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The self-diffusion coefficient, D, for pure liquid water has been measured at temperatures between 
275.2 and 498.2 K and at pressures up to 1.75 kbart by the proton spin echo method. Our values of 
D agree, where they overlap, with recently published data which, however, were measured mostly at 
low temperature and over rather narrow ranges of temperature. 

The results are discussed in several ways. The Stokes-Einstein relation is found to be obeyed in 
the slipping boundary limit. The cubic cell model of Houghton accounts satisfactorily for the 
measured D values, particularly at higher temperatures. A simple test of a hard-sphere model i s  
found to give poor agreement at lower temperatures but a modified hard-sphere theory seems to be 
more satisfactory. The activation analysis at constant density shows that water behaves very differ- 
ently from non-associated liquids. It also suggests that an increase in both temperature and pressure 
leads to an increase in the fraction of free unbonded water molecules. 

A free-volume analysis has led to a modified Arrhenius equation which involves pressure-dependent 
terms. This semi-empirical equation describes the results within experimental error and predicts 
a glass temperature at 115 K which is in reasonable agreement with the values obtained by other 
methods. 

There has recently been an increasing interest in the experimental determination 
of the self-diffusion coefficient, D, for compressed and heavy4 water at various 
temperatures. Measurements of D over a range of temperature and density will lead 
to a better understanding of both the diffusional behaviour of water imbedded in deep 
rocks and of some molecular transport properties of compressed heavy water such as 
the proton spin relaxation. However, all measurements of D for H20  under pressure 
have so far been made1-3*5-9 at  moderate temperatures only up to 332.2 K. A de- 
tailed discussion of previous self-diffusion measurements for compressed water was 
recently presented by Woolf2 and will not be repeated here. There also exist numer- 
ous measurements of D for liquid water under its saturated vapour pressure (s.v.P.) 
but only a few covered wide temperature The large spread of D values 
at  298.2 K in the earlier measurements was caused by systematic errors as discussed by 
Millsl3" and the best value13' is 2.299 x 

The present study of self-diffusion in compressed pure water was undertaken to 
compare our D values measured by the proton spin echo method with those of tracer 
experiments by Woolf' at lower temperatures and to extend the experimental tempera- 
ture range up to = 500 K. I t  seemed interesting to test the applicability of the Stokes- 
Einstein relations, the cubic cell rnodelI4 and the hard-sphere model over the widest 
temperature range. Finally, since the shear viscosity of water at S.V.P. could be repre- 
sented by a modified Arrhenius equation,15 it was of interest to test the analogous 
equation for the self-diffusion of compressed water. 

m2 s-l. 

EXPERIMENTAL 
The self-diffusion measurements were made by the n.m.r. spin echo method,l6 using proton 

resonance on a 20.8 MHz pulsed spectrometer which was based on that described by Luszczyn- 
1 bar = lo5 N m-2 = lo5 Pa, 
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ski and P0w1es.l~ The 9O0-z-90" pulse sequence was employed and the proton spin echo 
signals were amplified, diode detected and displayed on a storage oscilloscope or transient 
recorder. The receiver system was carefully calibrated and any non-linearity, due mainly to 
the diode characteristic, was allowed for in the echo signals. The steady magnetic field of 
0.486 T was provided by a Mullard PM 208 permanent magnet with 127 mm pole face dia- 
meter and a 33.3 mm gap. 

The basic high pressure apparatus used has been described by Powles and Gough.18 
Various modifications have since been made, particularly by installing more accurate pressure 
gauges and improving the radio frequency (r.f.) insert. The pressure system provides proton- 
free liquid C2CI4 at a known pressure to the n.m.r. pressure vessel which is made of titanium 
680 alloy and has 0.d. = 22.2 mm and i.d. = 13.7 mm. The vessel is separated from the 
r.f. insert and contains a single r.f. coil of i.d. = 7 mm. A d.c. heating coil is wound non- 
inductively outside the basic vessel to control the sample temperature up to 580 K. To 
attain temperatures below ambient, cold nitrogen gas was passed through copper tubing 
soldered to a cylindrical copper jacket on the pressure vessel. The sample temperature was 
measured by means of a calibrated copper-constantan thermocouple, accurate to about 0.1 K 
and situated inside the pressure vessel close to the sample. During typical measurements the 
temperature was stable to 1 0 . 2  K and pressure to better than i 100 bar. 

