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Abstract—Single ion channel signal of cell membrane is a 
stochastic ionic currents in the order of picoampere (pA). 
Because of the weakness of the signal, the background noise 
always dominates in the patch-clamp recordings. The threshold 
detector is traditionally used to eliminate noise and restore the 
single channel signal. However, this method cannot work 
satisfactorily when signal-to-noise ratio is lower. An approach 
based on hidden Markov model (HMM) is used to reconstruct 
ionic single-channel currents and estimate model parameters 
under white background noise. Firstly, ionic single-channel 
currents were depicted and analyzed by HMM. Then, an iterative 
algorithm of Baum-Welch was introduced to train HMM and 
estimate the model parameters. Finally, the ideal channel 
currents were reconstructed by Viterbi algorithm. Compared 
HMM with the threshold detection by computer simulating under 
different transition probabilities and signal-to-noise ratios, and 
the results have shown that the method performs effectively 
under the low signal-to-noise ratio (SNR<5.0) and has fast model 
parameter convergence, high restoration precision and strong 
noise robustness. 
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I.  INTRODUCTION  
HMM is a signal processing tool with strong time-series 

modeling, so the HMM theory has be widely used in the speech 
signal recognition and biomedical signal processing [1-2]. The 
ion channel of cell membrane is special protein molecules 
spanning the membrane of excitable cells. In the protein 
molecule there exists a pore, which, in certain conformations, 
keeps open and allows the passage of selected ions along the 
electrochemical gradient to form ionic currents in the order of 
picoampere. In the other conformations, the pore keeps closed 
and no currents exist. The former and latter are respectively 
defined as "open" and "close" of channel, which are related to 
the transmembrane voltage, the mechanical pressure and 
neurotransmitter. The patch-clamp technique can record the 
ionic single-channel currents [3]. However, single-channel 
patch-clamp recordings are invariably contaminated by 
background noise. In order to discover the unknown channels 
to study the kinetic characters of ion channel as well, it is 
necessary to accurately restore the channel currents from patch-

clamp recordings. Generally, ionic signal-channel currents are 
detected by half-amplitude threshold detection for idealizing 
the channel current signal [4]. However, this method cannot 
work satisfactorily when signal-to-noise ratio is lower. In this 
case, this method fails completely. This paper is based on the 
analysis of ionic channel gating mechanism. Furthermore, the 
HMM is applied to reconstruct the ionic channel currents. In 
this method, a forward-backward algorithm was used to 
calculate the probability, and according to the Baum-Welch re-
estimation formula, the HMM model parameters were trained 
and estimated. On this basis, the ideal channel currents were 
reconstructed by Viterbi algorithm from the contaminated data. 
Finally, this paper compares HMM with the threshold detection 
method by computer simulating and analyses the iteration times 
for algorithm, the reconstructed errors for currents under 
different transition probabilities and signal-to-noise ratios. The 
results have shown that the method performs effectively under 
the low signal-to-noise ratio.  

II. HMM ANALYSE OF IONIC SINGLE-CHANNEL 
SIGNAL 

A. HMM parameter and algorithm analysis 
HMM is a dual stochastic process. One is Markov chain, 

which is used to describe the transitions between states. The 
other is stochastic process, which is used to describe the 
statistical relationship of the states and observed values [5]. 
The parameters are elucidated as follows: 

• Q = (q1, q2 ... qN) is a state set for Markov chain in 
which N denotes the number of states. In this paper, it 
represents the number of channel current amplitude 
levels. Usually, N =2 or 3. st denotes the state at time t. 
ST = (s1, s2 ... sT). 

• Л = (π1, π2 ... πN) is initial state probability. Where, πi = 
P (s1 = qi), 1≤ i≤ N.           

•  A =(aij)N×N is state transition probability matrix.Where, 
aij = P (st+1 = qj /st = qi), i, j =1, 2... N.   

• YT = (y1, y2...yT) is an observed sequence, which is 
sampled from patch-clamp recordings by computer in 
the paper. T is the length of sampling. 1≤t≤T. 
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• B = (bj (yt)) is probability density matrix of observed 
values. Where, bj (yt) = P (yt /st = qi), the probability of 
observed yt while the state being qj at time t. 1≤ j≤N. 

Therefore, HMM can be described as a parameter set λ = (π, 
A, B, Q). There are three correlative HMM questions when 
model λ and observed sequence YT   are known. 

• Given λ and YT, seek the probability P (YT/λ). 

• Given λ and YT, seek r = (rt (i)). Where, rt (i) = P (st = 
qi/YT, λi). And obtain the most likely state sequence. 

