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The self-diffusion coefficient, D, for pure liquid water has been measured at temperatures between
275.2 and 498.2 K and at pressures up to 1.75 kbart by the proton spin echo method. Our values of
D agree, where they overlap, with recently published data which, however, were measured mostly at
low temperature and over rather narrow ranges of temperature.

The results are discussed in several ways. The Stokes-Einstein relation is found to be obeyed in
the slipping boundary limit. The cubic cell model of Houghton accounts satisfactorily for the
measured D values, particularly at higher temperatures. A simple test of a hard-sphere model is
found to give poor agreement at lower temperatures but a modified hard-sphere theory seems to be
more satisfactory. The activation analysis at constant density shows that water behaves very differ-
ently from non-associated liquids. It also suggests that an increase in both temperature and pressure
leads to an increase in the fraction of free unbonded water molecules.

A free-volume analysis has led to a modified Arrhenius equation which involves pressure-dependent
terms. This semi-empirical equation describes the results within experimental error and predicts
a glass temperature at 115 K which is in reasonable agreement with the values obtained by other
methods.

There has recently been an increasing interest in the experimental determination
of the self-diffusion coefficient, D, for compressed light'—> and heavy* water at various
temperatures. Measurements of D over a range of temperature and density will lead
to a better understanding of both the diffusional behaviour of water imbedded in deep
rocks and of some molecular transport properties of compressed heavy water such as
the proton spin relaxation. However, all measurements of D for H,O under pressure
have so far been made'** at moderate temperatures only up to 332.2 K. A de-
tailed discussion of previous self-diffusion measurements for compressed water was
recently presented by Woolf? and will not be repeated here. There also exist numer-
ous measurements of D for liquid water under its saturated vapour pressure (s.v.p.)
but only a few covered wide temperature ranges.'®** The large spread of D values
at 298.2 K in the earlier measurements was caused by systematic errors as discussed by
Mills** and the best value'¥ is 2.299 x 107° m?s~!,

The present study of self-diffusion in compressed pure water was undertaken to
compare our D values measured by the proton spin echo method with those of tracer
experiments by Woolf? at lower temperatures and to extend the experimental tempera-
ture range up to & 500 K. It seemed interesting to test the applicability of the Stokes—
Einstein relations, the cubic cell model’* and the hard-sphere model over the widest
temperature range. Finally, since the shear viscosity of water at s.v.p. could be repre-
sented by a modified Arrhenius equation,’” it was of interest to test the analogous
equation for the self-diffusion of compressed water.

EXPERIMENTAL

The self-diffusion measurements were made by the n.m.r. spin echo method,!® using proton
resonance on a 20.8 MHz pulsed spectrometer which was based on that described by Luszczyn-
11 bar = 10° Nm~? = 10° Pa.
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ski and Powles.!” The 90°-7-90° pulse sequence was employed and the proton spin echo
signals were amplified, diode detected and displayed on a storage oscilloscope or transient
recorder. The receiver system was carefully calibrated and any non-linearity, due mainly to
the diode characteristic, was allowed for in the echo signals. The steady magnetic field of
0.486 T was provided by a Mullard PM 208 permanent magnet with 127 mm pole face dia-
meter and a 33.3 mm gap.

The basic high pressure apparatus used has been described by Powles and Gough.'®
Various modifications have since been made, particularly by installing more accurate pressure
gauges and improving the radio frequency (r.f.) insert. The pressure system provides proton-
free liquid C,Cl, at a known pressure to the n.m.r. pressure vessel which is made of titanium
680 alloy and has o.d. = 22.2 mm and i.d. = 13.7 mm. The vessel is separated from the
r.f. insert and contains a single r.f. coil of i.d. = 7 mm. A d.c. heating coil is wound non-
inductively outside the basic vessel to control the sample temperature up to 580 K. To
attain temperatures below ambient, cold nitrogen gas was passed through copper tubing
soldered to a cylindrical copper jacket on the pressure vessel. The sample temperature was
measured by means of a calibrated copper—constantan thermocouple, accurate to about 0.1 K
and situated inside the pressure vessel close to the sample. During typical measurements the
temperature was stable to 4+-0.2 K and pressure to better than + 100 bar.