The high pressure sample cell was made of Pyrex glass tubing and contained a mercury 
well separator, as described by Sawyer and Gale." A modification, consisting of two pieces 
of a capillary tube one above and the other below the sample volume was made to produce a 
sample of well defined cylindrical symmetry. Pure water, which had been doubly distilled 
and de-ionized (electrical conductivity of 0.5 p a - ' ) ,  was degassed and distilled into the sample 
cells, as described by Sawyer and Gale.19 

The magnetic field gradient was produced by a pair of flat coaxial coils 31.2 mm apart, 
wound on a Tufnol former such that their fields oppose one another. Each coil consisted 
of 7 turns of copper wire and had a diameter of 36 mm. The field gradient, as calibrated 
from the spin echo envelope of a first-order Bessel function shape,16 was typically G = (30 f 
0.3) mT m-' A-'. With this value the self-diffusion coefficient measured for pure C6H6 
at 298.2 K was 2.21 x m2 s-' 
obtained from tracer measurements extrapolated 2o  to pure C6H6. 

By varying the pulse separation z in the 9Oo-z-180" pulse pairs at constant G, values of D 
were derived graphically from the relation,I6 

m2 s-I which agrees well with the value 2.215 x 

where A is the spin echo amplitude, T2 the spin-spin relaxation time and y the nuclear gyro- 
magnetic ratio. For protons in pure water and for z > 1 ms and G > 10 mT m-' the first 
term in the exponent of eqn (1) may be ignored, and a straight-line plot of In A(2z) against 
z3 has a slope of -(+)y2G2D giving D. 

RESULTS 

The measured pressure dependence of the self-diffusion coefficient, D, in liquid 
H20 is shown in fig. 1 as twelve isotherms ranging from 2 to 225 "C (275.2 to  498.2 K). 
The tracer diffusion measurements for THO in H 2 0  a t  308.2 IS made by Woolf2 
are also shown for comparison. The general reproducibility of the results is estimated 
to be better than &5%. The random error in measuring D,  caused by the scatter 
of points on a graph corresponding to relation (l), increases from z 1.5% at 298 K 
to 4% a t  498 K. The smoothed values of D, taken from " best " lines through experi- 
mental points in fig. 1 ,  are shown in table 1 .  

The results suggest that a broad maximum in D occurs at pressures between 0.5 to 
1 kbar for the three lowest isotherms 275.2,283.2 and 298.2 K. The low temperature 
maxima in D for H 2 0  have also been observed by Hertz and Radle,' Kiselnik et aZ.,9 
Angel1 et aL3 and Woolf,2 and for self-diffusion in D,O by Wilbur et aL4 and DeFries 
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TABLE  SMOOTHED VALUES OF SELF-DIFFUSION D (IN UNITS OF m2 s -9  FOR 

COMPRESSED WATER 

temperature 

275.2 283.2 298.2 323.2 343.2 363.2 383.2 403.2 423.2 448.2 473.2 498.2 
pressure 
/1O6N n r a  

S.V.P. 1.17 1.43 2.30 3.89 5.61 7.42 9.81 12.8 15.7 19.6 23.8 28.0 
1.18 1.45 2.31 3.90 5.60 7.40 9.78 12.7 15.6 19.4 23.5 27.8 100 

300 1.20 1.49 2.34 3.92 5.55 7.28 9.66 12.5 15.3 19.0 22.8 27.1 
500 1.20 1.50 2.37 3.95 5.50 7.20 9.57 12.3 15.1 18.7 22.2 26.5 
700 1.18 1.48 2.39 3.95 5.44 7.09 9.44 12.2 14.9 18.3 21.6 25.9 
900 1.17 1.46 2.39 3.94 5.40 6.97 9.38 12.0 14.7 18.0 21.0 25.3 