• Given λ and YT, reestimate parameter λ* = (π*, A*, B*, 
Q*) and seek optimal model parameter λML, where, ML 
denotes maximum likelihood estimation.  

The fundamental methods to solve above three questions 
are forward-backward algorithm, Viterbi algorithm and Baum-
Welch algorithm [6]. 

B. HMM description of ionic single-channel signal 
Ionic single-channel currents appear quantal in nature, and 

have the characteristic of “all” or “none”. They are one by one 
rectangle, with invariable current amplitude and stochastically 
variable dwell-times. Though the single-channel currents have 
only two current amplitude levels, which respectively 
correspond to the open and close of channel, the channel 
kinetics has multi open or closed states of different mean 
dwell-times(corresponding to different open or closed 
conformations), which take on the same open or closed current 
levels. This is called the “aggregation” of ion channel 
conformations. The states are connected by certain way, and 
the transition between all states is a first-order, finite state and 
continuous time Markov process [7]. Ionic single-channel 
currents become the discrete time sequence after sampling by 
patch-clamp technology. Due to the aggregation of the channel 
conformations and the background noise from patch-clamp 
system, the Markov feature of state transition cannot be 
observed directly. Therefore, HMM is adopted to describe the 
patch-clamp recordings, which are sum of ion currents and 
background noise.  

III. THE RECONSTRUCTION  OF  IONIC SINGLE-
CHANNEL SIGNAL 

That reconstructing currents from contaminated patch-
clamp recordings is to determine an optimal state sequence s1, 
s2... sT-1, sT according to the given patch-clamp recordings YT 
and model λ Assuming patch-clamp recordings is YT = 
(y1...yt....yT), the probability P(YT /λ) can be calculated by the 
forward-backward algorithm. At time t (1≤ t≤T), namely: 
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Where, )(itα is forward variable and )(itβ is backward 
variable. 

To avoid “underflow” phenomena in calculation, a 
proportion factor is added in the forward-backward algorithm 
[8].  

For forward variable: 
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For backward variable: 

Initialization:    
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Then, the kinetics parameter λ* = (π*, A*, B*, Q*) is 
estimated by the re-estimation formula to make probability P 
(YT /λ*) maximum. Baum-Welch re-estimation formula is as 
follows and its deduction sees reference literature [9]. 
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Accordingly, parameter B* is revised correspondingly: 
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Where, μ and σ2
w are mean and variance of Gaussian white 

noise, q*
i is the estimated states. The last parameter values are 

correlative to the initial parameter values. In this paper, the 
different initial parameters are selected and performed iterative 
calculation respectively. Then, by comparing the likelihood 
function of parameters, the global maximal value is selected. 

 Then Viterbi algorithm is exploited to determine the most 
likely state sequence. To avoid “underflow” questions, 
logarithmic processing technology is adopted. The algorithm 
proceeds as follows: 

Initialization: 
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Reconstructing state sequences: 
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IV. SIMULATING  EXPERIMENTS AND ANALYSE 
OF RESULTS 

A. Compared HMM with the threshold detection method 
At first, a total of 2000 samples are generated to describe a 

sequence of Gaussian white noise from patch-clamp 
recordings, namely {ωt}. Noise mean is 0pA and standard 
deviation is 1pA. As shown in Figure 1. This background noise 
is applied in all experiments in the paper. 

Then, a Markov sequence {st} of 2000 samples is 
simulated, which is generated from a two-state model with 

current amplitude levels 0pA and 3pA, state transition 
probability a11=a22=0.95, a12=a21=0.05, and length of sampling 
T=2000, N=2, Q=(0pA, 3pA), SNR=3.0. As shown in Figure 2. 
Patch-clamp recordings {yt} was simulated by noise {ωt} 
superposing to signal {st}. As shown in Figure 3. 
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Figure 1.  A simulative Gaussian white noise 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

0

1

2

3

4
A simulative Markov sequence

cu
rr

en
t 

am
pl

itu
de

(P
A

)

samples  

Figure 2.  A simulative Markov sequence {st} 
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         Figure 3.  A simulative sequence for patch-clamp recordings {yt} 

Firstly, the threshold detection method is adopted to 
reconstruct the ionic single-channel currents. The threshold 
value is set to 1.5pA. The current signal of reconstruction is 
shown in Figure 4. ER denotes error rate, which is defined the 
ratio of the samples restored falsely and the length T of 
sampling sequence. In this experiment, ER is 14.65%. 
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Figure 4.  A reconstructive current sequence using the threshold detection 

