
Optimal use of data in parallel tempering simulations for the

construction of kinetic models of biomolecular dynamics

Jan-Hendrik Prinz,1, ∗ John D. Chodera,2, † Vijay S. Pande,3, ‡

William C. Swope,4, § Jeremy C. Smith,5, ¶ and Frank Noé6, ∗∗
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Abstract

Recent work has demonstrated how the short physical trajectories generated in PT simulations

of biomolecules can be used to construct Markov models describing biomolecular dynamics at

each simulated temperature. While this approach describes the temperature-dependent kinetics,

it does not make optimal use of all available PT data, instead estimating the rates at a given

temperature using only data from that temperature. This can be problematic, as some relevant

transitions or states may not be sufficiently sampled at the temperature of interest, but might

be readily sampled at nearby temperatures. Further, the comparison of temperature-dependent

properties can suffer from the false assumption of temperature uncorrelated statistical errors. We

propose here a strategy in which by a simple modification of the parallel tempering protocol, the

harvested trajectories can be reweighted, permitting data from all temperatures to contribute to

the estimated kinetic model. The method reduces the statistical uncertainty in the kinetic model

relatice to the single temperature approach and provides estimates of transition rates even for

transitions not observed at the temperature of interest. Further, the method allows the kineticd

to be estimated at temperatures other than those at which simulations were run. To illustrate the

method, an application is presented to the conformational dynamics of the solvated terminally-

blocked alanine dipeptide.

2



INTRODUCTION

Biological macromolecules are not static structures, but are driven by thermal motion

and interactions with their molecular environment, undergoing conformational fluctu-

ations and changing conformational states. The characterization of the statistical con-

formational dynamics of biomolecules is of central importance in biology and medicine.

Often, a separation of timescales of characteristic dynamical relaxation times gives rise

to the existance of metastable conformational states, such that the biomolecule remains

in any one of these states for a long time before a rapid transition is made to another. A

wealth of experimental data now supports the existence of such states, including NMR

[1, 2], fluorescence emission [3, 4], energy transfer[5], correlation spectroscopy [6], and

nonequilibrium perturbation experiments[4]. Developing a quantitative understanding

of what gives rise to these conformational states and the interactions that govern their

transitions will provide insight into how post-translational[JCS] Why post-translational?

modification and noncovalent association can affect dynamics and function, and will

have a significant impact on our understanding of many biological processes, such as sig-

naling events, enzyme regulation, allostery, and drug design for conformationally flexible

molecules.

Parallel tempering simulations have been a popular approach to overcoming the is-

sue of convergence in molecular simluations by allowing the bath temperature to change

as the simulation proceeds[7]. At the same time this approach permits an analysis of

temperature dependence, which is especially interesting for comparisons with certain

experimental results[8] (e.g. melting curves, heat capacities). Although parallel temper-

ing has the drawback that unphysical replica trajectories are produced, the short physical
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Newtonian trajectories in between these exchanges can furnish useful information. If the

parallel tempering simulation is in equilibrium, these trajectories will also be in equilib-

rium, and will give us information about the dynamics of the system at the respective

temperatures.

Markov models provide a way to model the slow conformational dynamics of

biomolecules such as peptides and proteins based on short simulations [9–12]. In these

models, generally, conformational states are envisioned as disjoint, but connected re-

gions of configurational space. The biomolecule spends long times within individual

regions before undergoing rapid stochastic transitions between regions. If a separation

of timescales exists between fast motions within a region and slow (i.e. infrequent) transi-

tions between regions, the inter-state dynamics can be well described by a Markov Model

in discrete timesteps τ , where the coarse graining in time is necessary since the discretiza-

tion in space prohibits us from trading arbitrarily fast relaxation processes. If the system

is partitioned into its metastable states, τ is related to the time required to overcome inter-

nal barriers within each conformational state. However, it has been shown recently that

τ can be reduced (and the quality of the model is enhanced) by using additional states

which are no longer metastable[13].