The high pressure sample cell was made of Pyrex glass tubing and contained a mercury
well separator, as described by Sawyer and Gale.! A modification, consisting of two pieces
of a capillary tube one above and the other below the sample volume was made to produce a
sample of well defined cylindrical symmetry. Pure water, which had been doubly distilled
and de-ionized (electrical conductivity of 0.5 uQ '), was degassed and distilled into the sample
cells, as described by Sawyer and Gale.'®

The magnetic field gradient was produced by a pair of flat coaxial coils 31.2 mm apart,
wound on a Tufnol former such that their fields oppose one another. Each coil consisted
of 7 turns of copper wire and had a diameter of 36 mm. The field gradient, as calibrated
from the spin echo envelope of a first-order Bessel function shape,’® was typically G = (30 +
0.3) mT m~* A~!. With this value the self-diffusion coefficient measured for pure C¢Hs
at 298.2 K was 2.21 x 107° m? s~! which agrees well with the value 2.215 x 10~° m? s~!
obtained from tracer measurements extrapolated?? to pure C¢Hg.

By varying the pulse separation 7 in the 90°-7—180° pulse pairs at constant G, values of D
were derived graphically from the relation,'® '

AQ27) o exp [—(27/T2) — (3)y°G*D7, @

where A is the spin echo amplitude, 7 the spin-spin relaxation time and y the nuclear gyro-
magnetic ratio. For protons in pure water and for 7 > 1 ms and G > 10 mT m~! the first
term in the exponent of eqn (1) may be ignored, and a straight-line plot of In 4(27) against
7 has a slope of —(%)y*G2D giving D.

RESULTS

The measured pressure dependence of the self-diffusion coefficient, D, in liquid
H,O is shown in fig. 1 as twelve isotherms ranging from 2 to 225 °C (275.2 to 498.2 K).
The tracer diffusion measurements for THO in H,O at 308.2 K made by Woolf?
are also shown for comparison. The general reproducibility of the results is estimated
to be better than +5%,. The random error in measuring D, caused by the scatter
of points on a graph corresponding to relation (1), increases from x1.5%; at 298 K
to 49, at 498 K. The smoothed values of D, taken from * best * lines through experi-
mental points in fig. 1, are shown in table 1.

The resuits suggest that a broad maximum in D occurs at pressures between 0.5 to
1 kbar for the three lowest isotherms 275.2, 283.2 and 298.2 K. The low temperature
maxima in D for H,O have also been observed by Hertz and Radle,® Kiselnik et al.,®
Angell et al.® and Woolf,? and for self-diffusion in D,O by Wilbur ez a/.* and DeFries
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TABLE 1.—SMOOTHED VALUES OF SELE-DIFFUSION D (IN UNITS OF 107° m? s™%) FOR
COMPRESSED WATER

tcmperat/ulze
275.2 283.2 298.2 323.2 343.2 363.2 383.2 403.2 423.2 448.2 473.2 498.2
pressure

/10°N m—?
s.v.p. 1.17 1.43 230 3.89 561 7.42 9.81 128 157 196 238 28.0
100 1.18 1.45 231 390 560 740 978 127 156 194 235 27.8
300 1.20 1.49 234 3.92 555 7.28 9.66 125 153 19.0 228 27.1
500 1.20 1.50 237 3.95 550 7.20 9.57 123 151 18.7 222 26.5
700 1.18 1.48 239 395 544 7.09 944 122 149 183 21.6 259
900 1.17 1.46 239 394 540 697 938 12.0 147 18.0 21.0 253
1100 1.16 1.43 238 3.93 531 6.89 921 119 144 17.7 204 248
1300 1.15 1.41 236 3.89 528 679 9.13 11.8 142 174 198 24.1
1500 1.14 1.40 233 3.80 521 6.67 9.01 11.7 140 17.0 19.2 23.6
1700 1.13 139 230 3.74 515 659 892 11.6 138 167 18.6 (22.9)

