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Photon trajectories from single molecule experiments can report on biomolecule structural changes and motions.
Hidden Markov models (HMM) facilitate extraction of the sequence of hidden states from noisy data through
construction of probabilistic models. Typically, the true number of states is determined by the Bayesian
information criteria (BIC); however, constraints resulting from short data sets and Poisson-distributed photons
in radiative processes like fluorescence can limit successful application of goodness-of-fit statistics. For single
molecule intensity trajectories, additional information criteria such as peak localization error (LE) and chi-
square probabilities can incorporate theoretical constraints on experimental data while modifying normal HMM.
Chi-square minimization also serves as a stopping point of the iteration in which the system parameters are
trained. Peak LE enables exclusion of overfitted and overlapped states. These constraints and criteria are
tested against BIC on simulated single molecule trajectories to best identify the true number of emissive

levels in any sequence.

Introduction

Originally developed for speech recognition,! HMM enables
reconstruction of the state sequence from observables when the
true state is hidden. Iterative state reconstructions refine the three
parameters needed to describe time series with well-defined
transition probabilities linking all states: the transition, emission,
and initiation matrices. The transition matrix elements are
probabilities that one state changes to a different state in the
subsequent step. The emission matrix links the observable to
hidden states that, in fluorescence intensity trajectories, cor-
respond to the different observed intensity levels. The initiation
matrix gives the probability of each state at the first step. The
objective of HMM analysis is to find the most likely system
parameters that describe the system. The Baum—Welch
algorithm'? is frequently used to find the answer by training
initial system parameters based on the observed sequence. After
training is finished, the state sequence is reconstructed by the
Viterbi algorithm.? Since the most probable state sequence can
be extracted from complicated and noisy data using trained
system parameters, HMM has been utilized in many fields such
as particle tracking,*> single ionic current measurement,® dwell
time analysis,’” FRET analysis,%’ and simulation of single
molecule fluorescence and kinetics.'®!" Although incompatible
with state sequence reconstructions, non-Markovian memory
effects due to thermal fluctuation!? can be quantified through
correlation analysis.'?

Proper state sequence reconstruction, however, requires
determination of the true number of states, making evaluation
of the most likely system dimension a key problem. Several
information criteria have been developed to best estimate the
true number of states, including Akaike (AIC),"* Hannan—Quinn

*To whom correspondence should be addressed. E-mail: dickson@
chemistry.gatech.edu.

10.1021/jp907019p CCC: $40.75

(HQC),” and Bayesian (BIC).%!"!® These criteria modify
maximum likelihood estimates with penalizing terms based on
the Laplace—Bayesian approximation of the likelihood and prior
probabilities in the limit of large sample size.!® Although direct,
model-independent information theoretical approaches'® may
also work well, especially when a kinetic model is inapplicable,
even these model-independent methods rely on these same
information criteria that may not consistently find the simplest
and most likely model for short data sets. Further, for kinetic
models, HMM has enjoyed wide applicability and success,>!20:2!
suggesting that any information criteria improving accuracy
especially for short data sets may be of great utility. While BIC
has been shown to provide a rigorous upper limit on the true
number of states for an infinitely long sequence,'® many
important experimental data sets are far too short to satisfy this
requirement. Therefore, in order to improve the performance
of modeling for Poissonian emitters, we introduced chi-square
minimization, chi-square probability-based goodness-of-fit,”> and
localization error (LE) to improve fitting of short trajectories
or those with many states. LE, for example, has been used to
estimate the precision of single particle images®*?* by enabling
verification of the resolvability of two objects. In this paper,
data sets of varying length are generated by pseudorandomly
generated transition and emission matrices exhibiting experi-
mentally relevant, Poisson-distributed noise. We fit the data sets
by Baum—Welch and modified algorithms, using several types
of criteria to determine the “true”” number of states and compare
to known values of simulated data sets. Effects of trajectory
length and robustness relative to choice of initial conditions
indicate that the chi-square probability and LE are crucial to
proper state reconstructions.

