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training, however, is not a common approach for building a statistical 
discrimination function. A method of including ambiguous samples 
for network training is currently under investigation [15]. 

In conclusion, a procedure was developed for making voiced, 
unvoiced, and silence classifications of speech using an MFN. The 
network VIUIS classifier is expected to provide a useful tool for 
speech analysis and may also have applications in speech-data mixed 
communication systems. 
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On the Locality of the Forward-Backward Algorithm 

Bernard Merialdo 

Abstract-In this paper, we present a theorem which shows that the 
local maximum found by the Forward-Backward algorithm in the case 
of discrete hidden Markov models is really “local.” By this we mean that 
this local maximum is restricted to lie in the same connected component 
of the set {z : P ( z )  2 P(z0) )  as the initial point xo (where P ( x )  is 
the polynomial being maximized). This theoretical result suggests that, in 
practice, the choice of the initial point is important for the quality of the 
maximum obtained by the algorithm. 

I. INTRODUCTION 

Hidden Markov models are increasingly being used in various 
domains and, in particular, in speech recognition [l] ,  [7]-[9]. Their 
popularity comes from the existence of an efficient training procedure, 
which, given an observed output string, allows the values of their 
parameters (transition and emission probabilities) to be estimated. 
This procedure is known as the h u m - W e l c h  algorithm or the 
Forward-Backward algorithm. It is an iterative algorithm which starts 
from an initial point (a set of parameter values) and builds a sequence 
of reestimates which improve the likelihood of the training data. This 
sequence converges to a local maximum of the likelihood function. 

A detailed presentation of the theory and practice of hidden Markov 
models can be found in [ l l ] .  Nadas [lo] discusses the use of the 
Baum-Welch algorithm and makes some remarks on the choice of 
the initial point. 

11. THE BAUM-WELCH ALGORITHM 

In the discrete case (i.e., when the output symbols belong to a 
finite alphabet), the convergence of this algorithm comes from the 
following theorem: 

Theorem A [3], [#I: Let p (X) = p ({XtJ}) be a polynomial 
with positive coefficients, homogeneous of degree d in its variables 
XZ3 . 

Let z = { z Z J }  be any point of the domain: 

D : x t J  2 0, c z i j  = 1, 
91 

j = 1, 
3 = 1  

such that, 

Let y = T,(z) denote the point defined by 

Then, 

P(T,(z)) > P ( z )  unless TP(I) = z. 

From Theorem A we can see that when we choose an initial point 
zo and build the sequence of iterates: 

Z * + l  = T P ( Z * )  

Manuscript received June 6, 1991; revised July 6, 1992. The associate editor 
coordinating the review of this paper and approving it for publication is Dr. 
Brian A. Hanson. 

The author is with IBM France Scientific Center, 75001 Paris, France. 
IEEE Log Number 9206396. 

1063-6676/93$03.00 0 1993 IEEE 



256 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 1,  NO. 2, APRIL 1993 

we have 

xo 

Fig. 1. Connexity and iterations of the BW algorithm. 

we always improve the value of P(z) .  Other simple topological 
arguments ensure that the sequence of iterates will converge to a 
limit point, which will be a local maximum of P( z). 

111. h X A L I T Y  OF THE MAXIMUM 
As it stands, the demonstration of Theorem A only guarantees that 

the algorithm will converge to a local maximum. Hopefully, and in 
the absence of other evidence, this local maximum might be good 
enough, and may even produce the global maximum. In Fig. 1, for 
example, if the starting point is 20, the algorithm would have to 
"jump" from region A to region B to get the higher maximum. 

However, it has often been found experimentally that the choice of 
the initial point has some influence on the quality of the maximum. 
For example, to train an acoustic model for a new speaker it is often 
better to take the model of another speaker as initial point rather than 
to start from uniform statistics. 

We are going to show that there are theoretical limitations for 
the Forward-Backward algorithm and that the choice of initial point 
severely restricts the set of local maxima that can be reached. Our 
result is based on the following theorem. 

Theorem B: The point Tp(z0) lies in the same connected com- 
ponent of the set {z : P ( z )  2 P(z0))  as the initial point 20. 

Proof: The proof is directly inspired by some arguments intro- 
duced in [6]. Consider the polynomial: 

This polynomial is homogeneous of degree d with positive coef- 
ficients and is constant over domain D. Now we introduce the 
polynomial: 

Q ( X )  = P ( X )  + AR(X)  

where A is a positive constant. We can apply Theorem B to the 
polynomials P ( X )  and Q ( X ) .  Let 

Y = Tp(z0) and z = TQ(zo). 