and Jonas.2! Our results for H,O agree qualitatively with the tracer data obtained at
low temperatures by Woolf and collaborators®? if the tracer results are extrapolated
to pure H,0.2 The maxima in D at low temperatures are consistent with the minima
observed in shear viscosity?? # and maxima in the proton spin-lattice relaxation time
T, 822 Woolf? discussed the correlation between the effects of pressure on the
n and D. He also? compared diffusion results for water under pressure obtained at
298.2 K by different investigators.

Because of the scarcity of high temperature D measurements for water in the litera-
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Fic. 1.—Self-diffusion coefficient for liquid H,O under pressure. @, present measurements;
+, results from ref. (2). The isotherms are indicated in °C. The solid curves are drawn according to
eqn (12).
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ture, we show in fig. 2 our interpolated D values along the vapour pressure curve.
To date only Hauser et al.l! have reported measurements above 373 K and their
values are somewhat smaller than ours at high temperature. From the weaith of the
D data below 373 K we include in fig. 2 the reliable values obtained by Milis,"** but
we emphasize that the agreement with many results reported in recent years is good,
i.e., well within experimental errors. There is a gentle curvature in an Arrhenius
log D against 1/T plot particularly at lower temperatures, as studied by Mills.**
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Fic. 2.—Self-diffusion coefficient plotted against reciprocal temperature for liquid H,O at s.v.p.
©, this work; A, ref. (13); +, ref. (11). c.t. indicates the critical temperature.

DISCUSSION

QUALITATIVE EXPLANATION OF MAXIMA IN D

We believe that the low temperature maxima in D as a function of pressure arise
from increased mobility of water molecules which can be explained by assuming that
the open structure (hydrogen bonding) of water is distorted and disrupted by the
initial application of pressure. This increases statistically the fraction of * free
or “unbonded > molecules participating in translational diffusion. However, the
applied pressure also compresses the free molecules and tends to reduce their mobility.
The balance between these two processes is such that at low temperature a maximum
in D is observed.
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As the temperature increases, the ice-like structure of water is already appreciably
destroyed by the thermal motion and no maximum in D is observed.

MODIFIED STOKES—EINSTEIN RELATION

The well known hydrodynamic relationship for a particle diffusing in a medium
of viscosity 7 is

kT

= Csnan’ (24)

where k is the Boltzmann constant, @ the hydrodynamic radius and C, a numerical
constant. When the diffusing particles are much larger than those of the medium
(sticking boundary limit) C; = 6 and eqn (2) becomes the familiar Stokes~Einstein
relation. For diffusing particles of size approximately equal to those of the medium
(slipping boundary limit) Sutherland’s?* modification of eqn (2) leads to C, = 4.
Thus for the self-diffusion coefficient one has the modified Stokes-Finstein relation

kT
Assuming that a for water is independent of pressure and temperature, one may write
D
= ©)

where A/(Csra) is a constant if eqn (2) is obeyed. Hausser et al.!! reported that along
the s.v.p. curve for water A, is constant except close to the critical temperature.

Using our values of D from table 1 and the literature viscosity data,?*?® we find
that at constant pressure A, = (6.9 4- 0.4) x 1071 N K-, i.e., i, is constant within
the limits of the experimental error. The corresponding result calculated at constant
volume is A, = (6.9 + 0.3) x 10~*® N K1, i.e., more constant with no discernible
trend. This result is in good agreement with that of Woolf but is lower by ~14%;
than the value reported by Kiselnik ef al.® because of their correspondingly higher
values of D. If we use for H,0 a = 1.38 A (which is more appropriate for ice but is
close to a value used in machine simulation of liquid H,0), we then deduce C, =
4.6 - 0.3. This value is lose to the slipping boundary limit. To make C, =4
would require an increase in the value of @ from 1.38 to 1.58 A. An estimate of a
for H,0 from the van der Waals constant b gives @ = 1.44 A, whereas an assumption
of hexagonally close-packed spheres leads to @ = 1.74 A.  We do not see the trend in
C; from the slipping boundary limit to the sticking boundary limit with increasing
temperature, as reported by Wilbur et al.? for D,0.