Methods

Simulating typical single molecule fluorescence trajectories,
10000 data sets of varying length with pseudorandomly varying
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system parameters were generated in Matlab software (R2008a,
Mathworks). Emission levels were randomly chosen. To match
appropriately binned experimental data, however, the transition
matrix deviated from truly random values in that staying in the
same state for the subsequent step was defined to be more
probable than transition to any other individual state. The
probability of staying in a given state could, however, be much
less than 0.5. Obviously, the sum of each transition matrix row
was constrained to unity, but the sum of each column varied
widely due to the pseudorandom transition probabilities, yielding
a wide range of state populations and transition probabilities in
the simulated data traces. The emission levels (i.e., simulated
intensity range) varied from 0 to 150 counts per bin. Emission
matrices had levels of random mean value (fixed for each
trajectory), subject to Poissonian sampling noise as determined
by the total number of data points and state weight in each
trajectory. The number of hidden states was varied from two to
six, with 2000 unique data sets for each number of states. For
simulated data having a given number of states, the number of
data points per trajectory was increased by 200 for every 80
data sets. Thus, the largest data sets have 5000 data points. In
this notation, two states corresponds, for example, to one bright
level and one background, or “off” level. Only one emission
level per state was allowed.

Baum—Welch training was performed by the standard
programs included in Matlab. New algorithms resulted from
the modification of the Baum—Welch algorithm using chi-
square-minimized Poissonian fits and chi-square probability-
determined relative weighting to determine the number of hidden
states. The determined “correct” number of hidden states was
extracted from the quality of the fits as follows. For each given
number of states, after Baum—Welch training, the trained
emission matrix is fit to a Poisson distribution, and its initial
weight is determined by the Viterbi algorithm. The emission
level histogram is reconstructed by summing the properly
weighted Poissonian emission levels, each of which is fit to the
best Poisson emission level through chi-square minimization.
The chi-square is calculated between the real histogram
(simulated or experimental data) and the reconstructed histo-
gram. The Poissonian-constrained emission matrix and transition
matrix are used as the initial system parameters for the next
step. The iteration is continued until the global chi-square is
minimized for a given number of states.

Although each level is fit with chi-square minimization to a
Poisson distribution of intensities, two different criteria are used
to determine the overall goodness-of-fit between the actual data
and the reconstructed data—BIC and chi-square probability. BIC
is calculated by

BIC = 2 log-likelihood — dIn N, (1)

in which d = 5% + S — 1 is the number of parameters, N, is the
number of data points, and S is the number of states. The chi-
square between the observed value X; and expected value y; is
defined by eq 2.

noix — p\2
anz Z( 10 Aut) (2)

i

where n is the number of observables and o; is the standard
deviation associated with the uncertainty in X;.?> Conversely, a
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chi-square variable, #, is governed by the following probability
distribution function.

nl2—1 —t/2

probability = r= an 3)

211/2F(n/2) ’

In this paper, X; is the probability of observable i in the
experimental emission matrix, and g; is that in the Poissonian-
constrained emission matrix. For a given number of states, the
training is stopped when the chi-square value between the
experimental and reconstructed histograms is minimized. Once
a minimum for a given number of states is obtained, the number
of states is changed by one and the global chi-square is again
minimized. Since the degrees of freedom are related to the
number of states, we used the integrated area of the chi-square
distribution at the calculated chi-square value instead of the
value itself. In this process, X; is the number of occurrences of
observable i in the real histogram and y; is that in the Poissonian-
reconstructed histogram. This provides a method for comparing
the goodness-of-fit for different numbers of hidden states.?

Especially for short data sets, the above process often overfits
the number of states, so a penalizing term giving a statistical
measure of level distinguishability was incorporated by checking
the overlaps of all emission matrix curves by LE. LE is defined
by2324

(Ax)y = "NZ )

In optical localization experiments, Ax is the LE, o is the
standard deviation of the point-spread function, and N is the
number of collected photons. N and o were replaced by
the integrated area of the emission matrix of an individual state
(its weight, or the number of observations in that state) and the
range of data values, respectively. When Ax is smaller than the
difference between the mean values of two curves, overlapping
curves were deleted, and the fitting process is performed again
using the remaining curves as the initial parameters. Typically,
the fitting regenerates the overfitted results, with overlapping
distributions that are indistinguishable by localization error.
Therefore, we terminated the iterations when the overlap
appears. The previous best-fit number of states is then used as
the best global fit. We denote the new algorithms modified by
Poisson fit as PB when BIC is used to determine the dimension
and PC when chi-square probability is used. In the case that
LE is applied, the algorithms are represented as PBL and PCL,
respectively.

