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ABSTRACT In single-molecule experiments on the interaction between myosin and actin, mechanical events are embedded
in Brownian noise. Methods of detecting events have progressed from simple manual detection of shifts in the position record
to threshold-based selection of intermittent periods of reduction in noise. However, none of these methods provides a “best
fit” to the data. We have developed a Hidden-Markov algorithm that assumes a simple kinetic model for the actin-myosin
interaction and provides automatic, threshold-free, maximum-likelihood detection of events. The method is developed for the
case of a weakly trapped actin-bead dumbbell interacting with a stationary myosin molecule (Finer, J. T., R. M. Simmons, and
J. A. Spudich. 1994. Nature. 368:113–119). The algorithm operates on the variance of bead position signals in a running
window, and is tested using Monte Carlo simulations to formulate ways of determining the optimum window width. The
working stroke is derived and corrected for actin-bead link compliance. With experimental data, we find that modulation of
myosin binding by the helical structure of the actin filament complicates the determination of the working stroke; however,
under conditions that produce a Gaussian distribution of bound levels (cf. Molloy, J. E., J. E. Burns, J. Kendrick-Jones, R. T.
Tregear, and D. C. S. White. 1995. Nature. 378:209–212), four experiments gave working strokes in the range 5.4–6.3 nm for
rabbit skeletal muscle myosin S1.

INTRODUCTION

The actomyosin motility assay (Kron and Spudich, 1986)
has spawned a number of methods of monitoring interac-
tions between actin and myosin, using a microneedle
(Kishino and Yanagida, 1988), a single optically trapped
bead (Miyata et al., 1994), two optically trapped beads
(Finer et al., 1994), and a hybrid bead-microneedle system
(Ruff et al., 2001). Although experimental techniques have
become increasingly sophisticated, signal-to-noise ratios are
usually low and reliable detection of interactions (“events”)
can be problematic (Block and Svoboda, 1995; Mehta and
Spudich, 1998). To measure the maximum working stroke
of myosin, the force opposing movement should be mini-
mized by using optical traps or microneedles that are much
less stiff than myosin itself: the stiffness of myosin is �1
pN/nm, and that of the measuring device is typically only
0.04 pN/nm. Consequently, the relative Brownian motion of
myosin and actin before binding is large, typically �10 nm
rms, whereas the working stroke may be as low as 5 nm.

In the first direct determination of the working stroke,
Finer et al. (1994) recorded the position of one of a pair of
optically trapped beads while an actin filament stretched
between the beads interacted with a myosin molecule bound
to a surface (Fig. 1). Using filtered position data, they
scored any clear stepwise transient displacement from the

baseline as an event and obtained a mean value of �11 nm,
which they took to be the value of the working stroke.
However, Molloy et al. (1995) showed that this method
excluded events that are hidden in the residual baseline
noise; the weakly trapped actin-bead “dumbbell” is trans-
lated by Brownian motion by up to �30 nm past the myosin
molecule, which is presumed to be able to attach to any
actin monomer presented to it. The observed bound dis-
placement level includes both the displacement of the actin
site before binding and the subsequent working stroke: the
working stroke cannot be determined from an individual
event as it is not possible to distinguish the pre-stroke
displacement level from the noise. Thus the distribution of
bound levels is governed by the same Gaussian function
describing bead displacements in the absence of attachment,
but with every point shifted by the working stroke. If the
working stroke is constant and independent of displace-
ment, its value can be defined as the difference in the means
of these two Gaussian distributions. Molloy et al. showed
that attachment events could be detected by changes in a
variance record derived from the bead displacement record:
the system becomes stiffer when myosin binds and the noise
level decreases. On this basis the value of the working
stroke was found to be about half the value measured by
Finer et al. (1994), which was based solely on bound levels
from the uppermost tail of the distribution.

Later work used threshold methods (Colquhoun, 1998) to
detect single edges in a small window of the derived vari-
ance record from one bead (Veigel et al., 1998; Ishijima et
al., 1998), or the covariance record from both beads (Mehta
et al., 1997). The “mean-variance” method (Patlak, 1993)
has also been used to analyze displacement records (Guil-
ford et al., 1997; Tyska et al., 1999); this method does not
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aim to detect individual events, which is the focus of the
present paper. However, there is no general agreement on
the size of the working stroke: substantially different values
have been reported (e.g., Guilford et al., 1997; Ishijima et
al., 1998; Veigel et al., 1998), which could arise from
differences in experimental method or analytical technique.

The analytical approaches adopted so far do not provide
in any sense a “best fit” to the data. In this paper we describe
a method that optimally fits data to a simple kinetic model
using a Hidden-Markov (HM) algorithm; similar algorithms
have been used to detect gating events in single-ion-channel
recordings (Colquhoun, 1998; Ball and Sansom, 1989;
Chung et al., 1990, 1991; Fredkin and Rice, 1992; Horn and
Lange, 1983). For event detection, HM algorithms are more
powerful than single-edge algorithms because they generate
optimized model parameters with respect to the whole time
series (Appendix A) and the user need not set a threshold
level that may influence the number and kind of detected
events.

A single myosin molecule makes stochastic transitions
between states characterized by differences in biochemistry,
conformation, or attachment to actin. These states, or a
subset of them, must be inferred from a noisy displacement
record and are in that sense “hidden.” The “Variance-Hid-
den-Markov” method presented in this paper operates on a
variance record that monitors attachment events only.

The variance-HM method requires only the simplest pos-
sible assumptions that will account for the experimental
data: 1) the displacement record consists of a sequence of
levels (the “signal”) plus stationary random noise; 2) myo-
sin binds intermittently to F-actin in a two-state model,
either bound to or free from actin; and 3) when myosin
binds to actin the variance of bead displacements decreases
because the longitudinal stiffness of the dumbbell-myosin
system exceeds the stiffness of the dumbbell alone. The

parameters of this model are the rate constants f and g for
myosin binding and detachment, and the free and bound
variance levels V1 and V2. This information enables the
probability of each variance point and attachment state (free
or bound) in the variance record to be calculated from the
variance and state of the preceding point; the likelihood of
the entire sequence is obtained by compounding these con-
ditional probabilities, given a suitable assumption about the
initial state. The likelihood is then maximized with respect
to the parameters f, g, V1, V2. A running window of W data
points is used to calculate variance as a function of time, and
a figure of merit related to the likelihood indicates the
optimum value of W.

Readers content with the above explanation may wish to
omit the mathematical description in the next section (The
Variance-Hidden Markov Method), and turn to the follow-
ing section (Experimental Constraints). There follows an
account of tests with Monte Carlo-simulated input, in which
the actin dumbbell is assumed to be internally rigid so that
the beads make identical displacements. This assumption is
relaxed in the next section (Two-Channel Data) for the case
where actin-bead links are compliant; then the displacement
records of the two beads differ and the observed working
stroke must be corrected for the compliant links. We also
describe a method of correcting for a slowly drifting base-
line. Results are presented for two-channel Monte Carlo
simulations and experimental data for rabbit myosin-S1.

The variance-HM method will not detect actomyosin
events after binding that generate a step change in displace-
ment without increasing the stiffness of the myosin “cross-
bridge.” Events linked to force generation in muscle (Hux-
ley and Simmons, 1971) or force holding in myosin I
(Veigel et al., 1999) may be of this kind. These limitations
can be overcome by other versions of the HM method not
considered in this paper. The strengths and limitations of the
method are summarized in the penultimate section (Using
the Method). Computational aspects of the variance-HM
method and computer programs are presented in supple-
mentary material.

In this paper the unit of frequency is assumed to be
radians per second, the only exception being for data col-
lection where the inverse of the sampling interval is tradi-
tionally expressed in Hertz. The meanings of most mathe-
matical symbols in the text are summarized in Table 1.

THE VARIANCE-HIDDEN-MARKOV METHOD

We describe the basis of the HM method for a single record
(v1, . . . , vN) of variance values at equal intervals � in time.
In the process we consider how this variance record can be
constructed from a record of bead displacements.

The variance record is assumed to derive from a model
with only two states, specifying attachment of myosin to
actin (1 � “off,” 2 � “on”). Let Aij(v, v�) be the probability
of a transition from a recorded point with variance v and

FIGURE 1 Schematic diagram of the actin-bead assembly moving in
optical traps and in interaction with a single tethered myosin-S1 molecule.
The mechanical properties of this system are represented by an inextensible
actin filament and lumped elastic constants k for myosin, �t/2 for each trap,
and �L, �R for the links between filament and each bead. When myosin
binds to a monomeric actin site at distance x to the right, it is assumed to
exert a left-directed force k(x � h); if binding is most rapid when x � 0.
For an unloaded filament, this force would produce a left-directed dis-
placement stroke of x � h, whose site-average is the myosin working
stroke h. For the trapped filament and rigid links, these displacements are
reduced by a factor k/(k � �t); correction factors for the case of compliant
links are derived in Appendix D.
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state i to variance variance v� and state j at the next time-
point, where i, j � 1 or 2. By setting these variances in turn
to the observed values (v1, v2), (v2, v3) and so on, multiply-
ing the corresponding chain of transition probabilities
Ai1i2(v1, v2), Ai2i3(v2, v3), . . . , and summing all attachment
states (i1, i2, . . . , iN) over values (1, 2), one obtains the
probability P (or “likelihood”) that the chosen transition
matrix fits the entire variance record. The parameters of the
transition matrix may then be varied to maximize the value
of P. An efficient method of implementation is due to Baum
(1972) and is described in general terms in Appendix A,
which applies here if x � v.

In this paper we use the classical Hidden-Markov method
(Rabiner, 1989) where the transition matrix is independent
of the initial variance v, and can therefore be expressed in
the form

Aij	v, v�
 � aij�j	v�
 	i, j � 1, 2
. (1)

where �j(v) is normalized to unity. In this case, variance
noise is regenerated from a state-dependent distribution

�j(v) at each sampled time, and is uncorrelated over the
sampling interval �. The “states-only” transition matrix aij

can be expressed in terms of notional binding and detach-
ment rates f and g as

a12 �
f

f � g
	1 � e�(f�g)�
,

a21 �
g

f � g
	1 � e�(f�g)�
, (2)

with a11 and a22 determined from the sum rule over final
states (Eq. A7b). These expressions follow from the corre-
sponding rate equations for aij(�) as a function of �.

The distributions �j(v) are determined by how the vari-
ance record is constructed, for example by a uniform aver-
age over a forward window of W sample points:

v	tk
 �
1
W �

j�1

W

	u	tk�j
 � u� 	tk


2, ū	tk
 �

1
W �

j�1

W

u	tk�j
 (3)

where bead displacements u(t) are collected at times tk � k�
(k � 1, 2, . . .). In general, variance values need not be
constructed at every time point of the displacement record,
because any correlation between neighboring points in the
displacement record will then appear in the variance record,
which conflicts with the assumption leading to Eq. 1. We
show below that maximum information compatible with
minimal correlations can be achieved if variances are gen-
erated or resampled at every W/2th point of the displace-
ment record, so that the reduced sampling time � is (W/2)�.