1100 1.16 1.43 2.38 3.93 5.31 6.89 9.21 11.9 14.4 17.7 20.4 24.8 
1300 1.15 1.41 2.36 3.89 5.28 6.79 9.13 11.8 14.2 17.4 19.8 24.1 
1500 1.14 1.40 2.33 3.80 5.21 6.67 9.01 11.7 14.0 17.0 19.2 23.6 
1700 1.13 1.39 2.30 3.74 5.15 6.59 8.92 11.6 13.8 16.7 18.6 (22.9) 

\ 

and Jonas.21 Our results for H,O agree qualitatively with the tracer data obtained at 
low temperatures by Woolf and co l labora tor~~*~ if the tracer results are extrapolated 
to pure H20.2 The maxima in D at low temperatures are consistent with the minima 
observed in shear viscosity22 q and maxima in the proton spin-lattice relaxation time 
T1.8923924 Woolf2 discussed the correlation between the effects of pressure on the 
q and D. He also2 compared diffusion results for water under pressure obtained at 
298.2 K by different investigators. 

Because of the scarcity of high temperature D measurements for water in the litera- 
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ture, we show in fig. 2 our interpolated D values along the vapour pressure curve. 
To date only Hauser et a2.l1 have reported measurements above 373 K and their 
values are somewhat smaller than ours at high temperature. From the wealth of the 
D data below 373 K we include in fig. 2 the reliable values obtained by but 
we emphasize that the agreement with many results reported in recent years is good, 
i.e., well within experimental errors. There is a gentle curvature in an Arrhenius 
log D against l/Tplot particularly at lower temperatures, as studied by Mills.’3b 

I e I I 

:.t. 

5 2.0 3.0 3.5 

~ O ~ K I T  
FIG. 2.-Self-diffusion coefficient plotted against reciprocal temperature for liquid HzO at S.V.P. 

0, this work; A ,  ref. (13); +, ref. (11). c.t. indicates the critical temperature. 

DISCUSSION 

Q U A L I T A T I V E  E X P L A N A T I O N  O F  MAXIMA I N  D 

We believe that the low temperature maxima in D as a function of pressure arise 
from increased mobility of water molecules which can be explained by assuming that 
the open structure (hydrogen bonding) of water is distorted and disrupted by the 
initial application of pressure. This increases statistically the fraction of “ free ” 
or “ unbonded ” molecules participating in translational diffusion. However, the 
applied pressure also compresses the free molecules and tends to reduce their mobility. 
The balance between these two processes is such that at low temperature a maximum 
in D is observed. 
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As the temperature increases, the ice-like structure of water is already appreciably 
destroyed by the thermal motion and no maximum in D is observed. 

M O D I F I E D  STOKES-EINSTEIN R E L A T I O N  

The well known hydrodynamic relationship for a particle diffusing in a medium 
of viscosity q is 

where k is the Boltzmann constant, a the hydrodynamic radius and C, a numerical 
constant. When the diffusing particles are much larger than those of the medium 
(sticking boundary limit) C, = 6 and eqn (2) becomes the familiar Stokes-Einstein 
relation. For diffusing particles of size approximately equal to those of the medium 
(slipping boundary limit) S~therland’s~’ modification of eqn (2) leads to C, = 4. 
Thus for the self-diffusion coefficient one has the modified Stokes-Einstein relation 

Assuming that a for water is independent of pressure and temperature, one may write 

- 7 = A,, (3) 

where A,/(C,za) is a constant if eqn (2) is obeyed. Hausser et al.” reported that along 
the S.V.P. curve for water A, is constant except close to the critical temperature. 

Using our values of D from table 1 and the literature viscosity data,22*26 we find 
that at constant pressure A, = (6.9 & 0.4) x lo-’’ N K-l, i.e., A, is constant within 
the limits of the experimental error. The corresponding result calculated at constant 
volume is As = (6.9 & 0.3) x lo-’’ N K-l, i.e., more constant with no discernible 
trend. This result is in good agreement with that of Woolf but is lower by x 14% 
than the value reported by Kiselnik et aL9 because of their correspondingly higher 
values of D. If we use for H20 a = 1.38 A (which is more appropriate for ice but is 
close to a value used in machine simulation of liquid H20), we then deduce C, = 
4.6 & 0.3. This value is lose to the slipping boundary limit. To make C, = 4 
would require an increase in the value of a from 1.38 to 1.58 A. An estimate of a 
for H20  from the van der Waals constant b gives a = 1.44 A, whereas an assumption 
of hexagonally close-packed spheres leads to a = 1.74 A. We do not see the trend in 
C, from the slipping boundary limit to the sticking boundary limit with increasing 
temperature, as reported by Wilbur et aL4 for D20. 