THE CUBIC CELL MODEL

Houghton has developed for self-diffusion and viscous flow a simple cubic cell
model based on the Navier-Stokes equation. He restricted interactions to nearest
neighbours and considered the cell size equal to two molecular diameters. His
expression for D in liquids takes the form,

D = 194.3 x 10~¥(T/n)(p/M)* m? s~?, 4

where p is the density and M the molar mass. The model was claimed!* to give a
good agreement with the measured D values, particularly for non-associated liquids.
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Using the reported data for viscosity?*2¢ and density in eqn (5), we have calculated
D values for water at various temperatures and pressures under consideration. We
find that the agreement with experiment is reasonably good particularly at high tem-
peratures. The deviation of the calculated values of D from the experimental ones
varies from 15 to 39 as the temperature increases from 275 to 298 K. Note that
in the cubic cell model for self-diffusion the molecular size is accounted for by the
factor (M/p)* rather than by an explicit use of the molecular radius a. It seems
appropriate to include density variation even in our ranges of pressure and tempera-
ture at which D was measured.

HARD-SPHERE MODELS

Another model involving density dependence of self-diffusion is a hard-sphere
model. We first consider one of the simplest?? of these theories which leads to the
result

Dn/pT = constant. %)

We have tested this expression for water and found that the mean value of Dyn/pT
increases from 6.3 X 107¥ m*s~2K~1at 283 K t0 8.2 x 10~ ¥ m*s~2K~'at 498 K
which compares with the value of 8.24 x 10~'® m*s~2 K ! obtained from the original
formula.?” Moreover, the expression also decreases appreciably with increasing
pressure along each of our isotherms as for water the product D# alone is almost
pressure independent.

Dymond *'?® has combined the Enskog transport theory for a hard-sphere fluid
with molecular dynamics to predict transport coefficients of liquids. This corrected
Enskog theory has been successfully applied to a number of molecular liquids?®-3°
including compressed water at low temperatures.? In Dymond’s method the exact
(molecular dynamics) hard-sphere coefficients of self-diffusion and shear viscosity
are expressed in terms of the molar volume and used to obtain corrections to the
Enskog expressions for a dense fluid. The corrected Enskog coefficients, D, and 7.,
for a liquid can be expressed analytically (in SI units) by the following equations?®

7292 (T\*
9 —
10°D.. = 5 (M) (V — 1.384¥)), 6)
1 45916

T VO*(MT)*(V“ 1.3847), @)
where M is the molar mass, V is the molar volume of the liquid, ¥, = No*/2* repre-
sents the volume of close packing of hard spheres with a diameter o, and N is the
Avogadro number.

Eqn (6) and (7) show that if ¥, is independent of temperature, then both D/T*
and T*/n should be proportional to ¥ and intersect the V axis at a common point.
The graphs (not shown) of T%/x and D/T* against V for water at the s.v.p., with the
literature values of # and our values of D, turn out to be curved, in contrast to many
other molecular liquids,** but they do intercept the V axis at a common point. The
fact that the D/T* graph is curved more than that of 7%/# indicates that ¥, and hence
o may be temperature dependent. This is indeed the case as seen in table 2 where the
values of ¢ for H,O at s.v.p. derived from eqn (7) decrease from 3.09 A at 275 K to
2.65A at 498 K. This trend has been noticed at lower temperatures by Woolf.2 A
decrease of the hard-core molecular size with increasing temperature has also been
found for other molecular liquids.?®:3° The o for water decreases also with increasing
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TABLE 2.—CORRECTED ENSKOG THEORY FOR WATER. VALUES OF ¢ AND D, ARE CALCULATED
FROM EQN (7) AND (6), RESPECTIVELY. VALUES OF D ., ARE TAKEN FROM TABLE 1.