If the displacements u(tk) are independent Gaussian vari-
ates with the same attachment state, mean and variance �i

(Gaussian white noise), then Wv(tk)/�i
2 is a chi-square func-

tion with W � 1 degrees of freedom (Weatherburn, 1968),
so

�i	v
 �
W

2�i
2

yi
(W�3)/2e�yi


		W � 1
/2
 �yi �
Wv

2�i
2� . (4)

Hence the mean and variance of v in attachment state i are

Vi � 	1 � W�1
�i
2, Si

2 � 	1 � W�1

2�i

4

W
. (5)

where Vi is the true level of the running-variance record in
that state. The standard deviation Si from this level is such
that Si/Vi � �2/W for W �� 1. Hence the running-variance
record can be regarded as the sum of signal and noise
components; the signal switches between values V1, V2 and
the noise amplitudes S1, S2 are state-dependent. The quan-
tity

R �
V1 � V2

S1 � S2
� �W

2
V1 � V2

V1 � V2
(6)

TABLE 1 Digest of mathematical symbols used in the
main text

Aij(v, v�) � transition rate from state i, variance v to state j, variance v�;
aij � transition rate from state i to state j (i, j � 1 or 2);
c � actin monomer spacing;
F � figure of merit � L/N � �W (� � 0.0015–0.003);
f, g � myosin-actin binding/detachment rates;
h � unloaded myosin working stroke;
i � myosin-actin attachment state (1 � free, 2 � bound);
Ji � number of detected attachment events into state i;
J � total number of detected attachment events � J1 � J2;
k � myosin stiffness;
kB � Boltzmann’s constant;
L � log10(P) (P � likelihood);
N � no. of entries in the variance record;
R � signal-to-noise ratio;
Si � SD of all displacement levels in state i;
T � absolute temperature;
T � duration of displacement record;
u(t) � bead displacement at time t;
U� i � mean (event-averaged) displacement in state i;
U� � uncorrected working stroke � U� 2 � U� 1;
Vi � mean (time-averaged) variance level in state i;
ViLR � mean covariance level in state i;
W � no. of data points in the running-variance window;
	 � damping constant of both beads;
� � time interval for sampled displacements;

i,j � Kronecker delta function � 1 (i � j), 0 (i � j);
�t � corner frequency of free dumbbell;
� � corner frequency of bound dumbbell;
� � time interval for variance record � (W/2)� � T/N;
�t � combined stiffness of both traps;
�L, �R � stiffnesses of left, right bead-filament linkages;
�̃L, �̃R � stiffnesses of left, right links in series with their traps;
�̃ � combined stiffness of filament-bead system � �̃L � �̃R

�i(v) � distribution of variance v in state i;
�i � predicted SD of displacements in state i;
�c � Nyquist sampling frequency (variance record);
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may be regarded as a signal-to-noise ratio. Similarly, the
autocorrelation function

Ci	
n � n�
 � 	v	tk
 � Vi
	v	tk�n
 � Vi


� � Si
2�1 � �1 �

n

W2� n

W � 1	 , 	n � W


0, 	n � W
.

(7)

for variance fluctuations in state i arises from Gaussian
white displacement noise; as expected, fluctuations are un-
correlated when n � W. The correlation time, defined as the
time to half-maximum correlation, asymptotes to W/2 sam-
ple points when W �� 1. Choosing � � (W/2)�, the
correlation time of variance fluctuations, gives an accept-
able trade-off between time resolution and unwanted corre-
lations. This choice can also be justified in the frequency
domain. In the limit W �� 1, the corresponding power
spectrum with respect to circular frequency � is propor-
tional to sin2(��)/(��)2, and 90% of the total spectrum lies
within the first lobe where 
�
 � �/�. As �/� is the Nyquist
critical frequency for the sampling interval �, aliasing ef-
fects from higher frequency components should be minimal
(Press et al., 1992). Note also that, for a given value of �,
a large averaging window gives a bigger signal-to-noise
ratio, but degrades the time resolution (��/2) defined by
the variance record.

Events are detected by using Baum’s forward-backward
algorithm (Appendix A) to generate the probabilities p1,
p2, . . . , pN at each point of the variance record that myosin
is bound, which indicate the more-probable attachment state
of myosin. Then the parameters f, g, V1, V2 can be re-
estimated by Baum’s method (Appendix A), enabling an
iterative approach to an optimum parameter set for which
the likelihood has a global maximum. The maximum with
respect to f, g is typically broader than with respect to V1, V2

(Fig. 2). In the absence of round-off errors, Baum’s theorem
(Appendix B) guarantees that the iterated likelihood over a
cycle of re-estimation will not decrease.

Averaged quantities calculated after event detection are
accompanied by finite sampling errors. For example, event-
averaged displacement levels U� 1, U� 2 with myosin free or
bound and their standard deviations S1, S2 are calculated by
the formulae

Ui �
1
Ji
�
j�1

J

U	j

i(j),i, Ui
2 �

1
Ji
�
j�1

J

U	j
2
i(j),i (8a)

Si
2 � Ui

2 � 	Ui

2 �

1
Ji
�
j�1

J S	j
2

n	j


i(j),i (8b)

for J1 detected detachments and J2 bindings (Weatherburn,
1968). U(j) and S(j) are the mean and standard deviation of
displacement in the jth attachment period, containing n(j)
sample points. Hence Ei � Si/�Ji is the standard error in
the mean level in state i. However, these errors do not
include the effects of mistakes in event detection.

EXPERIMENTAL CONSTRAINTS

Under what conditions can the variance-HM method be
applied to displacement data from the double-bead trap
experiment (Fig. 1)? There are restrictions relating to the
time scales of events and data collection, and conditions for
a high signal-to-noise ratio to ensure reliable event detec-
tion. In this section we assume that the actin-bead dumbbell
is sensibly rigid so that the displacement records from the
two beads are the same. Formulae presented in this section
apply also to the average of these two records when the
compliances of the two actin-bead links are identical
(Smith, 1998b).

In the previous section, displacement noise was approx-
imated by Gaussian white noise to estimate the statistical
properties of the derived variance record. This assumption is
incorrect, since trap force and viscous damping on each
bead act in combination to limit the frequency response of
longitudinal bead displacements below the “corner” fre-
quencies

�t � �t/	, � � 	k � �t
/	 (9)

(in radians/s) with myosin respectively free or bound (Svo-
boda and Block, 1994). Here �t is the combined stiffness of
the traps, 	 the damping constant of both beads, and k the
myosin stiffness, corrected if necessary for compliant actin-
bead links (Fig. 1). These frequencies are rates of mechan-

FIGURE 2 Sensitivity of log-likelihood L to changes in (A) rate con-
stants f and g and (B) variance levels from a Monte Carlo simulation. Each
surface was calculated using the optimum values of the other two param-
eters (V1 � 53.84, V2 � 6.683 nm2 in A and f � 4.548, g � 10.07 s�1 in
B). Maximum likelihood with respect to f and g may be achieved by
Baum’s re-estimation method (Appendix B), nested within a cycle of
re-estimation for variance levels.

2798 Smith et al.

Biophysical Journal 81(5) 2795–2816



ical damping, or regeneration of an equilibrium distribution
of Brownian fluctuations. The variances of displacement
noise with myosin free or bound are determined by equi-
partition of energy, namely

�1
2 �

kBT
�t

, �2
2 �

kBT
k � �t

(10)

where kB is Boltzmann’s constant and T is absolute tem-
perature). When W �� 1, the variance levels V1, V2 are
almost equal to �1, �2 respectively (Eq. 5).

For displacements at intervals of �, the approximation of
Gaussian white noise is correct if �t �� �/�. For the
variance-HM method, this condition can be relaxed because
the variance record has a larger sampling time �. In the last
section we showed that the choice � � (W/2)� is sufficient
to reduce correlation between successive variance points to
an acceptably low level. In practice, Brownian equilibrium
between variance points is sufficiently well established if �t

exceeds �/� by a factor of three.
A high signal-to-noise ratio in the variance record is

achieved if 1) in bound periods, the mean variance drops to
a small fraction of its free level and 2) variance fluctuations
in both free and bound periods are low. The former is
accomplished by using weak traps relative to the stiffness of
myosin and links in series, and by meeting the conditions
for Brownian equilibrium in the variance record. In free and
bound periods, variance fluctuations can be reduced to a
small fraction of the variance level by increasing the width
W of the averaging window (Eq. 5 and below).

The variance-HM method presented here requires the
following working conditions: 1) to ensure uncorrelated
variance values, Brownian equilibrium should be achieved
within the time interval � between sampled points in the
variance record; 2) in general, each period of attachment
should last for many such sample points. Simulations sug-
gest that periods with lifetimes below 4� may be missed; 3)
for reliable event detection, the variance levels V1, V2 in free
and bound periods should be well separated relative to
fluctuations, as expressed by the inequalities

�t ��
2�

W�
�� f, g. (11)

V1

V2
�

k � �t

�t
� 1 (12a)

R � �W

2
V1 � V2

V1 � V2
� �W

2
k

k � 2�t
� 1. (12b)

where R is the signal-to-noise ratio of Eq. 6. For a given
value of R, a bigger window is required when the variance
ratio in Eq. 12a is reduced, say by weaker links. [Note the
equivalence of the units of rate constants (s�1) and fre-
quency (rads/s) implied by Eq. 11. The characteristic fre-
quency of a relaxation process exp(��t) is �, since its

power spectrum with respect to circular frequency � is
proportional to (�2 � �2)�1. This form motivates (11) when
� is the Nyquist sampling frequency �/(W�/2) in the vari-
ance record].

Estimated values for trap experiments are �t � 0.04
pN/nm, 	 � 2 � 10�8 N�s/m for two 1-�m diameter beads
in aqueous solution (Stokes’ law, viscosity � 0.001 Kg/m�
s), hence �t � 2000 s�1, k � 0.1–1.0 pN/nm with or without
link compliance (Veigel et al., 1998; Huxley and Tideswell,
1996), � � 10�4 s and f � 5 s�1, g � 10 s�1. The binding
rate f is very dependent on dumbbell positioning, but the
rate of detachment should reflect rates of ATP-induced
detachment measured by other means, for example g �
2–3 � 106[ATP] s�1 below 100 �M (Lymn and Taylor,
1971). These values satisfy conditions (Eq. 11) if W � 100,
giving � � 5 ms. The quoted stiffnesses give V1/V2 �
3.5–26 where values above 5 are desirable, and R � 3.9–
6.5.

