the emission of a photon, then the 1+K;iGji(s)
probability distribution of the number of photons emitted N _ _
during a fixed time is related to the distribution of the num-  If the propagatoF(\,s) is expanded in powers of, the

ber of transitions. Our results should prove useful not onlycoefficient ofA™ is the contribution of all trajectories that

for single molecule fluorescence spectroscopy but also iivolve exactlyN i—j transitions and thus

other contexts. For example, in the analysis of the dynamic . -, A A AT A

instability of microtubule growth, the statistics of the transi- ~ F(A,8)=G"+AG'VG'+\"G'VG'VG'+---

tions between growing and shrinking phases is of interest. In o

fact the approach we use here is a generalization of the tech- = E )\N|5(N,s). (5)

nique employed by Bicout and Rulfito analyze a simple N=0

mOdcel)r?;?;rgtuZlélsrg{?(\i/\ggﬁc scheme where the rate Con'[his kind of perturbation expansion is a useful tool for an-

stant of thei — tgransition isK . . Let G, (1) be the Green’s swering a variety of questions about kinetic schereeg.,

function or :)J agator which Jils.the rgbabilit of finding the Cao's analysis of the distribution of residence tilre8y
Or propaga IS the probabiiity of 9 M€ oquating coefficients ofN, we have

system in staté at timet provided initially it was in statg.

The matrix of such probabilities satisfies the rate equation: ISBQ(N,S)= K!\i‘é;gj(S)éi,jNil(S)éi,a(S)’ N=1 6)
EG(t)=KG(t) 1) and P4a(05)=G},(s) for N=0. HereG},(s) is given by
dt Eq. (4). This is the formal solution to our problem.

o - ) ) ) If systems chosen from an equilibrium distribution are
with initial condition G(0)=1, wherel is the unit matrix.  ohserved for timeT or if a long trajectory is divided into
The subseque.ntA analyi|s is most easily performed in thgj,g of lengthT, the probability distribution of observinky
Laplace domainf((s) = [ f(t)exp(=stdt) where i—| transitions in a bin is given by

G(s)=(sl—K)™ 2. 2 - -
(®)=(sI=K) @ BN9=3 PN
In terms of this function, we now fin@4,(N,T) [or equiva- '

lently its Laplace transforn®® 5,(N,s)], which is the prob- B KiIpPGl ~(s)

ability that the system, starting in stateand ending up in - S2(1+K; Gy (s)NL

state 8 at time T, underwentN i—j transitions. For nota- e

tional simplicity, we indicate only the initial and final states. 1 Kiji p?

To obtain this quantity, it is convenient to introdd@ecount- Tl m . N=0, ™

ing parametei by multiplying the off diagonal elemeri;;
of the rate matrix by\. The corresponding Green’s function where we have used Eqg) and(6). Herepi0 is the normal-

can then be written as ized steady state probability of staté.e., the solution of the
A Kp®=0). This result can be inverted into the time domain
F(\,5)=(sl—K’—\V)71, (3)  using, for example, the Stehfest algoritAm.
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It is often useful to characterize a complicated probabil-and detector efficiengyof the D* — D transitions result in
ity distribution in terms of only its mean and variance. Let detectable photons. This can be easily taken into account in
(N(T)) be the mean number of-j transitions that occur our general formalism by simply replacitg; by ¢K; in all
during timeT under steady state conditions. Then our expressions in whick;; appears explicitly G and 7

- c J . 0 should not be modified Thus in this case, the exact distri-
(N(s))= Nzl NP(N,s)= HEB IN Foa(N,S)\=1Pe: (8 bution for observindN photons in time is given by Eq(14)
- o . with 1=2, j=1, 75,= (K2t Kp) 7 p3=Ko/ (Kot Ky,

The derivative at\=1 is easily evaluated by noting that 5nq Ky Koo

F(\,8)=(sl—K'=\V) " I=(sI-K—(A—1)V) "L In this The above-given analysis can be readily extended to ob-
way we recover the standard result: tain the joint probability of observingN i—j andM k—I|
(N(t))=K ; p°T 9) transitions during tim& . This is of interest, for example, in
jiMi

) Forster resonance energy transfer whereithgy andk—|
The variancegg(T)=(N?(T))—(N(T))?, can be found transitions are associated with the emission of photons from
analytically by evaluating the second derivativeFgh ,s) at ~ donor and acceptor, respectively. To obtain the correspond-

A=1: ing probability distribution one simply introduces two count-
) o [T (6ni(t)on;(0)) ing variables\ (for i—j) and u (for k—1) and determines
on(M=(N(T)—2(K;ip;) fo (T=1) (on;on;) ' the coefficient ofANuM in the expansion of the resulting

(100  Green's function. The general result is a little too messy to be
presented here, but a simple expression can be found for the
cross correlationg?(T) =(N(T)M(T))—(N(T)}{M(T)),
under steady state conditions:

where 6n;(t) is the deviation of the population of state
i from steady state and(én;(t)n;(0))/(dn;én;)
=1-G;j;(t)/p; is the population cross correlation function.

For long times the variance becomes linear in time: Uﬁ:M(T): _ K,-iK|kp?pEJTdt(T—t)
lim of(T)=Kj;pPT(1—2K;pPmy), (11) °
i <<6ni<t>an|(0>> L {amvani (o)) -
where 7; is the relaxation time of the population cross re- (&n;ény) (onyon;) (19
laxation function. This time is the element of matsbwhich  \hich for long times becomes
can be shown to be given by _ 5 0.0
lim oym(T) ==K Kikpi P T(7ip + 7)), (16)

7=(KD+®) 1-E, (12 T—o0

where we have define@l = ppdmi, Pmi=PmP; and matrix  where 7; is given by Eq.(12).
E has all unit elements. This result shows that it is possible  |n summary, we have expressed the probability distribu-
to obtain the variance in the number of transitions for €venytion of observingN state-to-state transitions in a fixed time
transition at long times by a single matrix inversion. in terms of the matrix of conditional probabilities of going
At long times the probability distribution is Gaussian from one state to another. At long times this probability dis-
with the above mean and variance. We can obtain a bett&fibution is Gaussian with a mean and variance that depend
approximation that is useful for shorter times by using aonly on the rate constant of transition of interest, the steady
two-state approximation for the Green’s function: state probability of the initial state, and the average time
Gij(t)mpio(l_eft/fij)’ i#], (13) required for the in_itial state to reach _steady state when the
system starts out in the final state. Finally, we should men-
where;; is given by Eq.(12). This expression is exact &t tion that although we presented explicit expressions only for
=0, and has the exact “area.” Using this in E(7) in  discrete systems, our formalism can be trivially extended to
inverting the Laplace transform we find foi=1, treat Markovian systems in which some of the states are
specified by continuous variablés.g., systems described by

1— 2 NtNe—t . ) : -
P(N,T)= ((Z)NLI;S\/T{M(NH)I No () reaction-diffusion equations
yENeYRE We thank Sasha Berezhkovskii for very helpful discus-
+(1+ Yty (D}, (14  sions.

wheret=T/(27;), y= \/1—4Kjipi°rij, andl,(z) are modi- ) ) o )
fied Bessel functions of the first kind. This result is exact for On leave from the Institute of Chemical Kinetics and Combustion SB
o : RAS, Novosibirsk, 630090, Russia; electronic mail:

a two state system. AB— o, it is exact for any system. irinag@speck.niddk.nih.gov
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