Recently, Buchete and Hummer have constructed Markov models using the short

physical trajectories generated from parallel tempering simulations[14], allowing both

the thermodynamics and kinetics to be modeled over the range of temperatures sim-

ulated. However, if a complete description of dynamics across the entire thermally-

accessible configurational space is desired, one quickly runs into problems if ise is made

of trajectories only from the temperature of interest as some states that are sampled at

other temperatures may not be well sampled at the temperature of interest[14]. Fur-
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thermore, independently of issues of temperature dependence, the configurational space

spanned over the full range of temperatures simulated is larger than that at any single

temperature. Hence, one would like to make use of the data collected at all temperatures

to characterize the kinetic behavior in all regions sampled over the full range of temper-

atures spanned by the parallel tempering simulation. This approach resembles that of

equilibrium reweighting.

Here, we propose an approach for integrating data from all temperatures by mak-

ing use of dynamical reweighting[15], allowing a continuous estimate of the transition

probabilities at any temperature without requiring the assumption of any kinetic model

(such as Arrhenius kinetics[12]) and taking advantage of the increased transition rates at

higher (or for transitions with entropic barriers, lower) temperatures. Reweighting meth-

ods (such as multiple histogram reweighting[16, 17], WHAM[18, 19] and MBAR[15]) al-

low the use of samples collected from multiple distributions to provide an improved

estimate of the expectation value of some property at the distribution of interest, and

have been used extensively in the analysis of equilibrium thermodynamic properties in

replica-exchange simulations[20].

Dynamical reweighting has recently been proposed as a way of estimating dynami-

cal properties (such as correlation functions) using an asymptotically optimal estimator,

and also provides an estimate of the statistical error[21]. Here, we show how dynami-

cal reweighting can be used to estimate transition probabilities (and their statistical un-

certainties) as a smooth function of temperature, making use of data from all tempera-

tures. This has the advantage of producing estimates of transition probabilities at any

temperature and permitting the computation of properties that depend on derivatives

with respect to temperature (e.g. heat capacities), although the quality of this estimate
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will clearly depend on the number of times the transition is observed at “nearby” tem-

peratures.

We illustrate this approach for the standard test case of the terminally-blocked alanine

dipeptide in explicit solvent. A Markov model constructed from short (6 ps) trajectories

from each state has been previously shown to describe the kinetics of this system accu-

rately at 302K[11]. The dipeptide system presents a challenge for estimators based on

individual temperatures, because states exist with very high free energies relative to the

most populated states, and these are poorly sampled at temperatures near 300 K, even

though they dominate the long-time relaxation kinetics at this temperature. Finally, we

determine whether using all the data using reweighting produces substantially improved

kinetic models at this particular temperature and across the full range of temperatures in

the parallel tempering simulation.

This paper is organized as follows: First we review the theory behind Markov models

of multistate conformational dynamics. We then show how dynamical reweighting can

be used to estimate temperature-dependent transition probabilities and rates for a given

state decomposition. Finally, we illustrate the method by applying it to a six-state decom-

position of an MD simulation of the terminally-blocked alanine dipeptide, and compare

the results to different Bayesian estimates of transition probabilities obtained from a sin-

gle temperature alone.
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THEORY

Markov Models

Let Ω be the configuration space with a complete decomposition into M disjoint sets

Γi ∈ Ω such that

M⋃
i=1

Γi = Ω, Γi ∩ Γj = ∅, ∀i 6= j; i, j ∈ {1, . . . ,M}. (1)

For convenience we also define indicator functions χi ∈ {0, 1} by setting

χi(q) =


1 if q ∈ Γi

0 else

(2)

i.e., the function equals one if q belongs to set i and zero otherwise. Based on this dis-

cretization of state space we can define a (row-stochastic) transition matrix T with condi-

tional probabilities of jumping from state i to state j after a specified lagtime τ by setting

Tij(τ) := P(χj(q(t+ τ)) = 1 | χi(q(t)) = 1), (3)

which then propagates a probability distribution p ∈ [0, 1]M with time step τ by

p(t+ τ) = p(t)T(τ). (4)