Let us introduce the notation: 

(Note that Ci,p does not depend on A and is positive.) Now we have 
Ci P Ad 

z;j = - C,,, + Ad yij + C , , p x o i i '  

Therefore, we have 

Q ( z )  2 Q ( z o )  

P ( z )  2 P(z0 )  

and since R(z)  = R(zo) ,  this implies 

. Let us note zx to recall the dependency of z on A. We have just 
proved that, for all A: 

When A varies from infinity down to 0, z~ follows a curve from zo 
to y. Along this curve we always have P(zx)  2 P(z0). Therefore, y 
is in the same connected component of the set {z : P ( z )  2 P ( z o ) }  
as the initial point xo. 

We have shown that the first iterate lies in this connected compo- 
nent. By transitivity, all subsequent iterates will also be in the same 
component, as will be the local maximum which is their limit. Taking 
the example of Fig. 1, Theorem B indicates that it is in  fact impossible 
to "jump" to region B, and that the algorithm can only find one of 
the two local maxima of region A. 

One should argue that, by taking a bad initial point with a low value 
for P(zo) ,  the connected component could be sufficiently vast to 
include the best maximum with high probability. Note however, that 
Theorem B can be applied to any step of the iteration so that as soon 
as an iterate point starts climbing a hill, the following iterates have 
to climb the same hill and cannot jump to another one. Therefore, 
if the iteration process reaches a point on the hill, it cannot reach a 
better maximum than the local maximum corresponding to this hill. 

IV. CONCLUSION 

We have presented a theorem which shows that in the 
case of discrete hidden Markov models, the Baum-Welch (or 
Forward-Backward) algorithm can only find a local maximum that is 
closely related to the position of the initial point. In particular, once 
it starts going up a given hill, it can never go down through a valley 
to reach another hill. 

This gives some theoretical support for the use of a good starting 
point obtained by some preliminary estimation, rather than by random 
or uniform statistics. 
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Convergence of Acoustic Echo Cancellers for Hands-Free 
Telephones Operating Under Feedback Conditions 

H. Schutze 

Abstract-Acoustic echo cancellers for conference circuits with hands- 
free telephones are capable of identifying a time-invariant room without 
problems, if no disturbances appear and no feedback exists over a second 
mom. In practice, these conditions are rarely fulfilled. In the following 
paper, the conditions are given, under which acoustic echo cancellers 
within a closed-loop conference circuit attain the same convergence 
behavior as in the open-loop case without additional difficulties. 

I. INTRODUCTION 
An acoustic echo canceller (AEC) has to identify the loudspeaker- 

room-microphone (LRM) system at its subscriber end to be able to 
permanently suppress its echo signal (Fig. 1). For the identification 
algorithms whose convergence characteristics are well known (e.g., 
[l], [2], the convergence statements are usually applicable for the 
case without feedback. However, conference circuits always represent 
feedback systems which, additionally, are time-variant and whose 
identification process is disturbed by signals of their own subscriber 
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Fig. 1. Conference circuit comprising two loudspeaker-room-microphone 
(LRM) systems with acoustic echo cancellers (AEC). 

station. It is the objective of this paper to show under which 
conditions the known convergence statements for AEC’s in open 
loops also are valid in closed ones. 

11. SYSTEM DESCRIP~ON 
A hands-free conference circuit with an AEC on either side has 

the basic structure shown in Fig. 1. The two participating stations 
are named A and B. All following considerations refer always to the 
identification of LRM system A. For LRM system B our statements 
apply analogously. 

A. LRM System 

time-invariant, and time-discrete: 
The LRM system A to be identified is assumed to be linear, 

(1) 

Here z ( k )  is an exciting input signal, u ( k )  is a disturbing voice 
signal or background noise from room A. The LRM system A is 
described by an FIR filter, 

I Y(k) = H A ( q - ’ ) z ( k )  + u ( k ) .  I 

“ A  
- 1  

H A  (q- ’ )  = hA,zQ ; H A ( 0 )  = hA,O = 0. (2) 
z=O 

where q-’ is a shift operator with the effect q - ’ z ( k )  = z ( k  - i). 

B. Feedback System 

1 except H A ( q - ’ ) .  
The feedback comprises all remaining transmission systems in Fig. 

& ~ ( k , q - ’ )  is a model of H A ( Q - ~ )  which is set by the 
identification algorithm I A :  

n B  

H B ( k , Q - ’ )  = c h B , z ( k ) Q - * ;  H B ( 0 )  = hB,O(k)  = 0 (4) 
t = O  

& ~ ( k , q - ’ )  is a model of H ~ ( k , q - ’ )  which is set by identi- 
fication algorithm IB: 
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