Additional assumptions, extraneous to the variance-HM
method or any event detector using a running-variance
record, are required to extract the myosin working stroke
from displacement data. The method proposed by Molloy et
al. (1995) assumes that all sites on F-actin are equally
accessible, so that the distribution of bound displacement
levels is the Boltzmann distribution of free dumbbell dis-
placements displaced by an amount

U� �
k

k � �t
h (13)

(Appendix C) where h is the unloaded myosin working
stroke. For equally compliant links, this equation is correct
if link compliance is absorbed in k (Smith, 1998b; Veigel et
al., 1998). General correction formulae for compliant links
are derived in the section on two-channel data.

TESTS WITH MONTE CARLO SIMULATIONS

The variance-HM method as an event detector has been
extensively tested with Monte Carlo simulations, made us-
ing the Langevin equation method (Smith, 1998b). All
simulations were made with a simplified actomyosin cycle
as follows: 1) myosin-S1 can bind to monomers of any
orientation on the actin filament (Molloy et al., 1995); 2) the
rate of binding is a symmetric (Gaussian) function of the
myosin-actin site separation x in Fig. 1; and 3) binding is
immediately followed by a force-generating transition that
moves the neck-rod junction by the “throw distance” or
working stroke h. These features produce quantized dis-
placement levels separated by the smallest monomer spac-
ing c on the double-helix that allows the myosin to bind
(Lorenz et al., 1995). The time step for integrating the
Langevin equation should be within mechanical damping
times (under 1 �s), while displacement output was collected
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at 10 KHz (� � 10�4 s). Simulations were made with c �
5.5 nm and h � 5.5 nm or 11 nm.

This section describes results from a simulation program
with one output channel. Simulations incorporating various
experimental complications, including links of different
stiffness, are analyzed in the next section.

To establish a benchmark, we present results from a
simulation of 106 points with h � 5.5 nm, a high variance
ratio (V1/V2 � 11), and equivalent rate constants feq � 4.6
s�1, geq � 12.7 s�1 (Eqs. C7, C8), a fragment of which is
shown in Fig. 3 I. With W � 100, the core program detected
567 attachment events of 641, and produced re-estimated
values f � 4.0 s�1, g � 10.0 s�1, and V1/V2 � 9.6 conver-
gent to within 0.1%. The detected rate constants are lower
than predicted, either because short-lived events in the sim-

ulation have not been detected or are not present in the
variance record. During re-estimation, log(likelihood) L �
log P rose monotonically to a maximum. Fig. 4 summarizes
input and output information from the program suite, in-
cluding a fragment of the running-variance record (A) and
its distribution (B), “restoration” of the displacement record
after event detection (C) as a sequence of flat levels (mean
displacement in each detected free or bound period), and the
frequencies of binned free and bound levels (D) and their
lifetimes (F). Note the following features: 1) the spread of
free levels is confined to a few nanometers and should be
symmetric about the base line unless contaminated by un-
detected bound periods; 2) the distribution of bound levels
reflects the Gaussian distribution of free dumbbell displace-
ments with standard deviation �1 (Appendix C), displaced
to a mean value slightly less than the working stroke h; 3)
detected bound levels reflect the quantization of levels
produced by the simulation from discrete binding sites on
the filament (Fig. 4 E); and 4) lifetimes of free and bound
levels are exponentially distributed with the detected decay
rates f and g, except that some short-lived levels appear to
be missing (Fig. 4 F).

The detected rate constants are related to the number of
detected events, since the steady-state flux through the
attachment cycle is fg/(f � g). Assuming steady-state con-
ditions, the expected numbers of detachment/binding events
over time T are

J1 � J2 �
fg

f � g
T. (14)

If J1 � 100, this equation predicts the number of detected
events to the nearest integer.

Indicators of performance

As a detector of events, the variance-HM method can be
characterized at various levels. For simulations, the times of
binding and detachment events in the displacement record
are known, so the incidence of missed events and false
detections can be tabulated. These numbers are useful in
comparing results from variance records with different win-
dows from the same displacement record, and more gener-
ally in testing the method over a range of values of simu-
lation parameters.

For experimental data, other indicators are required.
From assorted output variables, the most useful guides seem
to be the maximized likelihood L, mean bound level U� (the
raw working stroke), the number of detected events J, and
detachment rate g as a function of window width. Informa-
tion revealed by level and lifetime histograms can also be
useful: 1) the distribution of free levels may reveal a loss of
long-term stability in the positions of the traps or the mi-
croscope stage; 2) the distribution of bound levels may
reveal departures from Gaussian behavior; and 3) the dis-

FIGURE 3 Samples of Monte Carlo-simulated displacement data (one-
tenth of a 100-s record sampled at 10 KHz) and their running variance
records (with W � 100, sampled at 200 Hz) for h � 5.5 nm and variance
ratios of 11, 5, and 2 (I, II, III, respectively). Each simulation is made for
a combined trap stiffness of 0.1 pN/nm, and values k � 1.0, 0.4, and 0.1
pN/nm, respectively of effective myosin stiffness. For compliant but equal
actin-bead links, k can be interpreted as the stiffness of myosin in series
with the links in parallel, provided both bead displacements are averaged
(Smith, 1998b). Simulation kinetics determine the Brownian-averaged
rates of binding feq � 4.57 s�1 (Eq. C7) and detachment geq � 12.7, 21.1,
and 33.1 s�1, respectively. The corresponding duty ratios (0.26, 0.18, 0.12)
are typical of experiments at 5 �M ATP. Displacements were simulated
from a Langevin equation with randomly generated Brownian forces and
attachment events. For clarity, only every 10th displacement point is
plotted.
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tribution of lifetimes may indicate that some short-lived
events have been missed.

With simulated input, detected binding or detachment
events can be classed as true or false by matching them in
time to known input events. A similar procedure can define
undetected events in the input record. Input and output
events will be said to be matched if their time difference is
within one window width (a time error of �W�), although
variance values are stored at half this interval. The construc-
tion of such comparison algorithms is not straightforward
and is discussed in the supplement.

Event detection can also be judged by the value of the
maximized likelihood, or log(likelihood)/point L/N, which
is approximately independent of the length N of the variance
record for large N. Table 2 lists values of L/N and other
indicators as a function of window width for simulations
I–III of Fig. 3 with different variance ratios. The number of
detected events and the apparent attachment rates are de-
creasing functions of W. In simulation I, U� tends to the
correct value at small W because no false detections were

introduced. In simulations II and III, false events are present
so U� moves toward its correct value as W is increased and
false detections are reduced in number. Thus the optimum
window width is determined by the nature of the data.

Although maximum likelihood indicates the best param-
eters for a given variance record, it does not indicate the best
window size for a given displacement record. A similar
difficulty arises in attempting to compare maximum-likeli-
hood values from models with different numbers of param-
eters, and empirical corrections have been suggested as a
way of penalizing over-specified stochastic models (Ball
and Sansom, 1989). Here we wish to characterize outputs
from a fixed stochastic model when information in the
variance input is reduced, suggesting an additive bonus
proportional to W. For these purposes, an empirical figure of
merit

F �
Lmax

N
� �W (15)

FIGURE 4 The variance-HM method applied to displacements simulated in Fig. 3 I, showing (A) a fragment of the running-variance record, overlaid by
the sequence of detected variance levels; (B) the bimodal distribution of variances in the record, reflecting the predicted mean variance levels V1 � 40.0,
V2 � 3.64 nm2 in free and bound periods, with fractional widths approximately equal to �2/W � 0.14 from Eq. 5. (C) A fragment of the displacement
record, “restored” by the sequence of detected displacement levels. Short-lived features of the simulation are either not detected or not present in the
variance record. (D) Frequencies of detected detachments (dark shading) and bindings (light shading) selected by the following displacement level, using
1-nm and 5-nm bins, respectively, and the relation of the latter to a Gaussian distribution matching the sampled mean (5.00 nm), standard deviation (6.13
nm), and total number of detected bindings (284). (E) The same distribution of binding events, binned at one-fifth of the expected quantization spacing of
5.0 nm. (F) Distributions of the lifetimes of free and bound levels, and their relation to Poisson distributions of degree zero with mean lifetimes 1/fopt �
0.25 s and 1/gopt � 0.10 s.
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is proposed. The coefficient � should be chosen so that F
and the raw working stroke U� are maximized at the same
value of W, since simulations show that the maximum value
of U� is closest to the value predicted by Eq. 13.

Fig. 5 summarizes the behavior of four indicators, namely
(A) the figure of merit, (B) raw working stroke, (C) number
of detected events, and (D) optimized detachment rate, as a
function of window width for the simulations in Table 2.
The desired correlation between F and U� is achieved in all
four simulations with the same value (0.0015) of �, so that

the window size for maximum F reflects both the accuracy
of the raw working stroke and the quality of the data (as in
Table 2). Results with this window should be accepted
unless contraindicated by C and D, as described in the figure
caption. There is no universal “best” value of �, simulations
made with a lower trap stiffness (0.067 pN/nm) and h � 11
nm behaved similarly but required � � 0.0028. Thus the
figure of merit can be regarded as an empirical adjunct to
indicators B, C, and D, which should be valid for data
records obtained under the same conditions.

TABLE 2 Performance of the variance-HM detector as a function of window width W and the free-to-bound variance ratio
V1/V2, using simulations I–III of Fig. 3

V1/V2 W Lmax/N fopt (s�1) gopt (s�1) U� (nm) J J(T) J(M) J(F)

11 (I) (641) 50 �1.5801 4.29 10.17 4.69 601 601 39 0
100 �1.6712 3.97 9.97 4.49 567 566 73 0
150 �1.8043 3.57 9.45 4.53 517 517 120 0
200 �2.0380 3.37 9.38 4.43 495 495 140 0
250 �2.3334 2.99 8.92 4.29 447 447 186 0

5 (II) (707) 50 �1.7957 6.14 27.61 2.75 990 652 54 338
100 �1.8535 3.72 18.82 3.94 620 600 104 20
150 �1.8985 3.26 17.84 4.01 549 548 154 2
200 �2.0095 3.00 17.55 3.98 510 506 188 1
250 �2.1144 2.65 16.61 4.15 456 455 238 0

2 (III) (714) 100 �1.7506 22.1 61.3 0.44 3184 539 170 2632
150 �1.7663 10.34 43.8 0.76 1635 500 207 1131
200 �1.7837 6.51 34.5 1.03 1063 454 251 599
250 �1.8040 4.52 28.9 1.51 771 411 296 357
300 �1.8372 3.39 25.6 1.69 597 364 341 228

The total number of events is given in parentheses. J is the number of detected events; superscripts T, M, F denote true, false, and missing events as defined
in the main text. Other symbols are defined in Table 1. The expected rate constants are feq � 4.57 s�1 throughout and geq � 12.7, 21.1, and 33.1 s�1

(Appendix D), also mean bound levels U� � 5.0, 4.4, and 2.75 from Eq. 13. With simulation I there are no false detections, and small windows detect more
true events and give the best results. With simulations II and III, false events are detected. The incidence of false positives is reduced by increasing the
window size, thereby increasing the estimated mean bound level. For simulation III, the method fails as the number of false detections remains unacceptably
high as W is increased. Note that the optimum value of W is not indicated by maximum likelihood.