T/K 298.2 343.2 423.2 498.2

quantity O-/A DEX/DCB G/A DCX/DCE G/A DCX/DCC G/A DCX/DCQ

P/10° Nm~2
S.V.p. 305 099 297 0939 280 0921 265 0.870
500 3.03  1.02 295 0933 279 0930 264 0.880
900 3.02  1.06 294 0929 278 0940 264 0.873
1300 3.00 1.04 293 0921 277 0942 265 0.907
1700 299 1.01 292 0914 277 0949 265 0.907

pressure but this effect is becoming smaller as the temperature rises and disappears at
~473 K in our pressure range.

The values of o deduced from eqn (7) are then substituted into eqn (6) and the
values of D, are calculated and compared with the experimental data, D.,, in table 2.
The agreement is within +109] except at temperatures above 473 K where D,
exceeds D, by as much as 15%.

The fact that both the modified Stokes-Einstein relation and the corrected Enskog
theory are applicable to water is understandable, since eqn (6) and (7) give D #..0/T
= 2.11 x 1072* J K~!, whereas eqn (2a) with ¢ = 2a gives Dyo/T = k[2rn = 2.20
x 10~2#J K-t However, for water the use of a constant ¢ for D in eqn (3) leads to a
better agreement with experiment than that obtained for D, in eqn (6) with the vari-
able o from eqn (7).

ACTIVATION ANALYSIS

For many liquids the behaviour of D over wide temperature ranges can be de-
scribed by the rate equation of the Arrhenius type

D = D, exp (—Ep/RT), ®

where R is the gas constant, Ep is the experimental activation energy per mole, and
D, is often called the frequency factor and is taken as practically independent of
temperature. From thermodynamic considerations,®! eqn (8) is an approximation
valid only if the activation energy is not distinguishable from enthalpy and the ex-
ponential is dominant in the temperature variation.

Under the application of pressure P, eqn (8) is modified according to the Gibbs
free energy definition to include the pressure term,

D = Dy exp [—(Ep + PVp)/RT], ©)

where Vp is called the activation volume for diffusion. In the activation analysis of
self-diffusion in compressed liquids two quantities based on eqn (9) are most useful:
the apparent activation energy at constant volume (or density)

Epy = —R[21n D[o(1/T)]y, (10
and the apparent activation volume at constant temperature
Vo = —RT[? In D/oP];. (11)
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Another quantity, the activation energy at constant pressure Epp, defined by an ex-
pression similar to eqn (10), appears for water? not to be much different from Egy
and will not be considered here. As the shear viscosity # obeys equations analogous
to eqn (8) and (9) but with the positive sign in the exponent, one can define similar
activation energy E,y and activation volume V, for viscosity.

In table 3 our values of Epy for water are compared with those of E,y, deduced
from the viscosity data.?>?® The values of Epy were obtained from the slopes of the
plots of In D against 10*/T for several densities between 0.88 x 10° and 1.06 x 10°
k g m™>. There is an agreement within the experimental error (45%,) between our
values of Env and those of Woolf.2  As seen in table 3, at low temperatures the activa-

TABLE 3.—ACTIVATION ENERGIES (IN kJ mol~! AT CONSTANT DENSITY FOR SELF-DIFFUSION
(Epy) AND VISCOSITY (Eyv) OF WATER

% 485 423 383 343 298 278
p/10¥ kgm~3 Epy Eyy Epv Epv Eov Eyv Epv Env Epv Epv  Epv  Eny

