idakryx: Heat equation, serial example problem for IDA Discretized heat equation on 2D unit square. Zero boundary conditions, polynomial initial conditions. Mesh dimensions: 10 x 10 Total system size: 100 Tolerance parameters: rtol = 0 atol = 0.001 Constraints set to force all solution components >= 0. Linear solver: IDASPGMR, preconditioner using diagonal elements. Case 1: gsytpe = MODIFIED_GS Output Summary (umax = max-norm of solution) time umax k nst nni nje nre nreLS h npe nps ---------------------------------------------------------------------- 0.01 8.24106e-01 2 12 14 7 14 7 2.56e-03 8 21 0.02 6.88134e-01 3 15 18 12 18 12 5.12e-03 8 30 0.04 4.70711e-01 3 18 24 21 24 21 6.58e-03 9 45 0.08 2.16509e-01 3 22 29 30 29 30 1.32e-02 9 59 0.16 4.57687e-02 4 28 36 44 36 44 1.32e-02 9 80 0.32 2.09938e-03 4 35 44 67 44 67 2.63e-02 10 111 0.64 5.54028e-21 1 39 51 77 51 77 1.05e-01 12 128 1.28 0.00000e+00 1 41 53 77 53 77 4.21e-01 14 130 2.56 0.00000e+00 1 43 55 77 55 77 1.69e+00 16 132 5.12 0.00000e+00 1 44 56 77 56 77 3.37e+00 17 133 10.24 0.00000e+00 1 45 57 77 57 77 6.74e+00 18 134 Error test failures = 1 Nonlinear convergence failures = 0 Linear convergence failures = 0 Case 2: gstype = CLASSICAL_GS Output Summary (umax = max-norm of solution) time umax k nst nni nje nre nreLS h npe nps ---------------------------------------------------------------------- 0.01 8.24106e-01 2 12 14 7 14 7 2.56e-03 8 21 0.02 6.88134e-01 3 15 18 12 18 12 5.12e-03 8 30 0.04 4.70711e-01 3 18 24 21 24 21 6.58e-03 9 45 0.08 2.16509e-01 3 22 29 30 29 30 1.32e-02 9 59 0.16 4.57687e-02 4 28 36 44 36 44 1.32e-02 9 80 0.32 2.09938e-03 4 35 44 67 44 67 2.63e-02 10 111 0.64 0.00000e+00 1 39 51 77 51 77 1.05e-01 12 128 1.28 0.00000e+00 1 41 53 77 53 77 4.21e-01 14 130 2.56 0.00000e+00 1 43 55 77 55 77 1.69e+00 16 132 5.12 0.00000e+00 1 44 56 77 56 77 3.37e+00 17 133 10.24 0.00000e+00 1 45 57 77 57 77 6.74e+00 18 134 Error test failures = 1 Nonlinear convergence failures = 0 Linear convergence failures = 0