FIGURE 5 Performance indicators for variance-Hidden-Markov runs at different window sizes W, for simulations I–III of Fig. 3 (F, �, ■) and from one
channel of a two-bead simulation (}). (A) The figure of merit F; (B) mean bound displacement level U� ; (C) the reciprocal of the number of detected events
J; and (D) the mean lifetime 1/gopt, where gopt is the optimized detachment rate. For simulations I–III, values 5.0, 4.4, and 2.75 nm, respectively, are
predicted for U� and values 12.7, 21.1, 33.1 s�1 for g. The best value of W is indicated by a maximum in the figure of merit, for which U� is close to its
predicted value. In all plots, false detections become significant for W � 50, producing a spurious drop in U� and high values of J and gopt. As W increases
above 50, J and gopt fall more slowly as genuine short-lived events are progressively removed from the running-variance record. When false detections are
absent, the mean lifetime increases linearly with W and can be fitted to the equation 1/gopt(W) � 1/g � �(W�/2), in which the second term is the shortest
detected lifetime. All events present in the variance record are detected if � � 1. Data for simulation I can fit such a straight line for W � 100.
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Missed events come in pairs, from undetected short-lived
levels. Their number can be estimated by comparing life-
time histograms at different window widths, which impose
a threshold time � � W�/2. In Fig. 6 A the lifetimes of
missed levels are �4� and the detection of longer-lived
levels is virtually unchanged; this behavior is also a positive
indicator. False events may appear as a sharp increase in J
and gopt as W is reduced, where gopt does not describe the
distribution of longer-lived events (Fig. 6 B). The apparent
working stroke is also reduced, as false events arising from
noise are symmetrically distributed about the baseline.

Simulations also reveal the amount of variability in de-
tected output from Monte Carlo simulations with different
random-number seeds but the same physical parameters. In
case I of Fig. 3 (V1/V2 � 11), 10 such Monte Carlo runs of
106 points each generated raw working strokes over a range
of 0.49 nm (mean � SD � 4.89 � 0.15 nm) near the true
value of 5.0 nm, with 250–300 detected binding events per
record. These variations mostly lie within the estimated
standard error E � 0.4 nm for each record where E2 � (S1

2

� S2
2)/J2, so variations between runs are generated by the

same fluctuations that generate events within each run.
However, histograms of bound levels from individual sim-
ulations do show significant differences. Repeated simula-
tions of types B and C behave similarly, except that false
detections were present at the window width used (W �
100) and the raw working strokes were lower.

Output may be combined in ways determined by the kind
of averaging used in each record and statistical assumptions
about variability between records. Displacements levels are
“event-averaged,” with a weight of one for each attachment
period, so the average displacement over n records should
be calculated by event-averaging the combined record. Let
U(r) and S(r) be the mean and standard deviation of displace-
ments in a given state in the rth record, with J(r) events into
the state; the corresponding standard error is E(r) � S(r)/
�J(r). If p(r) is the fraction of events in the rth record, the
mean displacement is

�U� � �
r�1

n

p(r)U(r) �p(r) �
J(r)

Jtot
, Jtot � �

r�1

n

J(r)�. (16)

The standard deviation S is given by combining variances
between and within records:

S2 � �U2� � �U�2 � �
r�1

n

p(r)S(r)2. (17)

The standard error in the combined result is E � S/�Jtot, so

E2 �
�U2� � �U�2

Jtot
� �

r�1

n

p(r)2E(r)2 (18)

(Weatherburn, 1968). However, the derivation of Eqs. 17
and 18 assumes that there are no systematic variations
between records. If such variations exist, the standard error
would be obtained by replacing Jtot by the number of
records n in Eq. 18. These formulae can detect systematic
changes in working strokes from different records.

The variety of simulations

Using the same indicators (the figure of merit, raw working
stroke, number of detected events, and optimized detach-

FIGURE 6 Log-linear histograms of the lifetimes of bound levels as a
function of window size W in the running-variance record can reveal and
characterize missing and false events. (A) For good data (V1/V2 � 11),
short-lived bound events are missed as W is increased, but longer-lived
states fit a Poisson distribution with the detected detachment rate (straight
lines with slopes gopt � 11.5, 11.2, 10.1, and 8.5 s�1, respectively). The
reciprocals of these values fit the straight-line function described under Fig.
5 with � � 3.6 and g � 12.3 s�1 (simulation value � 14.9 s�1), indicating
that false events are virtually absent. (B) For bad data (V1/V2 � 2), many
short-lived false events appear with a small window, so the detected
detachment rate does not describe the distribution of longer-lived events; as
W increases the peak at short lifetimes is replaced by a hole reflecting
missing events and the detachment rate drops more rapidly (gopt � 88.4,
39.5, 23.2, and 15.6 s�1). For reasonable bin statistics, bound-state life-
times are binned at four times the sampling time � � 4(W�/2) in the
running variance record.
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ment rate), the performance of the detector can be charac-
terized over a range of simulations. When the simulation
model is relevant, the results may be used to guide analysis
of experimental data obtained under different conditions,
such as ATP level. Simulations at different variance ratios
are summarized in Table 2, which confirms conditions (12a
and b) in the sense that performance is an increasing func-
tion of V1/V2 and R.

It remains to vary the rate constants and corner frequency,
which limit the sampling rate in the variance record (Eq.
11). For this purpose, simulations were carried out with h �
5.5 nm, V1/V2 � 5, and �t � 0.1 pN/nm, sampled at 10 KHz
and varianced with W � 100, giving � � 5 ms. The
resulting Nyquist frequency �c � �/� � 628 s�1 is an
absolute upper limit for both rate constants in Eq. 11, which
implies ATP levels below 0.3 mM for g � 2 � 106[ATP]
s�1, and �c is a lower limit for the corner frequency �t.

Fig. 7 shows the chosen indicators as functions of the
predicted rate constants feq, geq (varied in fixed proportion
or singly) and �t (varied through the damping constant 	).
In the same way that log(likehood)/point cannot be used to
compare results from different variance records, the figure

of merit can be used only to indicate the optimum value of
W for a given displacement record and not to compare
results from different displacement records. This is evident
in Fig. 7 A at the highest rates, where F (�) � F (E) but
U� (�) � U� (E), and in Fig. 7 B as the corner frequency falls
below 1000 s�1, where F increases but U� falls toward zero.
The other quantities, particularly the raw working stroke,
are useful performance measures across records with differ-
ent kinetic parameters but the same true working stroke.
Under “quasi-rigor” conditions geq3 0, feq fixed (Fig. 7 A,
plot ƒ), the expected level and detachment rate are detected
but with low accuracy from the small number of events.
Reliable detection fails when the binding frequency is low
(feq 3 0, geq fixed, plot �), or when at least one rate
constant rises near or above the Nyquist frequency (628
s�1) of the variance record (Eq. 11). If �t falls below 628
s�1, there is an abrupt increase in false detections and an
abrupt drop in U� toward zero (Fig. 7 B), confirming the
left-hand inequality in Eq. (11).

Event detection has now been explored as a function of
the parameters c, h, �t, k, f, g, �, 	 of the simulation model.
Each displacement-time record can be scaled with respect to

FIGURE 7 Detected output as a function of the characteristic frequencies of events and damping, from 100-s simulations described in the main text. The
figure of merit F, raw working stroke U� , number of events J, and optimized detachment rate gopt versus predicted attachment rates feq, geq (A) and the corner
frequency �t (B). In A, �t � 2500 s�1 and rate constants were varied either at a fixed ratio feq/geq � 0.217 (E, plotted against feq), at fixed feq � 4.57 s�1

(ƒ, plotted against geq) or at fixed geq � 21.1 s�1 (�, against feq). The expected raw working stroke is 4.4 nm. Graphs for J and gopt are plotted against
their predicted values Jeq � 100 feqgeq/(feq � geq) and geq; there is one failure, on a record containing only six events. In B, both rate constants were fixed
as above and the corner frequency was increased beyond the Nyquist critical frequency �c � 628 s�1.
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chosen units of length and time, say �1 � �kBT/�t and �,
leaving the six dimensionless ratios c/�1, h/�1, k/�t, f�, g�,
and �t� as independent parameters. Quantized bound levels
arising from a definite actin site spacing c (either 5.5 or 2.75
nm) are not resolved with the customary 5-nm histogram
bins, so the value of c has not been varied. Simulations with
the same seed integer but different working strokes h give
near-identical running variance records and event detec-
tions. The remaining ratios determine the variance ratio and
frequency ratios in Eq. 11, whose effects have been de-
scribed.

Monte Carlo simulations can be made with strain-depen-
dent detachment from bound states, which may accompany
ADP release or ATP binding. This effect does enhance the
lifetimes of the more positive bound levels, but only weakly
because of the averaging effect of free Brownian motions
(Smith, 1998b). Displacement events detected from a run-
ning-variance record do not easily reveal such correlations
(Molloy et al., 1995; Mehta et al., 1997); the correlation
would be more marked with stiff traps (Finer et al., 1994),
which compromise the variance ratio.

TWO-CHANNEL DATA

The analysis of displacement data from the double-trap
experiment (Fig. 1) is often complicated by several possi-
bilities, notably: 1) extendable actin-bead linkages, which
are significantly more compliant than the bound myosin; 2)
drift in the positions of the optical traps and/or microscope
stage; and 3) interactions with more than one myosin. Sys-
tematic corrections for the effects of compliant links and
trap drift can be made after event detection, provided the
x-displacements of both beads are recorded; these claims are
backed by Monte Carlo simulations. The third problem is
not amenable to correction by analysis. Other problems can
arise, but lie beyond the scope of this paper.

Effects of compliant links

The extensibility of actin-bead linkages can be much re-
duced by pre-tensioning the dumbbell in the traps. The
force-extension characteristic of the links is highly nonlin-
ear as the filament peels off the beads (Dupuis et al., 1997).
We find that the differential link stiffness can be increased
to 1–3 pN/nm (Fig. 8); much lower values are reported in
the literature (Mehta et al., 1997; Veigel et al., 1998). The
slope of the force-extension curve at the operating point
gives the stiffness of the links in series, but compliance
corrections require the stiffness of each link over its work-
ing range. By using variance information from both bead
displacements, effective in situ elastic constants for each
link and myosin can be obtained. In practice, the link
stiffnesses may be very different. The actin filament is
effectively inextensible (Kojima et al., 1994).