We aim here to construct a time- and space-discrete Markov model that approximates the

long-time dynamics of the system by virtue of

p(t+ kτ) ≈ p(t)Tk(τ). (5)

Eq. 5 is only an approximation due to the introduction of the coarse-graining Γ. It has

been shown [13], that the approximation error by the discretization Γ can be made arbi-

trarily small, by either choosing more states or increasing the underlying lagtime τ . Thus
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with an appropriate choice of states we can ensure a good approximation by a time- and

space-discrete Markov model. Although this is a crucial step, the process of actually

finding an optimal decomposition of state space is beyond the scope of this paper and

discussed elsewhere [10, 22].

Estimating transition probabilities vs estimating transition rates

In many studies coarse-grained dynamics is formulated with the Master equation

ṗ(t) = p(t) K (6)

with a rate matrix K. While T(τ) can be straightforwardly estimated from a series of

observed transitions at time step τ , K cannot because the inversion of the equation

T(τ) = exp(τK) (7)

is not unique for stochastic matrices unless T(τ) is positive definite, and even then it

is numerically unstable. In the following we focus on the estimation of time-discrete

transition probabilities.

Estimation from time-discrete trajectories

Consider a trajectory q(t) sampled at time intervals ∆t and let τ be an integer multiple

of ∆t. We introduce τ∆ = τ/∆t ∈ N and L∆ = L/∆t ∈ N and define a time discrete

trajectory q ∈ ΩL∆+1

qi = q(i∆t) ∈ Ω, i ∈ {0, . . . , L∆} (8)

and the count matrix N(τ) of independent observed transitions by

Nij(τ) =
1

τ∆

L∆−τ∆∑
n=0

χi (qn)χj (qn+τ∆) (9)
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Assuming Markovianity, the likelihood that a given transition matrix produces the ob-

servations stored in the count matrix N is

L(T) = P(N|T) =
M∏
i,j=1

T
Nij

ij . (10)

As a representative we choose the unique transition matrix T̂ which maximizes this like-

lihood :

T̂ij = [argmax L(T)]ij =
Nij(τ)∑
k

Nik(τ)
. (11)

Alternatively, we can use the state-to-state time-correlation function Cij(τ) given by

Cij(τ) ≡ 〈χi(0)χj(τ)〉 (12)

which can be estimated in a similar fashion

Ĉij(τ) =
1

L∆ − τ∆

L∆−τ∆∑
n=0

χi(qn)χj(qn+τ∆) (13)

=
τ∆

L∆ − τ∆

Nij. (14)

The present dynamical model is based on Hamiltonian dynamics, which is time re-

versible and thus equilibrium molecular dynamics fulfills detailed balance in state space.

Consequently, for trajectories that sample from equilibrium, the correlation matrix will

converge to a symmetric form Cij(τ) = Cji(τ). In this case, we can use the estimator

Ĉij =
τ∆

2(L∆ − τ∆)
(Nij +Nji) (15)

and write the transition matrix in terms of the correlation matrix C as

T̂ij(τ) =
Ĉij(τ)∑
k

Ĉik(τ).
(16)
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Transition probabilities from dynamical reweighting

We now demonstrate how transitions observed at high temperatures can be used to

infer knowledge about the transition probabilities at lower temperatures: For a canonical

ensemble at inverse temperature β = (kBT )−1 the state-to-state correlation functions can

be expressed as Boltzmann-weighted expectation functions

Cij(τ ; β) =
1

Z(β)

∫
dq(0)dp(0) exp (−βH(q(0),p(0))) (χi(q(0))χj(q(τ))) (17)

where Z(β) is the complete partition function of both kinetic and potential part.

