idakryx1_bbd_p: Heat equation, parallel example problem for IDA Discretized heat equation on 2D unit square. Zero boundary conditions, polynomial initial conditions. Mesh dimensions: 10 x 10 Total system size: 100 Subgrid dimensions: 5 x 5 Processor array: 2 x 2 Tolerance parameters: rtol = 0 atol = 0.001 Constraints set to force all solution components >= 0. SUPPRESSALG = TRUE to suppress local error testing on all boundary components. Linear solver: IDASPGMR. Preconditioner: IDABBDPRE - Banded-block-diagonal. Case 1. Difference quotient half-bandwidths = 5 Retained matrix half-bandwidths = 1 Output Summary (umax = max-norm of solution) time umax k nst nni nli nre nreLS nge h npe nps . . . . . . . . . . . . . . . . . . . . . . . . 0.01 8.24107e-01 2 12 14 7 14 7 96 2.56e-03 8 21 0.02 6.88124e-01 3 15 18 12 18 12 96 5.12e-03 8 30 0.04 4.70754e-01 3 18 24 22 24 22 108 6.58e-03 9 46 0.08 2.16600e-01 3 22 29 30 29 30 108 1.32e-02 9 59 0.16 4.56595e-02 4 28 37 43 37 43 120 2.63e-02 10 80 0.32 2.10959e-03 4 35 45 59 45 59 120 2.37e-02 10 104 0.64 5.53681e-05 1 40 54 71 54 71 156 1.90e-01 13 125 1.28 1.55972e-19 1 42 56 71 56 71 180 7.58e-01 15 127 2.56 3.38647e-21 1 43 57 71 57 71 192 1.52e+00 16 128 5.12 8.60743e-21 1 44 58 71 58 71 204 3.03e+00 17 129 10.24 1.66301e-20 1 45 59 71 59 71 216 6.06e+00 18 130 Error test failures = 1 Nonlinear convergence failures = 0 Linear convergence failures = 0 Case 2. Difference quotient half-bandwidths = 1 Retained matrix half-bandwidths = 1 Output Summary (umax = max-norm of solution) time umax k nst nni nli nre nreLS nge h npe nps . . . . . . . . . . . . . . . . . . . . . . . . 0.01 8.24111e-01 2 12 14 7 14 7 32 2.56e-03 8 21 0.02 6.88118e-01 3 15 18 12 18 12 32 5.12e-03 8 30 0.04 4.70932e-01 3 19 23 20 23 20 36 1.02e-02 9 43 0.08 2.16547e-01 3 23 27 32 27 32 36 1.02e-02 9 59 0.16 4.52248e-02 4 27 33 44 33 44 40 2.05e-02 10 77 0.32 2.18677e-03 3 34 41 67 41 67 44 4.10e-02 11 108 0.64 4.88467e-19 1 39 49 86 49 86 52 1.64e-01 13 135 1.28 5.39822e-19 1 41 51 86 51 86 60 6.55e-01 15 137 2.56 7.41945e-18 1 42 52 86 52 86 64 1.31e+00 16 138 5.12 6.10808e-17 1 43 53 86 53 86 68 2.62e+00 17 139 10.24 4.05358e-16 1 44 54 86 54 86 72 5.24e+00 18 140 Error test failures = 0 Nonlinear convergence failures = 0 Linear convergence failures = 0