The method adopted is suggested by the work of Mehta et
al. (1997), and requires three variance channels, namely
autovariance records for each bead and the covariance
record, constructed from running averages uL(t)uR(t) �
uL(t) uR(t) from left- and right-bead displacements uL, uR.
Events should be detected in one autovariance record as
before, using the channel with the higher variance ratio
(often obvious by inspection). Segmenting the variance
records gives the mean variance levels V1L, V1R, V1LR in
free periods and V2L, V2R, V2LR in bound periods. The
corresponding ratios can then be used to estimate the elastic
constants �L, �R for left and right links and k for myosin as
fractions of the stiffness �t/2 of each trap, using the formu-
lae derived in Appendix D:

V1L

V2L
�

�L � �̃R

k � �L � �̃R

k � �̃

�̃
(19a)

V1R

V2R
�

�̃L � �R

k � �̃L � �R

k � �̃

�̃
(19b)

V1LR

V2LR
�

k � �̃

�̃
. (19c)

Here �̃L � �t�L/(�t � 2�L) is stiffness for the left-hand link
and trap, similarly for �̃R, and �̃ � �̃L � �̃R. Brownian
equilibrium is assumed in each attachment period.

Numerical solutions for the stiffness ratios can be ob-
tained by Newton’s method (Press et al., 1992) after elim-
inating Eq. 19c. These ratios also allow the working stroke
h to be estimated from mean bound levels, using the for-
mulae

U� L �
2�̃L

�t

kh

k � �̃
, U� R �

2�̃R

�t

kh

k � �̃
(20)

FIGURE 8 The force-extension characteristic of a bead-actin-bead
“dumbbell” as measured with 0.085 pN/nm traps. The straight line indi-
cates an achieveable stiffness. The observed nonlinear extensibility is due
mainly to the actin-bead links, as the stiffness of our unregulated 6 �m
actin filament should be over 7 pN/nm (Kojima et al., 1994).
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obtained by setting x � 0 in Eqs. D2b, as the rate of myosin
binding peaks at x � 0.

To test this procedure, two-channel Monte Carlo simula-
tions were carried out for the elastically coupled bead-
filament-bead system, assuming that the filament is lightly
damped and in instantaneous mechanical equilibrium with
both beads. Fig. 9 shows simulated displacement records
and derived variance records for case I (k � 1.0 pN/nm,
k/�t � 10) but finite and unequal link stiffnesses �L � �t,
�R � 5�t. The weaker link causes the covariance to drop to
very low values in bound periods, as observed experimen-
tally by Mehta et al. (1997), making fluctuations about the
mean to positive and negative values. For this reason, the
estimated mean bound covariance level is subject to error,
which can be reduced by a careful choice of running-
variance algorithm. These features confirm that the covari-
ance channel has the biggest free-to-bound variance ratio
(Eqs. 19) and the free covariance level is smaller than free
autovariance levels (Eqs. D7). Simulations suggest that Eqs.
19 can be generally used to estimate link stiffnesses and
compliance corrections.

Correcting for slow drifts

Slow changes in the positions of the traps and the micro-
scope stage with its fixed myosin-coated bead may occur

relative to the quadrant detectors. In the x-direction through
the trap centers, the two kinds of drift have different effects
on displacement records. Changes in trap position shift the
resting position of the filament-beads system, which is
defined to be the baseline from which displacements are
measured; these movements can be monitored in the ab-
sence of a trapped filament and in our experiments are
normally �2 nm for 100 s of data acquisition. Drift of the
microscope stage on which the fixed bead is mounted may
be larger (typically of the order of 10 nm over 100 s once
the apparatus is thermally equilibrated). Moving the stage
along the x-axis will move all bound levels correspondingly.
If all binding sites are orientationally accessible, for exam-
ple by free rotation of the actin-beads dumbbell during one
record, the frequencies at which bound levels appear should
be the same Gaussian function of the level (Eq. C1) regard-
less of the position of the stage; this is the basis of the
statistical method for calculating the working stroke (Ap-
pendix C).

Running-variance records should not be substantially al-
tered by slow positional drifts of either kind, provided drift
is negligible over the windowing time �. Hence the posi-
tional stability of the traps can be checked in situ by fitting
a smooth baseline function b(t) to mean displacement levels
in all detected free periods. For this purpose, a chi-squared
function that recognizes finite-sampling deviations in each
free level is

�2 � �
j�1

J2 	U	j
 � b	t	j � 1/2


2

S	j
2/n	j


i(j),1 (21)

where t(j) is the time of the jth event, i(j), U(j), S(j) the state,
mean level, and standard deviation in the following period,
and n(j) � t(j � 1) � t(j), t(j � 1/2) � (t(j � 1) � t(j))/2.
It is convenient to use a linear combination of Tschebychev
polynomials to order M � 20, where M is determined when
by the goodness of fit, regressing to a straight-line fit (M �
1) if necessary. The fitting routine was tested on Monte
Carlo data to which an undulating base line with several
turning points and peak-to-peak excursions of up to 20 nm
was added. The fitted function b(t) normally deviated from
the imposed baseline by 1–2 nm, except near rapidly vary-
ing large excursions. To measure displacements from the
perceived resting position of the traps, each detected level is
corrected by subtracting the value of b(t) at the middle of
the attachment period.

The apparent rate of myosin binding is modulated by drift
in the vertical positions of the traps relative to the stage. In
the presence of a time-varying attachment rate, the vari-
ance-HM method detects events without difficulty, as it
cannot discriminate between local variations in f and the
Poisson distribution of free lifetimes produced by a fixed
value of f, 95% of which range over a factor of 6/fW� � 3
(Eq. 11).

FIGURE 9 Simulated two-channel displacement data (one-tenth of a 100-s
record at 10 KHz per channel) and associated running variances for the
double-bead system (Fig. 2) with elastically compliant actin-bead links, using
k/�t � 10, �L/�t � 1, �R/�t � 5, and conventional centered windowing with
W � 100. The right auto-variance channel was used to detect events. The
values of detected parameters (with predicted values in brackets) are hL �
5.6 � 0.4, hR � 5.5 � 0.4 (5.50) nm, U� L � 3.6 � 0.25 (3.4), and U� R � 4.9 �
0.25 (4.6) nm, V1L � 46.5 and V1R � 46.6 (49.0), V1LR � 27.9 (30.8), V2L �
27.9 (28.3), V2R � 10.8 (10.3), and V2LR � 2.21 (2.25) nm2.
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Experimental data

Two-channel displacement data for rabbit myosin-S1 at 5
�M ATP were obtained from a double-beam optical trap
system developed in this laboratory. The apparatus is es-
sentially as described by Tskhovrebova et al. (1997), but
with a piezoelectric stage and a second quadrant detector.
The objective was mounted directly under the stage on a
piezoelectric focusing device. The sensitivity of bead move-
ment (volts/nm) was periodically recalibrated by applying a
square wave to the piezoelectric transducers carrying the
quadrant detectors. The stiffness of the traps was measured
either from the amplitude of Brownian motion or by apply-
ing a square wave to the acousto-optic modulators and
measuring the rate of relaxation of bead position. Displace-
ments of both beads were collected at 10 KHz and written
to files of 106 points/channel. Data were collected while the
x � y position of the microscope stage was electronically
stabilized. The apparatus and experimental techniques will
also be described elsewhere. All data were analyzed with
the variance-HM method.

With fixed trap positions and a stabilized stage, we have
found that the distribution of bound levels is obviously
non-Gaussian and highly dependent on the x-positions of
the traps. Fig. 10 shows two such distributions, with means
of 10.0 and 2.3 nm, from single 100-s records with 220 and
286 detected bindings, respectively, using a combined trap
stiffness of 0.16 pN/nm and interrelated by a 12-nm dis-
placement of both traps. The reproducibility of these non-
Gaussian profiles was demonstrated by analyzing multiple
records at a fixed trap position. Studies with weaker traps
(0.04 pN/nm) revealed bimodal and occasionally trimodal
distributions of bound levels (Simmons et al., 2001). A
comprehensive study of this effect shows that the tethered
myosin is selecting a subset of monomeric actin sites on a
non-rotating actin filament (Steffen et al., submitted for
publication). Whatever the cause, it is clear that the condi-
tions for a valid application of Molloy’s method for mea-
suring the working stroke are not met (Appendix C); a new
experimental protocol is required.

To obtain a Gaussian distribution of bound levels, dis-
placement data were collected when both traps were moved
at a constant x-velocity of 0.7–0.8 nm/s by acousto-optic
modulators, covering approximately two 36-nm repeats of
the actin double-helix over each 100-s recording period. In
this way, target zones on each strand of the filament are
distributed uniformly in time through the continuous range
of x-positions that would be presented by all sites on a freely
rotating filament between fixed traps, as envisaged by Mol-
loy et al. (1995). Bead displacements recorded with moving
traps as above were analyzed for events using the channel
with the higher variance ratio. Baseline fitting was used to
reconstruct the applied ramp waveforms in each channel.
These waveforms were subtracted from detected displace-

ment levels to measure the latter from the resting position of
the trap at the time.

Fig. 11 shows a portion of one 100-s record obtained in
this way after subtracting the fitted baseline, and the asso-
ciated running variances, using 0.08 pN/nm traps. Inspec-
tion of the whole record (not shown) suggests that the
frequency of attachment events is modulated by trap mo-
tion, with recurring dense and sparse periods.

Output information for this record is shown in Fig. 12.
The distribution of bound levels (Fig. 12 C) is essentially
the Gaussian distribution of free displacements of the dumb-
bell, displaced by an uncorrected working stroke of 6.2 �
0.4 nm. Using Eqs. 19, both link stiffnesses were estimated
at 4 pN/nm, which accounts for the very high variance ratio
(�25) achieved in either channel. With such strong links,

FIGURE 10 Distributions of bound displacement levels (top figures) and
baseline determinations (bottom figures) obtained from the double trap
system for myosin S1 at 5 �M ATP, with fixed traps having a combined
stiffness of 0.16 pN/nm. Reaction conditions were 25 mM KCl, 25 mM
Hepes, 4 mM MgCl2, pH 7.6 and 24°C. A phosphocreatine-creatine kinase
ATP regenerating system was used when myosin-S1 had been purified by
spinning down degraded heads in the presence of F-actin and ATP.
Biotinylated actin was attached to streptavidin beads as described by
Ishijima et al. (1998). Plots A and B were obtained before and after
displacing both trap centers by �20 nm in the x-direction, using acousto-
optic modulators. For presentation, baselines determined by the free levels
shown were fitted either as a straight line or a 10th-order Tschebychev
polynomial. The distribution of bound levels changes slightly with the
method of baseline fit, but the mean level is invariant.
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the similarly large myosin stiffness estimated from covari-
ance levels is probably not reliable; values of 1–2 pN/nm
are typical for data obtained with weaker traps. A small
compliance correction (5%) is required to obtain the work-
ing stroke of the tethered myosin-S1 (6.5 � 0.4 nm). This
error arises from the standard deviations of free and bound
levels, not errors in event detection. We also find the ex-
pected Poisson distributions of free and bound lifetimes
(Fig. 12 D), as observed by Finer et al. (1995).