Assuming that initial state transition probability 
a11=a22=0.60, a12=a21=0.40, π1=π2=0.5, at(i) and βt(i) are 
calculated utilizing forward-backward algorithm. Then, 
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calculate A* and π* by Baum-Welch re-estimation formula. 
Finally, the ideal current amplitude sequence {s*

t} is 
reconstructed by Viterbi algorithm. The result is shown in 
Figure 5. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1

0

1

2

3

4
reconstructed current

cu
rr

en
t 

am
pl

itu
de

(P
A

)

samples  

Figure 5.  A reconstructive current sequence using HMM 

The algorithm converges by 25 iteration times, and 
a11=0.9438, a22=0.9591. ER=0.85％. The errors mainly appear 
on the samples which signal {st} sharply change from 0pA to 
3pA or contrarily. So HMM is not sensitive to the mutation in 
the signal. In addition, under the same transition probability, 
the sequences of patch-clamp recordings with three different 
SNR (5.0、2.0、1.0) are restored by HMM and the threshold 
detection method. The error ratio is shown in table 1. The 
results show that the threshold detection method can’t arrive to 
the demand (ER<10%) of the patch-clamp technique when 
SNR is lower than 5.0. However, HMM works effectively 
when SNR is 1.0, so HMM has strong anti-noise capacity.  

TABLE I.  THE COMPARISON OF PRECISION FOR HMM AND THRESHOLD             
DETECTION UNDER THE DIFFERENT SNR 

           ER 
SNR 

the threshold 
detection method HMM 

SNR=5.0 7.05% 0.20% 

SNR=3.0 14.65% 0.85% 

SNR=2.0 18.1% 3.05% 

SNR=1.0 29.9% 8.70% 

 

B. Experimental results under the different SNR 
In this experiment, SNR is set as 1.0、2.0、3.0、5.0, 

through changing the current amplitude of the sequence. The 
length of sequence is still 2000 samples, transition probability 
is 0.95, initial state transition probability a11=a22=0.60, 
a12=a21=0.40, π1=π2=0.5. In the case of SNR=3.0, the results 
are shown in the Figure 6. 
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Figure 6.  Convergence processing of transition probability and 

states under SNR=3.0 
 

The figure shows the algorithm converges by 25 iteration 
times when SNR is 3.0, and a11=0.9438, a22=0.9591, 
q1=0.0237, q2=3.0396. In additional, the results under other 
SNR are shown in the table 2. The experimental results have 
shown that the error ratio and the iteration times are increased 
along with the SNR lowering.  

TABLE II.   THE SIMULATING RESULTS UNDER THE DIFFERENT SNR 

SNR ER(%) a11 a22 W q1 q2 

1 8.70 0.9412 0.9518 78 -0.0104 1.0408 

2 3.05 0.9578 0.9480 33 -0.0386 1.9984 

3 0.85 0.9438 0.9591 25 -0.0237 3.0396 

5 0.20 0.9505 0.9610 21 0.0032 4.9959 
Note:  W denotes the iteration times; q1 and q2 denote states respectively. 

C. Experimental results under the different transition 
probability 
In this experiment, the transition probabilities are 0.93、

0.95、0.97, the others are the same as above experiments. The 
results are shown in table 3. When the transition probability aii 
increases, the error ratio is lower and the iteration times is 
increased. Due to the transition among states becomes less 
along with the transition probability aii is increased, namely, the 
mutation among states changes decreased. Therefore, the 
reconstructive precision improves. 

TABLE III.  THE SMULATING RESULTS  UNDER THE DIFFERENT 
TRANSITION PROBABILITIES 

aii(i=1、2) ER(%) a11 a22 W q1 q2 
0.93 1.65 0.9352 0.9404 24 0.0041 3.0163 
0.95 0.85 0.9438 0.9591 25 -0.0237 3.0396 
0.97 0.50 0.9587 0.9785 30 0.0459 2.9514 

Note:  W denotes the iteration times; q1 and q2 denote states respectively. 
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V. CONCLUSIONS 
In this paper, HMM is simulated to solve ion-channel 

parameters' estimation and signal reconstruction under white 
background noise (SNR<5.0). And the different simulating 
results are obtained through setting the different parameters. 
These results have shown that HMM is superior to the 
threshold detection method under the lower signal-to-noise 
ratio. The model has the fast convergence, high precision of 
restoration, and strong noise robustness. Therefore, the model 
can be used to reconstruct ion single-channel currents under the 
strong background noise.  
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