T H E  C U B I C  CELL M O D E L  

Houghton14 has developed for self-diffusion and viscous flow a simple cubic cell 
model based on the Navier-Stokes equation. He restricted interactions to nearest 
neighbours and considered the cell size equal to two molecular diameters. His 
expression for D in liquids takes the form, 

(4) 
where p is the density and A 4  the molar mass. The model was claimed14 to give a 
good agreement with the measured D values, particularly for non-associated liquids. 

D = 194.3 x 10-18(T/q)@/M)* m2 s-l, 
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Using the reported data for viscosity22*z6 and density in eqn (9, we have calculated 
D values for water at various temperatures and pressures under consideration. We 
find that the agreement with experiment is reasonably good particularly at high tem- 
peratures. The deviation of the calculated values of D from the experimental ones 
varies from 15 to 3% as the temperature increases from 275 to 298 K. Note that 
in the cubic cell model for self-diffusion the molecular size is accounted for by the 
factor (M/p)* rather than by an explicit use of the molecular radius a. It seems 
appropriate to include density variation even in our ranges of pressure and tempera- 
ture at which D was measured. 

H A R D - S P H E R E  MODELS 

Another model involving density dependence of self-diffusion is a hard-sphere 
We first consider one of the simplestz7 of these theories which leads to the model. 

result 

Dq/pT = constant. (5) 
We have tested this expression for water and found that the mean value of Dr/pT 
increases from 6.3 x lo-'' m4 s - ~  K" at 283 K to 8.2 x m4 s - ~  K-l at 498 K 
which compares with the value of 8.24 x lo-'' m4 s - ~  K-l obtained from the original 

Moreover, the expression also decreases appreciably with increasing 
pressure along each of our isotherms as for water the product D y  alone is almost 
pressure independent. 

Dymond28*z9 has combined the Enskog transport theory for a hard-sphere fluid 
with molecular dynamics to predict transport coefficients of liquids. This corrected 
Enskog theory has been successfully applied to a number of molecular l i q ~ i d s ~ ~ . ~ '  
including compressed water at low temperatures.2 In Dymond's method the exact 
(molecular dynamics) hard-sphere coefficients of self-diffusion and shear viscosity 
are expressed in terms of the molar volume and used to obtain corrections to the 
Enskog expressions for a dense fluid. The corrected Enskog coefficients, D,, and qce, 
for a liquid can be expressed analytically (in SI units) by the following equations29 

where M is the molar mass, V is the molar volume of the liquid, Vo = No3/2* repre- 
sents the volume of close packing of hard spheres with a diameter 0, and N is the 
Avogadro number. 

Eqn (6) and (7) show that if Yo is independent of temperature, then both D/T* 
and T*/q  should be proportional to V and intersect the V axis at a common point. 
The graphs (not shown) of T3/q  and D/T3 against V for water at the s.v.P., with the 
literature values of q and our values of D, turn out to be curved, in contrast to many 
other molecular The 
fact that the D/T3 graph is curved more than that of T 3 / q  indicates that V, and hence 
0 may be temperature dependent. This is indeed the case as seen in table 2 where the 
values of o for H 2 0  at S.V.P. derived from eqn (7) decrease from 3.09 A at 275 K to 
2.65 A at 498 K. This trend has been noticed at lower temperatures by Woolf.z A 
decrease of the hard-core molecular size with increasing temperature has also been 
found for other molecular l i q ~ i d s . ~ ~ * ~ ~  The Q for water decreases also with increasing 

but they do intercept the V axis at a common point. 
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TABLE 2.-cORRECTED ENSKOG THEORY FOR WATER. VALUES OF O AND DCe ARE CALCULATED 
FROM EQN (7) AND (6), RESPECTIVELY. VALUES OF D,, ARE TAKEN FROM TABLE 1 .  