Fig. 12, A–D were obtained with a window size of 100
points. When analyzed with different window sizes, the
estimated working stroke (and the figure or merit with � �
0.0028) peak near W � 50 (Fig. 12 E). However, plotting
the detected mean lifetime 1/gopt as a function of � �
W�/2, as in Fig. 12 F, suggests that W � 100 is a more
conservative choice; lifetimes obtained with W � 100 ap-
proximate a straight line of unit slope, which suggests that
there are few false detections and that nearly all attachment
periods in the variance record are detected (see under Fig.
5). Extrapolation to the ordinate gives 1/g, where g � 12.8
s�1 is the detachment rate without windowing, as expected
at 5 �M ATP.

The reproducibility of these results was tested over five
records obtained with ramped trap movements, using the
same dumbbell and fixed bead and, by inference, the same

myosin. The stiffnesses of traps and links obtained from
detected variance levels varied by 7%, while routine inde-
pendent measurements showed that the stiffness of the traps
was more stable. Table 3 shows that the working strokes in
these records have a SD of 0.46 nm, which is little different
from the 0.4–0.5-nm finite-sampling variation within each
record. Hence the five records can be assumed to sample the
same population. Similar results were obtained from the
left-hand channel. Averaging over both channels gives an
estimated S1 working stroke of 6.3 � 0.2 nm from this
experiment.

The possibility of interactions with more than one myosin
on the fixed bead is minimized by coating beads with S1 at
dilutions such that interactions can be found on less than
half of the fixed beads on the coverslip. The trapped dumb-
bell was manipulated to search the surface of each fixed
bead for interactions; the bead was discarded if the region of
interaction was on one side or more than one region was
found. The absence of ramped displacements is not a suf-
ficient test for single-S1 interactions, since the filament
might interact sequentially with different myosins. In prac-
tical terms, a sufficient condition for single-molecule inter-
actions is the observation of a well-defined 5.5-nm period-
icity in bound levels from data with fixed trap positions
(Steffen et al., submitted for publication), also observed in
records analyzed here.

We suggest that it is important to check the validity of the
statistical method of Molloy et al. (1995) by fitting the
distribution of bound levels to a single Gaussian at the level
of a single data record with at least 200 detected events.
Non-Gaussian behavior in single records can combine when
pooled to produce an apparently Gaussian distribution. A
Gaussian distribution of bound levels was also recovered by
pooling the data mentioned above with a multiplicity of
fixed trap positions spanning an integral number of 36-nm
actin repeats. Three such experiments, sampling 3, 7, and 6
repeats at �10-nm intervals, gave estimated working
strokes of 5.4, 5.8, and 5.8 nm. Taken as a whole, the four
experiments returned values between 5.4 and 6.3 nm for the
working stroke of our tethered myosins.

USING THE METHOD

The variance-Hidden-Markov technique as implemented in
this paper is a very robust and effectively “on-line” tool,
extensively used on experimental data from our laboratory,
for detecting actin-myosin attachment events in displace-
ment records. Output information includes the mean dis-
placements in free and bound periods, and their standard
errors from finite sampling; with a Gaussian distribution of
bound levels, this information is sufficient to estimate the
myosin working stroke. With a 1 GHz computer, the pro-
cessing time for a binary data record of 106 points/channel
is �5 s.

FIGURE 11 Experimental data from the same dumbbell, reaction me-
dium, and trap strengths as in Fig. 10, while the traps were moved at
constant velocity in the x-direction. Bead displacements are measured by
fixed quadrant detectors and trap movements obtained after event detection
by fitting the free periods as described in the text; the resulting straight line
fits in each channel have been subtracted to display bead displacements
relative to their trap positions. The three running variances shown under-
neath were constructed at W � 100 by conventional centered windowing
and clipped at three times their average level.

2808 Smith et al.

Biophysical Journal 81(5) 2795–2816



The variance-HM method is able to detect binding/de-
tachment steps of all sizes, since it is based on a derived
running-variance record rather than raw displacement data.
However, the limitations of the method should be kept in

mind. Only binding and detachment events are detected, not
post-binding events such as ADP release, which would not
change system stiffness or the bound variance level. Infor-
mation in the displacement record is lost by the need to

FIGURE 12 Event detection and analysis of the 100-s displacement record with ramped traps, sampled in Fig. 10. (A) Distributions of autovariance (right
channel) and covariance in the three-channel variance record before detection, showing bimodal behavior from free and bound periods. The fractional
half-width of the free mode is �0.24 (predicted half-width �2/W � 0.14 for W � 100). (B) Trap movements over the record as constructed after event
detection by fitting straight lines through displacement levels in free periods (E and F). (C) Distributions of free and bound displacement levels of the
right-hand bead measured relative to its trap, and the Gaussian distribution of bound levels that best fits the latter (mean � 6.40 � 0.24 nm, SD � 6.85 �
0.37 nm, �2/N � 0.18) and a narrower distribution of free levels with some tailing on the bound side. (D) Lifetimes of free and bound periods, plotted
logarithmically to show the approach beyond the first two bins to Poisson distributions with lifetimes 1/fopt, 1/gopt where fopt � 4.43 s�1, gopt � 11.9 s�1.
(E, F) Optimized values of the figure of merit F, estimated working stroke h, and mean lifetime 1/gopt versus window size W. The mean lifetime is plotted
against the sampling time � � 5 � 10�5 W (s) in the variance record to assess the prediction under Fig. 5; the straight line shown has unit slope and is
intended merely to guide the eye.
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construct running-variances averaged over windows of 50
points or more. The method works only within a certain
range of trap stiffnesses (typically 0.01–0.5 pN/nm). If trap
stiffness approaches or exceeds the stiffness of myosin or
the actin-bead links, detection becomes difficult as the ratio
of free to bound variance levels is reduced toward unity
(Eqs. 12); in these circumstances a Hidden-Markov method
is required that operates directly on displacement data. As
the traps are weakened, the corner frequency of the dumb-
bell is lowered and the method fails when this frequency
falls below the sampling frequency of the variance record
(Eq. 11). However, the sampling frequency must obviously
be greater than event frequencies, including the ATP-de-
pendent detachment rate. Hence the method works well over
a range of ATP concentrations limited from above by the
corner frequency of the free dumbbell and from below by
the stability of the experimental system over the time re-
quired to detect many events.

Within these limitations, our preferred strategy for using
the variance-HM method is as follows. Event detection
should initially be carried out with a window of 200 points
(W � 200), and accepted only if the detected variance ratio
is above, say, four in at least one channel, which should then
be used for detection. The optimal window size Wopt should
be sought by maximizing the figure of merit F provided that
the raw working stroke, if any, is also maximized at a
similar value of W. The detected detachment rate and num-
ber of events should fall steadily as W is increased above the
optimum value. Unacceptable behavior as W is decreased
below Wopt is signaled by a decrease in apparent working

stroke and a sudden increase in detected events, irrespective
of the change in F. The number of detections is usually
reflected in the detachment rate g. Independent knowledge
of g from solution-kinetic data can serve to identify unre-
alistically high detected values, which indicate false detec-
tions. The variance-HM method may also return an unex-
pectedly low working stroke if the myosin is loosely
attached to the coverslip, which is indicated by a low
returned value for myosin stiffness. In practice, these checks
appear sufficient to validate the method within the above
experimental constraints.

Supplementary material describing our implementation
of the variance-Hidden Markov method, and executable
program files and source code, can be downloaded from
www.kcl.ac.uk/depsta/biomedical/randall/mrcmcmu.html.
The authors take no responsibility for the accuracy or end
use of programs provided in this way.

CONCLUDING DISCUSSION

Experimental constraints on the correct use of the vari-
ance-HM method have already been discussed. We now
compare this method with other methods for analyzing
displacement data, and assess the origins of the different
estimates from various laboratories for the myosin working
stroke.

Hidden-Markov methods provide a globally optimizing
form of event detection by re-estimating the four parameters
f, g, V1, V2 of the underlying two-dimensional stochastic
process (Appendix A), and the window width W. They are
superior to single-event detectors, whose operation is nec-
essarily threshold-dependent (Pastushenko and Schindler,
1993; Smith, 1998a), because the likelihood will rise when
threshold constraints are removed (Appendix B), for exam-
ple by using the variance-HM method. The nature of the
improvement is determined by the quality of the data. With
good running-variance data (say V1/V2 � 5, mean lifetimes
�8� for W � 100), nearly all detected events detected by
the variance-HM method pass Student’s t-test at the 5%
confidence level, which sets a threshold signal relative to
variance “noise” (Eq. 5); in this case the results should be
relatively insensitive to changing the confidence level and
the Hidden-Markov method should not make a significant
improvement. When these criteria are not met, “single-
event” detectors may be threshold-sensitive; whether this is
so for the corpus of published data with V1/V2 in the range
2–5 and W � 100 is not clear.

The possibility of a drifting baseline raises questions
about how working strokes should be measured before
making compliance corrections. If the baseline is a known
function of time, sampled working strokes are obtained by
subtracting this function from all bound levels. However, a
fitted baseline could be quite inaccurate in some parts of the
record. As an alternative to global fitting, the set of levels in
all free periods can be taken to define a baseline function

TABLE 3 Variability in detected output from five
experimental myosin-S1 records of 106 sample points at 5 �M
ATP, namely attachment rates f, g, the compliance-corrected
working strokes h, spread of bound levels S, and link
stiffnesses in each channel (L or R), also the combined
stiffness of the traps

J1, J2

f
(s�1)

g
(s�1)

hL, hR

(nm)
SL, SR

(nm)
�L, �R

(pN/nm)
�t

(pN/nm)

322 4.43 11.90 6.16 � 0.39 6.08 4.26 0.163
6.53 � 0.41 6.38 3.92

323 4.34 12.34 6.26 � 0.44 6.55 3.46 0.163
6.60 � 0.45 6.68 3.77

224 2.74 12.20 5.90 � 0.46 5.89 4.31 0.168
6.23 � 0.47 6.03 4.00

238 2.93 12.56 6.75 � 0.46 6.24 3.99 0.164
7.09 � 0.48 6.43 3.80

215 2.63 11.55 5.46 � 0.42 5.29 3.97 0.175
5.70 � 0.43 5.50 4.07

Mean 3.57 12.1 6.13 � 0.20 6.09 3.98 0.166
6.46 � 0.20 6.29 3.90

All elastic constants are estimated from mean variance levels as described
in text and Appendix D. The quoted standard errors arise only from finite
sampling. Records were combined using Eqs. 16–18 of the text. The
spreads of bound levels is �1 nm more than as predicted by the kinetic
model of Appendix D, namely �kBT/�t � 4.9 nm, which is consistent with
residual drift in the position of the microscope stage.
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(Veigel et al., 1998) after suitable interpolation. This pro-
cedure ignores Brownian noise, so it is instructive to com-
pare the two methods. Over 10 experimental records, the
two methods produced essentially working strokes differing
by 0.2 or 0.45 nm at most in each record. This remarkable
agreement is a result of the large number of sampled dis-
placements in each free period.