Results and Discussion

Although quite fast, the traditional Baum—Welch algorithm
simultaneously requires a great deal of data for adequate training
and is prone to trapping in local minima and overfitting.2%%"
Figure 1A illustrates a typical result of getting trapped in local
minima. During the training iteration, the log-likelihood mo-
notonously increases, as shown in Figure 1D (open circles).
However, due to the lack of physical constraints and robust
stopping point of the iterations, the resulting emission matrix
curve is noisy and has indistinctly defined levels.

For time correlated single photon counting data, emission
intensities should be Poisson-distributed. Constraining the
Baum—Welch algorithm to be physically reasonable demon-
strates the advantage of the Poisson-modified Baum—Welch
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Figure 1. Comparison of traditional and Poisson-modified Baum—Welch algorithms. Emission matrices were trained by Baum—Welch (A) and
Poisson-modified Baum—Welch (B) algorithms. Histogram (C) of a data set which has 3600 data points and 5 hidden states (top) and reconstructed
histograms from the Baum—Welch (middle) and Poisson-modified Baum—Welch (bottom) algorithms. Histograms from reconstructed data are
vertically offset from the simulated intensity histograms for clarity. (D) Log-likelihood from Baum—Welch (circles, top) and Poisson-modified
Baum—Welch (squares, bottom) algorithms of the same data set during the training iteration.
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Figure 2. Modification by localization error (LE). Three curves at
around 120 counts/bin in part A are consolidated into one curve in
part B.

algorithm (Figure 1). A simulated data set with 3800 data points
and 5 hidden states was generated on the basis of an emission
matrix consisting of 5 Poisson distributions. Compared to the
emission matrix estimated by the Baum—Welch algorithm,
the shape and peak position of the emission matrix fit by the
Poisson-modified Baum—Welch algorithm was much closer to
the original emission matrix (shown in black solid lines) that
was used in generating the data set. The overall emission level
histogram of the simulated data set and that of the Baum—Welch
and Poisson-constrained Baum—Welch reconstructions are
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Figure 3. Histograms of fitting results calculated by PBL (A, C) and
PCL (B, D) algorithms. Each data set was simulated to have 2, 3, 4, 5,
or 6 hidden states. The number of data points was varied from 200 to
5000. The initial parameters for the top (A, B) and bottom panels (C,
D) were acquired automatically and manually, respectively.

nearly identical, but the Poisson constraints significantly improve
the individual intensity distributions while simultaneously
providing a clear maximum in the likelihood as a stopping point
(Figure 1D). Such Poisson constraints on the emission levels
enable more robust and more physically meaningful fits with
better-defined stopping points.

Even with intensity levels constrained to be Poisson-
distributed, however, the maximum likelihood method often
overfits the data. For example, Figure 2A shows three curves
with slightly different mean values being fit to a single emissive



Letters

J. Phys. Chem. B, Vol. 113, No. 42, 2009 13889

‘ BIC I Chi-square
100
A
50
0 —— no overlap
100 -@- PB
C -O- PBL
—A— PC
—/\— PCL

Fraction (%)
3

0!
100

E F
501
0

0 1000 2000 3000 4000 5000 0

N

p

1000 2000 3000 4000 5000

Figure 4. The effect of N, on the inherent number of states and accuracies of the four algorithms in analyzing six-state data sets. 1250 data sets
(A—D) and 10000 data sets (E, F) were generated based on six-state emission matrices. Initial parameters were defined by an automatic peak
finding algorithm (A, B, E, F) or manually (C, D). Solid lines show the proportion of six-state data sets that have no overlap of curves in emission
matrices. The accuracies were calculated by PB, PBL, PC, and PCL algorithms; see legend.

level near 120. The number of data points in each distribution,
however, is quite small, suggesting that the three curves may
not be significantly different but instead are consistent with a
single distribution. Rather than eliminating overlaps visually,
LE was introduced as a statistic to tie the actual weight of each
state to the precision with which the distribution center can be
determined. Using the standard deviation for the appropriate
Poisson distribution, Figure 2B, for example, shows the advan-
tage of using LE. Using this statistic, the curves in Figure 2A
around the emission value of 120 were determined to be
consistent with the single curve centered at 120 in Figure 2B.
An approximation for asymmetric distributions, the localization
error works very well for higher intensities (> ~20 counts/bin),
where the differences between Poisson and Gaussian distribu-
tions are relatively small. This method still gives good results
for low intensities and is readily adapted for other common
distributions, if necessary. Together, this gives a meaningful
method to determine the best fit for a given number of states.
Comparing the goodness-of-fit for different numbers of states,
however, demands inclusion of additional criteria.