Suppose we have a set of Nk Hamiltonian trajectories zkn(t), n = 1, . . . , Nk, t ∈ [0, T ],

in which the initial phase space points zkn(0) are sampled from canonical (NVT) dis-

tributions at corresponding inverse temperatures βk, k = 1, . . . , K. By the application

of dynamical reweighting[15] , a correlation function Cij(τ ; β) can be estimated using the

entire set of trajectories at all temperatures as

Ĉij(τ ; β) ≈
K∑
k

Nk∑
n

wkn(β) · Ĉ(kn)
ij (τ) (18)

where the individual microcanonical contributions to the correlation functions are given

by Eq. (15)

Ĉ
(kn)
ij =

τ∆

2(L∆ − τ∆)

(
Nkn
ij +Nkn

ji

)
(19)

The row-stochastic transition matrix estimate T̂(τ ; β) is then estimated from (16)

T̂ij(τ ; β) =
Ĉij(τ ; β)∑
k

Ĉik(τ ; β)
(20)

As Ĉ(τ ; β) is symmetric by construction, T̂(τ ; β) will be reversible.

The normalized trajectory weights wkn(β) are specified in terms of unnormalized

10



weights, which can be computed by

wkn(β) = w̃kn(β)/
K∑
k=1

Nk∑
n=1

w̃kn(β) (21)

w̃kn(β) =

[
K∑
k′=1

Nk′ exp[f̂k′ − (β − βk′)Ekn]

]−1

(22)

where Ekn ≡ H(zkn(0)) denotes the total energy of the trajectory, which is constant over

trajectories for Hamiltonian dynamics. The dimensionless free energies f̂i = − lnZi + c

are determined by the solution of a set of self-consistent equations

f̂i = − ln
K∑
k=1

Nk∑
n=1

w̃kn(βi), ∀ i ∈ {1, . . . , K} (23)

which can be obtained efficiently by a number of means [15], although it is often neces-

sary to work with logarithmic representations to avoid numerical instability. A complete

derivation of all expressions above is presented in Ref. [21].

Estimation of uncertainties in transition probabilities

The statistical uncertainty in Ĉab(τ, β) can be estimated in a straightforward manner

using the machinery of MBAR [15]. We following the derivation presented in [21] and

first reindex k and n in the datasets {zkn, Ekn, Ĉab,kn} by replacing it with one single index

n = 1, . . . , N , where N =
∑K

k=1Nk and a, b = 1, . . . ,M with M = 6 being the number of

states in the model considered. This results in the datasets {zn, En, Ĉab,n}.

We form the N × (K + 1 +M2) matrix Wnk such that

Wnk =



exp[−βkEn] k = 1, . . . , K

exp[−βEn] k = K + 1

Ĉab,n exp[−βEn]
k = K + 1 + a(M − 1) + b,

a, b = 1, . . . ,M

(24)
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The uncertainty of the transition probabilities Tij(Ĉ11, . . . , ĈMM) can then be estimated by

δ2Tij ≡
〈

(Tij − 〈Tij〉β)2
〉
β

≈
M∑
a=1

M∑
a′=1

M∑
b=1

M∑
b′=1

[
∂Tij

∂Ĉab

] [
∂Tij

∂Ĉa′b′

]
δĈabδĈa′b′ (25)

where the covariance of the estimates Ĉab and Ĉa′b′ can be estimated as

δĈabδĈa′b′ ≈ Ĉab Ĉa′b′ [Θ̂K+1,K+1 + Θ̂K+1+a(M−1)+b,K+1+a′(M−1)+b′

− Θ̂K+1,K+1+a′(M−1)+b′ − Θ̂K+1+a(M−1)+b,K+1] (26)

with covariance matrix Θ̂ = [(WTW)+−N]+ and N = diag(N1, . . . , NK , 0, . . . , 0). The []+

here denotes the generalized inverse. Using Eq. (3) the sensitivity of Tij to the correlation

Ĉab is given by

∂Tij

∂Ĉab
=
δajδbi + δaiδbj − δab

Ĉi
− Ĉij (−Mδab + δai + δbi)

Ĉ2
i

, (27)

leading to a complex but still enumerable expression for the diagonal entries in the co-

variance matrix of transition probabilities δ2Tij . A more thorough derivation of the above

can be found in [15, 21].

