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Abstract: Hidden Markov models lead to intricate computational problems when considered directly. In this paper, we propose an 

approximation method based on Gibbs sampling which allows an effective derivation of Bayes estimators for these models. 
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1. Introduction 

Hidden Markov models have come recently under closer scrutiny, because they provide a handy 
extension of i.i.d. mixture models and thus allow for a more accurate modeling of clearly dependent 
phenomena (see, e.g., Rabiner, 1989, or Titterington, 1990). For instance, they have been used in speech 
and character recognition, leading to significant improvements in the success rates (see, e.g., Juang and 
Rabiner, 1991; and Kundu and He, 19911, or in DNA recognition (Churchill, 1989). For a usual mixture 
model, the observations originate independently from the distribution with density 

HY 10) = l? Pkf(Y IS,>7 (1.1) 
k=l 

where f(. 16) belongs to a given parametrized family, the weights pk > 0 add to one and 8 = 

(5 ,,...75K, PI,..., P~_~). The hidden Markov extension removes the independence assumption by 
considering that successive observations yi from (1.1) are correlated through the component k from 
which they originate. More formally, we can associate to each observation yi a missing value indicator zi, 
which represents the component from which yi is generated, i.e. zi = k if yi - f(y I kk); the assumption 
made on the zi’s is then that they constitute a Markov chain with transition matrix P = (pk_), with 
pk,m = P(zi = m 1 z~_~ = k), instead of being generated independently from (p,, . . . , pK) as in the inde- 

Correspondence to: Prof. Christian P. Robert, LSTA, Boite 158, UniversitC Paris 6, 4, Place Jussieu, 75252 Paris Cedex 05, France. 

0167.7152/93/$06.00 0 1993 - Elsevier Science Publishers B.V. All rights reserved 77 



Volume 16, Number 1 STATISTICS&PROBABILITY LETTERS 4 January 1993 

pendent mixture model. And, conditionally on the zi’s, the yi’s are independent. As for usual mixture 
models, one difficulty about inference on hidden Markov chains is that the indicators zi’s are missing (or 
hidden). Obviously, extensions could be considered, where the dependency is modeled through a 
higher-order Markov chain. For instance, as pointed out in Kundu and He (1991), speech models are 
usually well-represented by second-order Markov chains. But, notwithstanding the notational complexity 
of such extensions, they allow for approximation algorithms which are very similar to the one we discuss 
below. 

Parameter estimation in hidden Markov models usually relies on maximum likelihood or Bayesian 
approaches, moments methods being totally untractable in this setting, but they also face important 
implementation problems since the dependency structure can only exacerbate the difficulties met in 
regular mixture estimation (see Titterington et al., 1985); or Diebolt and Robert, 1992). For instance, the 
EM algorithm (Dempster, Laird and Rubin, 1977) was originally tailored for missing data structures but 
the dependency between the zi’s adds another problem to the usual drawbacks of EM for mixture 
estimation (Biscarat, Celeux and Diebolt, 1992), namely the use of a recurrent ‘forward-backward’ 
formula which is time-consuming and numerically sensitive, even though adapted algorithms have been 
designed (see Derin and Elliott, 1987; Devijver, 1985; or G&don and Cocozza-Thivent, 1990). As 
pointed out by Qian and Titterington (1991a), a usually tractable alternative to EM is to replace the 
E-step by a stochastic restoration step (see also Robert, 1991). However, while the simulation of the 
missing data is straightforward for independent structures like (l.l), it is quite difficult to simulate from 
the distribution of z = (zi,. . . , z,> conditional on y = (yi,. . . , y,), g(z 1 y, e), in hidden Markov models. 
Similarly, Bayesian estimation is already delicate for (1.1) (see Diebolt and Robert, 1992) and the 
difficulty obviously increases by a factor of magnitude for hidden Markov models. 