TIK 298.2 343.2 423.2 498.2 

S.V.P. 
500 
900 

1300 
1700 

3.05 0.996 2.97 0.939 2.80 0.921 2.65 0.870 
3.03 1.02 2.95 0.933 2.79 0.930 2.64 0.880 
3.02 1.06 2.94 0.929 2.78 0.940 2.64 0.873 
3.00 1.04 2.93 0.921 2.77 0.942 2.65 0.907 
2.99 1.01 2.92 0.914 2.77 0.949 2.65 0.907 

pressure but this effect is becoming smaller as the temperature rises and disappears at 
~ 4 7 3  K in our pressure range. 

The values of B deduced from eqn (7) are then substituted into eqn (6) and the 
values of D,, are calculated and compared with the experimental data, D,,, in table 2. 
The agreement is within &lo% except at  temperatures above 473 K where D,, 
exceeds D,, by as much as 15%. 

The fact that both the modified Stokes-Einstein relation and the corrected Enskog 
theory are applicable to water is understandable, since eqn (6) and (7) give D,,~,,a/T 
= 2.11 x J K-l, whereas eqn (2a) with B = 2a gives Dqa/T = k/2z = 2.20 
x However, for water the use of a constant B for D in eqn (3) leads to a 
better agreement with experiment than that obtained for D,, in eqn (6) with the vaIi- 
able B from eqn (7). 

J K-l. 

A C T I V A T I O N  A N A L Y S I S  

For many liquids the behaviour of D over wide temperature ranges can be de- 
scribed by the rate equation of the Arrhenius type 

D = Do exp (-ED/RT), (8) 
where R is the gas constant, ED is the experimental activation energy per mole, and 
Do is often called the frequency factor and is taken as practically independent of 
temperature. From thermodynamic  consideration^,^^ eqn (8) is an approximation 
valid only if the activation energy is not distinguishable from enthalpy and the ex- 
ponential is dominant in the temperature variation. 

Under the application of pressure P, eqn (8) is modified according to the Gibbs 
free energy definition to include the pressure term, 

where VD is called the activation volume for diffusion. In the activation analysis of 
self-diffusion in compressed liquids two quantities based on eqn (9) are most useful: 
the apparent activation energy at constant volume (or density) 

ED, = -" In ~/w/nIv, 
VD = --RT[B In D/BP],. 

(10) 

(1 1) 

and the apparent activation volume at constant temperature 
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Another quantity, the activation energy at constant pressure EDp, defined by an ex- 
pression similar to eqn (lo), appears for water2 not to be much different from ED, 
and will not be considered here. As the shear viscosity obeys equations analogous 
to eqn (8) and (9) but with the positive sign in the exponent, one can define similar 
activation energy E,, and activation volume V, for viscosity. 

In table 3 our values of E D ,  for water are compared with those of E,, deduced 
from the viscosity data.22*26 The values of ED, were obtained from the slopes of the 
plots of In D against 103/T for several densities between 0.88 x lo3 and 1.06 x lo3 
k g m-3. There is an agreement within the experimental error (*5%) between our 
values of ED, and those of Woolf.2 As seen in table 3, at low temperatures the activa- 