0.88 94 44

0.90 9.0 37

0.92 80 32 134 82

0.94 48 16 122 78

0.96 103 69 143 99

0.98 79 63 136 9.2

1.00 118 88 153 126 181 16.8 19.5 189
1.02 104 86 141 121 175 19.1
1.04 11.8 120 171 160 189
1.05 16.9 19.9
1.06 19.9 16.5

tion energies for diffusion and viscosity agree within the limits of experimental error.
However, with increasing temperature Epy is becoming appreciably greater than E,y
and at 485 K the ratio Epv/E,v is ®2. Hence at high temperature an appreciable
percentage of low energy interactions between water molecules contributes to viscous
flow but not to the rate of displacements of molecules from their temporary positions
of equilibrium. We note the Epy decreases both with increasing density along all the
isotherms and with increasing temperature. This behaviour of water contrasts with
that of non-associated liquids such as benzene3* and carbon tetrachloride® for which
the opposite is true.

Since D varies rather little with pressure except at high temperatures, values of
Vp deduced from eqn (11) along the smoothed isotherms in fig. 1 are small and become
zero at the low temperature maxima in D. For instance, at 283.2 K, ¥}, varies from
—2.6cm®mol~1at0.1 kbar to zero at 0.65 kbar and +2.7 cm® mol~* at 1.7 kbar which
agrees with the Woolf? result; at 383.2 K, ¥}, varies from 1.7 cm® mol~* at 0.1 kbar
to 2.8 cm® mol~! at 1.7 kbar; at 473.2 K it varies from 5.5 cm® mol~*! at 0.1 kbar to
11.1 cm® mol~! at 1.7 kbar. These results are in accord with the well known fact that
the molecular association in water decreases with increasing temperature. In fact
the value of 11.1 cm® mol~! at 473.2 K and 1.7 kbar is not so much smaller than that
for a non-associated liquid, e.g., benzene.® From the study of self-diffusion in com-
pressed D,0 Wilbur et al.* also concluded that at high temperature and high compres-
sion the dynamic behaviour of D,O resembles that of a normal molecular
liquid.
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FREE VOLUME ANALYSIS

Cohen and Turnbull®** considered translational diffusion to occur as a result of a
redistribution of the free volume within a liquid rather than an activated process.
They have obtained an expression for the self-diffusion coefficient which can be written
in a form

D = AT* exp {—B|[T — T(P)], (12)

where T(P) = T, + CAP for a pressure increment AP, and 4, B, C are constants.
T, is the temperature at which the free volume disappears and may be identified with
the glass-transition temperature. Eqn (12), which may be thought of as a modified
Arrhenius equation, has been used successfully by Miller3® and Bernini et al.** to fit
the viscosity data for liquid water over a wide temperature range.

In the free volume analysis of our measured values of D for H,0, the data at
each of our isobars have been computer-fitted to eqn (12) with T, as a variable para-
meter. A statistical measurement of the normal distribution about the fit was found
to be a very sharp function of 7,. The use of pre-exponentiai factors 4 and A7 gives a
worse fit than that with AT*. A plot of In (DT?) against 103/[T — To(P)]for T, = 108
K and a pressure of 68 bar is linear. A full analysis, however, showed that 4, B
and T4(P) in eqn (12) are pressure dependent. This pressure dependence is such that
In A4, In B and T,(P) all become linear after an initial pressure increase of 0.2 kbar.
An empirical equation was thus formed which describes our diffusion resuits for water
within experimental error including those at low pressure. For the 117 data points
the full equation is

D =12.5 x 10~% exp (—5.22 x 107*P)T* exp

—925exp (—2.6 X 10~*P)7] , _,
T—(05+26l x10°p) | ™ s> (3

for Pin bar. This empirical equation was used to draw the isotherms shown in fig. 1.

From our diffusion results, T, for H,O at zero pressure is estimated to be 115 XK.
From viscosity results, 7, for H,O has been estimated as 150 ** and 146 K.*> All
these values are in reasonable agreement with the result of recent calorimetric studies?’
which suggest the existence of a glass-transition temperature of 135 K.

C. D. Green thanks the S.R.C. for a research studentship. The authors are grate-
ful to Prof. J. G. Powles for reading the manuscript.
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