The approach we advocate in this paper is to provide an efficient Bayesian estimation of the model 
through Gibbs sampling. In an image processing setup, Geman and Geman (1984) introduced Gibbs 
sampling for Markovian models in a simulated annealing scheme, obtaining pointwise convergence 
results for this method in finite state structures. Diebolt and Robert (1992) implemented Gibbs sampling 
for i.i.d. replications from (1.1) with f in an exponential family, leading to considerable improvements in 
the Bayesian estimation of mixtures; it indeed allows estimation for samples where the implementation 
of the Bayesian paradigm was previously impossible. In this paper, we generalize their methods to hidden 
Markov models and derive geometric convergence results to the posterior distribution and related 
posterior quantities. Cancelling the call to time-consuming forward-backward recursion formulae thus 
leads to the first effective general Bayesian identification of hidden Markov chains. 

Gibbs sumpZing is an increasingly popular simulation method based on Markov chain theory. Instead 
of simulating directly from a distribution 7, it generates a Markov chain z@) with stationary distribution 
r. The sample zcrn), z(“‘+‘), . . . thus generated is no longer i.i.d. but an extension of the law of large 
numbers, the ergodic theorem, allows for an approximation of any posterior quantity of interest based 
upon this sample. (See Tanner (1991), Casella and George (1992), Smith and Roberts (1993), Besag and 
Green (1993) and Gilks et al. (1993) for details on both implementation and foundations of Gibbs 
sampling.) In our particular setup, we can show in addition that the convergence to the stationary 
distribution is uniformly geometric, by a duality principle exhibited in Diebolt and Robert (1992), and 
thus derive more precise conditions for convergence or, equivalently, for validation of the Gibbs 
approximation. 

2. Bayesian estimation 

The model introduced in (1.1) is therefore made of r.v.‘s xi = (yi, Zi) such that zi E (1, . . . , K), 
z = (21,. . .) zJ is a first-order Markov chain with transition matrix P, i.e. 

P(zi=zIzi_i,..., Z,)=P(Zi=ZIZi_l)=pz,_l,l, i=2,...,n, 
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and the y,‘s are independent conditionally on the zi’s, with 

Only the yj’s are observed and we choose zi = 1 for identifiability reasons. For simplicity’s sake, we also 
assume that the parametrized densities f(. 15) belong to an exponential family, i.e. it satisfies f(y I(> = 
h(y) 

P is a product of Dirichlet priors, N(Y[, . . . , a:>, 
with independence between the rows (1 < k G K). (A still tractable extension would be to consider a 
hyperprior on the ak’s.) 

Given this setup, the posterior distribution on 0 = (ti,. . . , tK, P) is 

r(ely)a 5 ? ... l 5 Pl,i,f( Y2 I Si,)Pi,,i,f( Y3 I Si,) ’ . ’ pin_l,infCYn I 8in> 
i,=l i,=l i, = 1 1 

Xf(Y, I afII { a)( fi&‘i) (2.1) 

and is therefore untractable for most values of n, since it involves a sum of K”-’ terms. However, the 
conditional posterior density ~(0 I y, z> is much simpler, since 

?i-(NY, z) a ITI JGk)( f&Y)}{ Lfi2P,_,,zif( Yi I L,))xyl I 51)’ 

In particular, we get the following conditional distribution for pk = (P~,~, . . . , P~,~), 

(2.2) 

(2.3) 

which is straightforward to simulate. Similarly, in the special case when f(y I (fk) is the density of 
Jcr(ck, 1) and the conjugate prior is .N(pk, l), we have 

Contrary to the independent mixture setting, the conditional density 

gtzl Y, ‘1 a riP;i,,,f( Yi I S*i)n{l,...,KJ(zi) (2.4) 
i=2 

is quite involved and simulation from (2.4) requires the time-consuming ‘forward-backward’ recurrence 
formulae (see Qian and Titterington, 1991b). This difficulty also prohibits the use of data augmentation 
as in Tanner and Wong (1987), i.e. to simulate according to g(z I y, fl), since 

pczn =j I y, 8, 2,-1,.. ., zl) = Kpzn-l” 
‘f(Ynl5j) 