Figure 3 shows the histogram of fitting results from 1250
data sets generated using Poissonian emission matrices with
randomly assigned mean values. Both BIC and chi-square
probability (eq 3) were compared as criteria for goodness-of-fit
when varying the number of hidden states. Both incorporate
more penalizing terms as more states are included to yield better-
defined stopping points than maximum likelihood alone. Further,
the incorporation of LE significantly reduced the tendency of
PB and PC to overfit the number of states, especially for short
data sets. The number of hidden states was consequently
estimated by the PBL (Figure 3A,C) and the PCL algorithms
(Figure 3B.D), respectively, for a large number of simulated
data sets. Initial parameters were determined in two ways. First,
we used built-in peak finding codes in Matlab to identify initial
emission levels from the histogram of each data set. Alterna-
tively, we set the initial levels by eye from the histogram. The
first method is automatic and much faster than the second one.
However, frequently, the automated method did a poor job in
predicting emission levels, especially when levels had close
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Figure 5. Accuracy bar plots of five kinds of criteria, BIC with
Baum—Welch (BW), PB, PC, PBL, and PCL algorithms. 1250 data
sets were analyzed using automatically (A) and manually (B) defined
initial parameters. (C) 10000 data sets were also computed with
automatic initial parameters. The error bars show the standard deviation
calculated from 40 sets of 50 accuracy results.

average values or for low numbers of counts per bin. Therefore,
the accuracies of fitting results by manual initiation (Figure
3C,D) are much higher than that by automatic initiation (Figure
3A,B). Interestingly, Figure 3A and B demonstrates that, in the
case of automatic initiation, the determined “true” number of
states by the PBL algorithm is larger than that from the PCL
algorithm. These results are an example of the property of BIC;
i.e., BIC predicts the maximum number of probable dimensions
in the limit of infinitely long data sets.'?8

Not surprisingly, the fitting performance of all algorithms is
highly dependent upon initial parameters, but the PCL algorithm
appears the least sensitive to poor initial guesses (Figure 3).
Additionally, the algorithm to automatically generate a new
emission matrix with one more or one less state did not work
as well as did manual input. When we manually input a
suspected level in every simulation, all Poissonian-modified
algorithms including PB, PBL, PC, and PCL algorithms tended
to predict the correct dimension more frequently.
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A significant fraction of incorrect fitting results for all
algorithms arises from the shorter data sets. The dependence of
accuracy on the length of the six-state data sequence is shown
in Figure 3C. A solid black line in this figure means the
proportion of data sets which were generated using six-state
emission matrices and can be considered truly to have six hidden
states (by localization error). The fraction is lower than 50%
when the number of data points is smaller than 1000. This result
can be explained in two ways. First, if we have too few data
points, the system or molecule being measured may not access
every possible state. Second, poorly sampled states have very
large localization errors. Therefore, two low-occupancy adjacent
curves in the emission matrix are likely to overlap, and two
states are then consistent with a single level. In such cases, the
fitting result tends to be smaller than the real answer. For these
reasons, LE informs the setting of proper experimental condi-
tions such as data collection time, bin width, or incident laser
intensity. The accuracies of the PB and PC algorithms decrease
with a decreasing number of data points. However, the PCL
algorithm appears largely unaffected by the N, relative to the
PB, PBL, and PC algorithms. As shown in Figure 4B—F,
the accuracy of the PCL algorithm is larger than 60% even if
the number of data points is smaller than 1000. These results
illustrate the robustness of the PCL algorithm, suggesting great
utility for short data sets like those that plague single molecule
studies.

Figure 5 shows all fitting results and the percentage of correct
answers from five different conditions: the Baum—Welch
algorithm with BIC and the Poisson-modified algorithms using
BIC and chi-square probability with and without LE. The error
bars were determined by the standard deviation of 40 sets, each
including 50 fitting results. The PCL algorithm (solid pattern)
shows the best performance by ¢ test with 95% confidence
interval for short or Automatically Initiated Trajectories.

In conclusion, by modifying the Baum—Welch algorithm to
introduce chi-square probability and localization error, we have
improved HMM performance both in determining the dimen-
sions of unknown systems and in robustness even if the intensity
trajectory is very short, or if poor initial conditions are used. In
these common experimental situations, the newly generated PCL
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algorithm can outperform even BIC with localization error for
hidden Markov analysis of short trajectories.
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