Design principles for running-variance algorithms follow
by considering the intrinsic bandwidth of a running-vari-
ance record and how it can best be sampled. The bandwidth
(in radians/s) of a variance record constructed continuously
in time by sweeping a window of W data points through a
displacement record sampled at intervals of � is basically of
the order of 2�/W�, although the precise high-frequency
roll-off of the power spectrum depends on the algorithm.
This frequency is also the Nyquist critical frequency �c

when the variance record is sampled at multiples of � �
W�/2; hence little information will be gained by more
frequent sampling, even when followed by resampling fil-
ters with a final bandwidth of 2�/W�. Second, it might
appear advantageous to construct running-variances with a
much smaller window W� �� W (to increase time resolu-
tion) followed by edge-preserving filtering down to a band-
width of �c (to reduce fluctuations). No amount of post-
filtering can improve the poor quality of variance records
constructed in this way, which show high noise and an
abnormally low apparent variance ratio compared to our
standard method (sampling at intervals of W�/2) with the
same final bandwidth.

Comparisons with the mean-variance method (Patlak,
1993; Guilford et al., 1997) are instructive. Patlak’s method
does not seek to identify individual attachment events, but
to observe bound displacement levels in a limited class of
distributions (running means and variances of point dis-
placements). The method is optimizing for the distributions
above, and rates of binding and detachment are estimated by
fitting the distributions over a range of window sizes. Thus
all information required to construct the transition matrix is
generated, but this matrix is not used to make stochastic
predictions. The need to fit mean-variance distributions
over a large range of window widths W may make it less
accurate than the variance-HM method, where fully opti-
mized parameter fitting is available for any value of W.
However, it cannot be concluded that the prominent bound
levels at �11 nm observed by Guilford et al. (1997) are an
artefact of the mean-variance method; we have also ob-
served a bimodal distribution of bound levels (Simmons et
al., 2001) with traps of similar strength (0.03–0.04 pN/nm),
which can be explained in helical selection of actin sites on
a non-rotating filament. The mean-variance method was
also used by Tyska et al. (1999), who do not observe a
bimodal distribution.

In most studies, actin-bead linkages have been much
weaker than myosin stiffness as currently estimated (1–2
pN/nm), so that compliance corrections to the working

stroke will be greater than the 5% correction for our data
with 4 pN/nm links. We suggest that in situ stiffness mea-
surements should be used to make compliance corrections,
even when they have been minimized by pre-tensioning the
dumbbell. The discrepant working strokes reported by dif-
ferent groups might arise from compliance corrections
and/or a non-Gaussian distribution of bound levels. Without
more experimentation, it is hard to say whether the latter
arise from inadequate sampling or the distortions caused by
a non-rotating filament. If data from contiguous records is
pooled, the effects of a non-rotating filament should gener-
ally be mitigated by longitudinal drift in the microscope
stage; however, the “ramped-traps” technique introduced in
this paper should generally be more accurate. The orienta-
tion of the tethered myosin may be influenced by its mode
of attachment to the fixed bead and is not controlled in our
experiments. The question of the orientation dependence of
the working stroke is not resolved; measurements using a
synthetic myosin filament system (Tanaka et al., 1998; Ruff
et al., 2001) give conflicting answers.

Estimates of errors arising from the variance-HM method
do not normally include errors in event detection. This
defect can be rectified within a fully Bayesian approach, as
described by Rosales et al. (2001). Events can also be
detected by neural networks or wavelet analysis; although
these methods are very powerful they are less specific
because no assumptions need be made about the nature of
the stochastic process.

Variance-HM detection is widely applicable because it
requires almost no information about the actin-myosin
crossbridge cycle. The method is indifferent to the number
of accessible binding sites on the filament, the degree of
access, or bound states on the same site that generate
different amounts of force without changing the stiffness of
the crossbridge. Changes in stiffness occurring after myosin
binding, or by the binding of a second myosin, would
probably not be detected even if the variance-HM method
were generalized to include a third variance level. Orienta-
tionally disordered bound states might generate little or no
extra stiffness and might not be detected. In particular, the
method does not require that myosin make a working stroke
after binding.

APPENDIX A

A general Hidden-Markov method

Consider a sequence X � (x1, . . . , xN) of N data points, collected at times
tk � k�, k � 1, . . . , N. The physical interpretation of the xk varies
according to the application, and need not be specified. We assume that X
is stochastically determined by a two-dimensional Markov process oper-
ating on the data in conjunction with a set of discrete states i � 1, . . . , M
hidden from the observer. This process is specified by compound transition
probabilities Aij(xk, xk�1) where Aij(xk, xk�1)dxk�1 is the probability of
state j and data-point in the range (xk�1, xk�1 � dxk�1) at time tk�1, given
state i and data-point xk at time tk. The initial probability Pi(x1) for state i
and the first data-point x1 is also required. In the classical version of the
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method, the transition matrix is assumed to be independent of the initial
data-value xk (Rabiner, 1989).

By varying the parameters of the transition matrix, the stochastic model
is “fitted” to the data by maximizing the probability P that the model
generates the observed time series:

P � �
i1, . . . ,iN

Pi1	x1
Ai1i2	x1, x2
· · ·AiN�1iN	xN�1, xN
. (A1)

P is a generalization of the likelihood function of multivariate statistics
(Morrison, 1978) to include a hidden Markov process. The right-hand side
may be computed iteratively from partial sum-products �k,i by Baum’s
forward algorithm (Rabiner, 1989 and references therein)

�k�1,j � �
i

�k,iAij	xk, xk�1
 (A2a)

�1,i � Pi	x1
, P � �
j

�N,j (A2b)

not displaying their dependence on the data-values. A similar procedure
running backward from the end produces conjugate partial quantities 	k,i

where

	k,i � �
j

Aij	xk, xk�1
	k�1,j (A3a)

	N,i � 1, P � �
i

Pi	x1
	1,i. (A3b)

Now �k,i	k,i/P is the probability of state i at time tk, and �k,iAij(xk,
xk�1)	k�1,j/P the joint probability of states i, j at times tk and tk�1. With the
observed data, the expected number of transitions from state i to state j is
just

�ij �
1
P �

k�1

N�1

�k,iAij	xk, xk�1
	k�1,j. (A4)

Rate constants for transitions between the discrete states of the Markov
process are embodied by the “states-only” transition matrix

aij � ��Aij	x, x�
�i	x
dxdx� (A5)

where �i(x) is the normalized probability distribution of data-value x in
state i. The transition rates implied by this quantity can be re-estimated
from the �ij by a procedure due to Baum (1972), giving new “states-only”
transition probabilities

ãij �
�ij�
j

�ij
(A6)

which update the matrix aij, and hence the state-dependence of the full
transition matrix Aij(x, x�). As both quantities are conditional probabilities,
they must be normalized to unity over their final states:

�
j
�Aij	x, x�
dx� � 1, �

j

aij � 1 (A7a, b)

where (A7b) follows from (A7a) and Eq. A5. The importance of Baum’s
re-estimation method is that it immediately determines the values of the aij

that maximize P. Baum’s re-estimation theorem is proved in Appendix B;
proofs in terms of a Liapunov function have been given by Baum (1972)
and Levinson et al. (1983).

In general, P should also be maximized with respect to other parameters
of the transition matrix. It is convenient to carry out Baum’s kinetic
re-estimation procedure at every step of a full optimization routine with
respect to the remaining parameters, because kinetic re-estimation is fast: in the
absence of round-off error the optimum rate constants are achieved at the first
iteration when the remaining parameters are fixed (Appendix B). In prac-
tice, a few Baum iterations are usually required to achieve convergence.

Values of �k,i and 	k,i calculated from the forward and backward
algorithms often fall below computational limits and must be rescaled
when necessary. Let the forward recursion (A2a) be written in vector form
as �k�1 � �kAk, where the matrix Ak has elements Aij(xk, xk�1). This
recursion can be replaced by a scaled version

�*k�1 � 10�ek�1�*kAk, (A8a)

where ek�1 � int{log10(max �*kAk)} with �*1 � �1 and e1 � 0. These
exponents also generate scaled-back vectors

	*k � 10�ek�1Ak	*k�1 (A8b)

so �*k � 10�rk�k, 	*k � 10�sk	k, where rk � e1 � . . . � ek and sk � ek�1

� . . . � eN. Thus rk � sk � E � e1 � . . . � en for all time points k. Hence
the scaled likelihoods P* calculated from forward or backward iterations
with scaled vectors should be the same and equal to 10�E P. The quantities
�ij are invariant under scaling.

If the transition matrix favors a single reaction pathway, the likelihood
function could be approximated by the greatest single term in each sum
over states. This is the basis of Viterbi’s algorithm, which requires only
MN rather than M2N operations (Rabiner, 1989; Patlak, 1997). Whatever
method is used, it is useful to record the most probable state at each time
point k after optimization, obtained as the value of i for which the
re-estimated quantity

p̃k,i �
�k,i	k,i

P
(A9)

is a maximum.

APPENDIX B

Baum’s re-estimation theorem

Re-estimation, as defined by Eqs. A4 and A6, increases the likelihood
function P(X) when the transition matrix describes a coupled two-dimen-
sional Markov process, rather than the classical case of a single hidden
Markov process and a continuous random variable without memory. Fol-
lowing Levinson et al. (1983), we show that the re-estimated P(X) is
extremal (a maximum or minimum).