L=lPz,_,,tf(Yn 16) ’ 

P(~,_, =i I Y, 8, z,_~, . . . , zl) = fznm2.i 
‘f(Y,-,ISj)c~‘=lPj,lf(Y,-,151) 

c,=,F P 1 1 r,_2,tPt,lf(Yn-2 I &)f(Yx-1 I‘51 
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and complexity grows at each step. However, the conditional distributions are much easier to deal with, 
since, for 1 < i < n, 

z -, 
g(Zi I _V, 8, zj+i) =g(zi I Yi? ‘7 *i-l, zi+l) = z:i d 

.;f(Yi 1 ~*,)Pw,+, 
1 1 r,_,,jf( Yi I ~j;.)pj3zi+i 

and 

(2.5a) 

(2.5b) 

Then, as shown in Geyer (1991), Tierney (1991) or Diebolt and Robert (1992), Gibbs sampling, i.e. the 
iterative simulation of ecm) according to ~(0 I y, t(“-l)) from (2.2) and zcrn) according to (2.5) (with 
8 = I@)), produces an homogeneous Markov chain (19 cm), zcm)). Since the conditional distributions (2.2) 
and (2.5) are positive, as we are in an exponential setup, this chain is irreducible and aperiodic. 
Therefore, it has a unique a-finite invariant measure and, since rr(0, z I y> =g(z I y, 0)x(@ I y> is 
stationary, (P), zcm)> is ergodic. This result implies that the ergodic theorem applies, namely that we 
can approximate any quantity of interest 

~[h(e) 1 Y] = f h(+iq I Y> de 
0 

by the average 

& 5 h(e(m)) 
WI-1 

for M large enough, whenever / I h(0) I r(0 I y) de < + 00. 
In this case, more precise convergence results can be obtained. Indeed, the sequence (z(~)) is also a 

Markov chain, with transition kernel density (i.e. conditional density of zcm+ ‘) = z’ given z@) = z) 

K(z, 2’) =j+UY. z)g(z;le, Y, z~,...,z~)-~(z~, Y, z;,...,L) de. (2.6) 
0 

Since this chain is irreducible and aperiodic, with a finite state space, it is geometrically ergodic and 
&mixing. On the contrary, (0@‘> is not a Markov chain even though the couple (8(“), z(“‘)) is a Markov 
chain (because the generation of z(“+l) between f3@) and O(m+l) also depends on zcm)). Nevertheless, 
some properties of the chain (zcm)) can be transferred to the sequence ecrn), owing to the duality principle 
exhibited in Diebolt and Robert (1992). (Chan (1991) also took advantage of this property in a setting 
where both sequences were Markov chains.) Actually, we deduce the uniform geometric convergence to 
the marginal posterior distribution r(@ I y) of 0 from the geometric convergence to the marginal 
posterior distribution g(z I y) of z. We 
value e(O) (it also depends on y) and II 
measure, depending on the context. 

Theorem 1. (i) There exist constants C > 

ll+Y*) -“(.IY)lIl~w. 

(ii) For any function h(8) such that 
constant C’ > 0 such that 

denote by r”(e) the density of 0(m) associated with a starting 
* II 1 the L’-norm associated with the Lebesgue or the counting 

0 and 0 G p < 1 such that, for each initial value et(‘), 

(2.7) 

P[ I h(0) I I y] < + ~0 and any initial density r’(e), there exists a 

[EZm[h(0)] - E-[h(e) I y] 1 <Crpm. 

(iii> The process (@“‘) is geometrically +-mixing. 

