Dense example problem: Robertson kinetics, NEQ = 3 At t = 0.2639E+00 y = 0.989965E+00 0.347056E-04 0.100000E-01 Above is a root, INFO() = 0 1 At t = 0.4000E+00 y = 0.985164E+00 0.338624E-04 0.148021E-01 At t = 0.4000E+01 y = 0.905510E+00 0.224034E-04 0.944679E-01 At t = 0.4000E+02 y = 0.715795E+00 0.918349E-05 0.284196E+00 At t = 0.4000E+03 y = 0.450542E+00 0.322296E-05 0.549455E+00 At t = 0.4000E+04 y = 0.183188E+00 0.894132E-06 0.816811E+00 At t = 0.4000E+05 y = 0.389787E-01 0.162157E-06 0.961021E+00 At t = 0.4000E+06 y = 0.494002E-02 0.198572E-07 0.995060E+00 At t = 0.4000E+07 y = 0.516511E-03 0.206710E-08 0.999483E+00 At t = 0.2081E+08 y = 0.100000E-03 0.400039E-09 0.999900E+00 Above is a root, INFO() = 1 0 At t = 0.4000E+08 y = 0.520146E-04 0.208069E-09 0.999948E+00 At t = 0.4000E+09 y = 0.520718E-05 0.208288E-10 0.999995E+00 At t = 0.4000E+10 y = 0.510581E-06 0.204233E-11 0.999999E+00 At t = 0.4000E+11 y = 0.451131E-07 0.180452E-12 0.100000E+01 Final value of ydot = -0.851851E-18 -0.340740E-23 0.851854E-18 Final statistics: No. steps = 515 No. f-s = 755 No. J-s = 12 No. LU-s = 110 No. nonlinear iterations = 751 No. nonlinear convergence failures = 0 No. error test failures = 26 No. root function evals = 543