TABLE 3.-ACTIVATION ENERGIES (IN kJ mOl AT CONSTANT DENSITY FOR SELF-DIFFUSION 
(EDv) A N D  VISCOSITY (Eqv) OF WATER 

0.88 
0.90 
0.92 
0.94 
0.96 
0.98 
1 .oo 
1.02 
1.04 
1.05 
1.06 

9.4 4.4 
9.0 3.7 
8.0 3.2 13.4 8.2 
4.8 1.6 12.2 7.8 

10.3 6.9 14.3 9.9 
7.9 6.3 13.6 9.2 

11.8 8.8 15.3 12.6 18.1 16.8 19.5 18.9 
10.4 8.6 14.1 12.1 17.5 19.1 

11.8 12.0 17.1 16.0 18.9 
16.9 19.9 

19.9 16.5 

tion energies for diffusion and viscosity agree within the limits of experimental error. 
However, with increasing temperature ED, is becoming appreciably greater than E,, 
and at 485 K the ratio EDVIE,, is ~ 2 .  Hence at high temperature an appreciable 
percentage of low energy interactions between water molecules contributes to viscous 
flow but not to the rate of displacements of molecules from their temporary positions 
of equilibrium. We note the ED, decreases both with increasing density along all the 
isotherms and with increasing temperature. This behaviour of water contrasts with 
that of non-associated liquids such as benzene32 and carbon te t ra~hlor ide~~ for which 
the opposite is true. 

Since D varies rather little with pressure except at high temperatures, values of 
V, deduced from eqn (1 1) along the smoothed isotherms in fig. 1 are small and become 
zero at the low temperature maxima in D. For instance, at 283.2 K, VD varies from 
-2.6 cm3 mol-1 at 0.1 kbar to zero at 0.65 kbar and +2.7 cm3 mol-1 at 1.7 kbar which 
agrees with the Woolf2 result; at 383.2 K, VD varies from 1.7 cm3 mole’ at 0.1 kbar 
to 2.8 cm3 mol-’ at 1.7 kbar; at 473.2 K it varies from 5.5 cm3 mol-1 at 0.1 kbar to 
11.1 cm3 mo1-1 at 1.7 kbar. These results are in accord with the well known fact that 
the molecular association in water decreases with increasing temperature. In fact 
the value of 11.1 cm3 mol-l at 473.2 K and 1.7 kbar is not so much smaller than that 
for a non-associated liquid, e.g., benzene.32 From the study of self-diffusion in com- 
pressed D20 Wilbur et aL4 also concluded that at high temperature and high compres- 
sion the dynamic behaviour of D20 resembles that of a normal molecular 
liquid. 
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FREE VOLUME A N A L Y S I S  

Cohen and T ~ r n b u l l ~ ~  considered translational diffusion to occur as a result of a 
redistribution of the free volume within a liquid rather than an activated process. 
They have obtained an expression for the self-diffusion coefficient which can be written 
in a form 

D = AT* exp { - B/[T - TO(P)]},  

where To(P) = To + CAP for a pressure increment AP, and A ,  B, C are constants. 
To is the temperature at  which the free volume disappears and may be identified with 
the glass-transition temperature. Eqn (12), which may be thought of as a modified 
Arrhenius equation, has been used successfully by Miller35 and Bernini et aZ.15 to fit 
the viscosity data for liquid water over a wide temperature range. 

In the free volume analysis of our measured values of D for H20,36 the data at 
each of our isobars have been computer-fitted to eqn (12) with To as a variable para- 
meter. A statistical measurement of the normal distribution about the fit was found 
to be a very sharp function of To. The use of pre-exponential factors A and ATgives a 
worse fit than that with AT3. A plot of In (DT*) against 103/[T - TO(P)] for To = 108 
K and a pressure of 68 bar is linear. A full analysis, however, showed that A ,  B 
and To(P) in eqn (12) are pressure dependent. This pressure dependence is such that 
In A ,  In B and To(P) all become linear after an initial pressure increase of 0.2 kbar. 
An empirical equation was thus formed which describes our diffusion resuits for water 
within experimental error including those at low pressure. For the 117 data points 
the full equation is 

D = 12.5 x lO-'exp (-5.22 x 10-4P)T* exp 

m2 s-', (13) 1 -925 exp (-2.6 x 10-4P) 
T -  (95 + 2.61 x 10-2P) 

for P in bar. This empirical equation was used to draw the isotherms shown in fig. 1 .  
From our diffusion results, To for H 2 0  at zero pressure is estimated to be 115 K. 

From viscosity results, To for H 2 0  has been estimated as 150 35 and 146 K.15 All 
these values are in reasonable agreement with the result of recent calorimetric studies 37 
which suggest the existence of a glass-transition temperature of 135 K. 

C .  D. Green thanks the S.R.C. for a research studentship. The authors are grate- 
ful to Prof. J. G. Powles for reading the manuscript. 
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