Since the likelihood function (Eq. A1) is a sum-over-states of a product
of transition matrices and an initial distribution, variations in these quan-
tities give


P	X
 � �
I
� �

k�1

N�1 
Aikik�1	xk,xk�1


Aikik�1	xk,xk�1

�


Pi1	x1


Pi1	x1
 	P I	X
 (B1)

where I � (i1, . . . , iN) and PI(X) is the summand of (A1). Equivalently,


P	X
 � �
I
� �

k�1

N�1 
aikik�1

aikik�1

�

pi1

pi1
	P I	X
 (B2)

where pi � � Pi(x)dx is the initial probability of state i. The form of the data
distributions is assumed to be unaffected by these variations. They are
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constrained by normalization conditions

�
j

aij � 1, �
i

pi � 1. (B3)

On using the identity PI(X) � �k,iAij(xk, xk�1)	k�1,j for any k, where i and
j are the states at steps k, k � 1 respectively, and using undetermined
multiplers, we have the extremal condition

�
ij
� �

k�1

N�1

�k,iAij	xk, xk�1
	k�1,j � �iaij	 
aij

aij

� �
i

	�1,i	1,i � �pi


pi

pi
� 0. (B4)

Hence

�iaij � �
k�1

N�1

�k,iAij	xk, xk�1
	k�1,j,

�pi � �1,i	1,i (B5)
so

�i � �
j

�
k�1

N�1

�k,iAij	xk, xk�1
	k�1,j,

� � �
i

�1,i	1,i (B6)

on using Eqs. B3. Hence the solutions of Eqs. B5 are

ãij �

�
k�1

N�1

�k,iAij	xk, xk�1
	k�1,j

�
j

�
k�1

N�1

�k,iAij	xk, xk�1
	k�1,j

(B7)

and

p̃i �
�1,i	1,i�

i

�1,i	1,i
. (B8)

Equation B7 determines a new “states-only” transition matrix as in Eq. A6,
and Eq. B8 an updated initial state probability; this is the content of Baum’s
re-estimation theorem. In general, this probability will not be equal to that
calculated ab initio from the updated transition matrix. For ergodic sto-
chastic problems, the effects of updating the initial state should not prop-
agate in time, so updating the initial state probability merely generates an
end-effect of O(1/N) for the total likelihood.

The above argument shows that the likelihood function is extremal after
one re-estimation. That the extremum is in fact a maximum is proved by
Baum (1972), and Levinson et al. (1983). Conditions for the existence of
a global maximum were investigated by Baum et al. (1970).

APPENDIX C

The statistical method for determining the
working stroke

Molloy et al. (1995) have identified the most frequently accessed bound
displacement level of the actin-bead system (Fig. 1) as the uncorrected

myosin working stroke. They observe a Gaussian distribution of binding
frequencies J(U) by level, namely

J	U
 � exp��
	U � U� 
2

2�2 � (C1)

where the standard deviation � � �1 � �kBT/�t reflects Brownian
fluctuations of the filament before binding. Then the working stroke is
determined by the mean displacement level U� and Eq. 2. The justification
for this procedure is statistical, as summarized under Fig. 1.

Equations 2 and C1 can be derived for an adaptation of A. F. Huxley’s
crossbridge model (Huxley, 1957) to multiple binding sites on the actin
filament. This demonstration requires that the rate constant f(x) for myosin
binding to a site at distance x on the stationary filament (Fig. 1) is localized
within a narrow range about zero strain, here defined as x � 0. An implicit
force-generating transition after binding (Geeves and Holmes, 1999) is
implied if the final force is k(x � h), which displaces the actin filament by
an amount k(x � h)/(k � �t) (Smith, 1998b).

This model generates a discrete set of bound displacement levels if
myosin can bind within a cluster of monomeric sites on each half-pitch of
the actin double-helix. Let the positions of sites in the nearest cluster be xl

� x � lc, where l is an integer and c the monomer spacing. When the
filament-bead system is weakly trapped, its longitudinal Brownian dis-
placements should be sufficient to present all these sites to the tethered
myosin, particularly if the filament undergoes torsional oscillations (Svens-
son and Thomas, 1986) or uniform rotation about an axis through the traps
(Molloy et al., 1995). Hence the Brownian-averaged binding rate to site l
(Smith, 1998b) is

f�� � � f	x� � u

1

�2��l
2 exp	�u2/2�1

2
du. (C2)

Under fairly general conditions, this integral reduces to an expression of
the form

f�� � A exp	�x�
2/2�s

2
. (C3)

If f(x) is supported over a range ���1 about x � 0, then C3 applies with
�s � �1 and F � (2��1

2)�1/2 � f(x)dx. If f(x) � F exp(�x2/2�M
2 ) where �M

� �kBT/k is the thermal reach of myosin with stiffness k, the integral in
C2 evaluates exactly to C3 with A � (1 � k/�t)

�1/2F and �s
2 � �1

2 � �M
2 .

In the second case, the binding range �s is determined by the stiffness of
myosin acting in series with both traps, reducing when k �� �t to the first
case as required.

The number of binding events J� per second to site l is determined from
the kinetic equations of a multi-site Huxley model with Brownian-averaged
rate constants f��, g��. Under steady-state conditions J� � f��(1 � p), where
p is the overall probability of attachment. For a single molecule, this
formula predicts the average rate of binding (and detachment) over many
attachment events, over which steady-state conditions should prevail. Thus

J� � C exp	�x�
2/2�s

2
 (C4)

where C � A(1 � p). With weak traps (k �� �t), the site-dependence of J�

reflects the Boltzmann frequency distribution of Brownian displacements
of the free filament. As the ATP level is decreased, all binding rates
decrease uniformly, p3 1 and C3 0. However, kinetic models valid for
cycling conditions may not apply in this limit.

As the bound displacement level for site l is

U	x�
 �
k	x� � h


k � �t
(C5)
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the binding rate J� can be viewed as a function of displacement level rather
than the site index l. In this sense, the multi-site kinetic model leads to the
desired result (C1) with a standard deviation

� �
k�s

k � �t
, (C6)

also of order �1 for weak traps. This model also predicts quantized levels
that vary linearly with x (the position of the nearest actin site), but these
features are obscured if the binding rate is assumed to be a continuous
function of U.

The rate constants of the variance-HM model describe binding and
detachment without regard to actin site. Equivalent rate constants feq and
geq may therefore be defined from the multi-site model as

feq � �
�

f��, geq �
1
p�

�

p�g� � (C7)

where

p� �
K� �

1 � �
�

K� �
�K� � �

f��

g� �
� (C8)

is the occupation probability of the bound state on site l and p � ¥� p�.
These definitions are consistent with detailed balancing, as feq(1 � p) �
geqp.

APPENDIX D

Displacement and variance levels with compliant
actin-bead links

The mechanical system shown in Fig. 1 allows an exact calculation of the
mean displacements and variances of the beads under conditions of thermal
equilibrium. Bead displacements are relative to their resting positions
without bound myosin, and variances are required for both attachment
states. Fluctuating displacements are generated primarily by Brownian
forces on the beads, but their (Boltzmann) distribution in equilibrium is
governed only by the absolute temperature T and the potential energy
function

V	uL, uR, u
 �
�t

4
	uL

2 � uR
2 
 �

�L

2
	u � uL


2 �
�R

2

� 	u � uR
2 �
k

2
	x � h � u
2 (D1)

for bound myosin. Here uL, uR, u are the left-directed displacements of the
left-hand and right-hand beads and the filament; other symbols are defined
in the figure caption. Results for free myosin follow by setting k � 0.

Conditions for mechanical equilibrium (�V/�uL � 0, etc.) give the
resting positions of the filament and beads, namely

U	x
 �
k	x � h


k � �̃L � �̃R
, (D2a)

UL	x
 �
�LU	x


1
2

�t � �L

, UR	x
 �
�RU	x


1
2

�t � �R

(D2b)

where

�̃L �

1
2

�t�L

1
2

�t � �L

, �̃R �

1
2

�t�R

1
2

�t � �R

(D3)

are elastic constants for each trap and link in series. These resting positions
are also the mean displacements in the presence of Brownian forces when
the system has come to thermal equilibrium, with a Boltzmann distribution
of displacements. Using a vector notation for the column vector (uL, uR, u),
the mean displacement levels are

U �

� u exp	�V	u
/kBT
du

� exp	�V	u
/kBT
du

(D4)

which reproduces Eqs. D2 as the potential is harmonic. If the force-
extension relation for traps or links were nonlinear, the mean equilibrium
positions of the beads would be different from their resting positions.

In the same way, variances are evaluated as components of the thermal
average of the matrix 
u 
uT, where 
u � u � U is a column vector and

uT the corresponding row vector. The quantity

V �

� 
u 
uTexp	�V	u
/kBT
du

� exp	�V	u
/kBT
du

(D5)

is a symmetric 3 � 3 matrix of variances. The potential energy is a
symmetric quadratic function V(u) � 
uT A
u/2 of deviations from the
mean, where

A � �
�t

2
� �L 0 ��L

0
�t

2
� �R ��R

��L ��R �L � �R � k

 (D6)

The denominator in Eqs. D4 and D5 is equal to (2�kBT)3/2
A
�1/2 (Doi and
Edwards, 1988), so V � kBT d(ln
A
)/dA � RT A�1. The left and right
autovariances VLL, VRR, and the covariance VLR can be read from the
upper-diagonal 2 � 2 partition, giving

VLL � kBT
k � �L � �̃R

��t

2
� �L�	k � �̃L � �̃R


(D7a)

VRR � kBT
k � �R � �̃L

��t

2
� �R�	k � �̃R � �̃L


(D7b)

VLR � kBT
�L�R

��t

2
� �L���t

2
� �R�	k � �̃L � �̃R


(D7c)
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for the bound levels, and for the free levels with k � 0. The quantities �̃L,
�̃R are defined in the main text. As expected, the free autovariances for
each channel are the same: this is not immediately apparent in the formu-
lae.

These results yield Eqs. 11 of the main text for the three ratios of
free-bound variance levels. Setting x � 0 in Eqs. D7 gives Eqs. 12 for
bound displacement levels. The argument for setting x � 0 (Appendix C)
is kinetic. Note also two special cases in which the results simplify: 1)
when �L, �R �� k, �t the autovariances for each channel satisfy V1/V2 �
1 � k/�t and the mean bound displacement level U� is given by Eq. 2 (the
rigid-dumbbell model). 2) If the links are equally stiff (�L � �R � �/2), U�

is given by a modification of Eq. 2 with myosin stiffness k replaced by the
stiffness k̃ � k�/(k � �) of myosin in series with both links (Smith, 1998b).
However, autovariance levels in each attachment state do not correspond to
the same modification of Eq. 1; Eqs. D7 give autovariance levels

V1

kBT
�

1
�t

�
1

� � �t
,

V2

kBT
�

1

k̃ � �t
�

1
� � �t

(D8a)

for each bead, while the covariance levels for free and bound myosin are

V1LR

kBT
�

1
�t

�
1

� � �t
,

V2LR

kBT
�

1

k̃ � �t
�

1
� � �t

. (D8b)

The autovariances exceed those in Eq. 1 with k3 k̃. With myosin free, the
covariance is smaller than kBT/�t. With myosin bound, the covariance is
much smaller than the autovariance, particularly if the links are weak, but
still positive as k̃ � �.

Where comparisons can be made, our results agree with those of Veigel
et al. (1998).

D.A.S. thanks the Wellcome Trust for financial support throughout the
lifetime of this project.
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