(2.8) 
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Proof. (i) The finite-state homogeneous Markov chain (z@)) is irreducible and aperiodic since K(z, z’) > 0 
for all z and z’. Therefore, (z@)) is uniformly geometrically ergodic and geometrically +-mixing. 
Moreover, its invariant density is 

g(zly) =/g(zly, +-(NY) de. 
0 

Thus, there exist constants C and 0 <p < 1 such that 

Ilgrn(9 -g(.IY)IL~W 

for any initial density go(z), where gm is the density of zcrn), which also depends on y. Now, since 

+iy) =/+lY, z)g(zIY) dz7 
_T 

we have 

II n- m+l-dl=/@lT m+l(e) -+ly)b 

=/l-i (?T(ely, z)g”(z> -n-(elY> 4iwY)) dz de 
OS? 

< /I ( T ~IY, z>Igm(z) -g(zly)l dz de 
02 

=IIg”(z)-g(zly)ll~(Bly,z)dedz 

= I;g”‘-&a. 

0 

The inequality (2.7) then follows. 
(ii) We have, since g(z I y) > 0 for all z E-Z’, 

IP”+‘[qe>] -~[h(e)Iy]I</- lh(e)I/+lr> z)lg”W -s(zly)I dz de 
0 % 

~/lh(8)(/~(BIy,z)g(zIy)dzdeC0 G-1 
0 Z I/ II 1 

1 

< min~cri;rly)~.[lh(e)llYlllP&lll 

< C’p”, 

according to (i). 
(iii) Geometric +mixing is established if we show that there exist #J and k such that 

WV) -T+IY)I +Wr)~(e) 
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with 4 geometrically decreasing to 0 and CL the density of a finite positive measure. Since zCrn) is a 
finite-state irreducible aperiodic Markov chain, it follows from Billingsley (1968) that there exists a 
geometrically decreasing function $i such that 

F(z) -dZlY)ld+). 

Now, 

IT m+l(q -T(ely)~+(e(-)ly, z(qgm(Z(m)) -&v%)l dz’“‘i 
z 

< cj,,(m)@e I Y, z@)) dz’“‘, 

and 

p(e) = @e I YT z> dz 

is the density of a finite measure on 0 since Z is finite. 0 

The geometric &mixing property also implies that a central limit theorem holds. Therefore, it is 
possible to monitor more carefully the convergence of the average 

; ; h(P)) 
m=l 

to E”[h(B) I y] (as M goes to infinity) by estimating its variance ui (see Geyer, 1991). 

Corollary 2. For a function h such that E”[ I h(8) I 2 I yl < + CQ and 

O<a~=Var~(h(13)) +2ECov”(h(B”)), h(@‘)))< +m, 
t=1 

there exists a central limit theorem on the average of the h(@“‘)>, i.e. 

& g (h(P)) - P+(B) I Y]) -+J’@ ah’>* q 
m-1 

These results show that the duality principle exhibited in Diebolt and Robert (1992) can be of use in 
settings other than Data Augmentation. When Gibbs sampling is used on the missing values or, more 
generally, on the artificial parameters, it still allows for a duality principle, i.e. for the transfer of the 
properties of the chain zCm) to the process ecm), even though the latter is not a Markov chain anymore. 

3. Conclusion 

Stochastic approaches have been previously proposed by Qian and Titterington (1991) for hidden 
Markov models under the name of stochastic restoration methods. However, as noticed above, the 
conditional distributions of the missing values, g(z I y, 01, cannot be expressed analytically and, more- 
over, does not allow for direct simulation since it involves the troublesome forward-backward formulae. 
In this paper, we propose a restoration type algorithm for Bayesian estimation which avoids the use of 
these formulae through Gibbs sampling, thus leading to efficient inference in this setting. We are 
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furthermore able to establish detailed convergence results for the Gibbs sampler. Obviously, similar 
developments could be considered in a non-Bayesian framework, simulating z along the lines of Wei and 
Tanner (1990) and Biscarat, Celeux and Diebolt (1992). 
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