Modified parallel tempering protocol

By using a modified parallel tempering protocol, a set can be generated of Hamilto-

nian trajectory segments zkn(t) of uniform length T ≥ τ the initial phase space points

zkn(0) of which are sampled from the canonical (NVT) ensemble at corresponding in-

verse temperatures β1, . . . , βK .

We start by assuming that some process was used to generate the initial phase space

points zk0(0) from equilibrium at each corresponding inverse temperature βk

zk0(0) ∼ [Z(βk)]
−1 e−βH(zk0(0)) (28)

12



This initial phase space point generation maz be by menans, for example, of a standard

parallel tempering protocol, or by running the modified protocol for a number of itera-

tions starting from a single configuration.

Consider iteration n of the algorithm. For each temperature index k = 1, . . . , K, Hamil-

ton’s equations of motion are propagated using a symplectic integrator to generate tra-

jectories of zkn(t) of length T . Finally, we propose exchanges[11] between the final con-

figurations zin(T ) and zjn(T ) of neighboring temperatures βi and βi±1, starting from the

highest temperature down to the lowest one in odd iterations and in reverse order in even

ones. The Metropolis-like probability[7] of accepting or rejecting the exchange depends

on the final potential energies of the configurations Ui and Uj with

Pexch(Ui, βi;Uj, βj) = min {1, exp[−(βi − βj)(Uj − Ui)]}

Regardless of whether the exchange is accepted or rejected, we reassign the velocities

according to the Maxwell-Boltzmann distribution at the new (old) temperatures, and

denote the new phase space points from which the next iteration can be carried out as

zk(n+1)(0) (see proof in Appendix). This satisfies the conditions defined by Okamoto[7]

in order for the kinetic energies to not appear in Pexch. The reason for reassigment of ve-

locities instead of rescaling is that, when using Hamiltonian trajectories no thermostating

would otherwise take place.

Bayesian estimate of transition probabilities from a single temperature

To analyze how the combination of data from all temperatures reduces the uncertainty

in the estimation of the transition matrix estimates we compare the present method to

two Bayesian methods of error estimation working on data only at a single temperature.
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Both Bayesian methods sample transition probabilities or rates according to the same

likelihood function, but employ different proposal steps and, more importantly different

prior probability distributions.

Let Nij(τ, β) be the transition counts from all trajectories at inverse temperature β.

Then the a posteriory probability of transition matrix Tij given this observation is

P(T|N) ∝ P(T) P(N|T) = P(T)
∏
i,j∈S

T
Nij

ij . (29)

As the prior P(T) we choose a Dirichlet distribution for each row which adds no addi-

tional observations to the likelihood probability

P(T ) ≡
∏
i,j∈S

T−1
ij . (30)

Furthermore, we restrict ourselves to transition matrices that fulfill detailed balance, i.e.,

are reversible with respect to the stationary distribution π:

πiTij = πjTji (31)

Here, the distribution in Eq. (29) was sampled using a Markov chain Monte-Carlo pro-

cedure described in Ref. [23]. The approach proposed in Ref. [14] does not estimate the

transition probabilities directly, but uses a likelihood function based on parameters of a

reversible rate matrix K with the corresponding likelihood

P(K|N) ∝ P(K)
∏
i,j∈S

exp (τK)
Nij

ij (32)

and the detailed balance constraint

πiKij = πjKji. (33)

The choice of parametrization for K in Ref. [14] stores the logarithms of the upper-right

triangular matrix (without diagonal entries) and the equilibrium distribution, thus assur-

ing a rate matrix with negative eigenvalues and also positive off-diagonal rates. After
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Transition Matrix Estimation [23] [TE] RED

Rate Matrix Estimation [14] [RE] GREEN

Dynamical Reweighting [21] [DR] BLUE

Shooting Trajectories at 302K [11] [ST] BLACK

TABLE I: Table of methods used for transition probability or rate estimation with their corre-

sponding abbreviations and colors used consitently thoughout this paper

sampling rate matrices with a Metropolis-Monte Carlo scheme the related set of transi-

tion matrices with the lagtime τ is computed by

T = exp (τK) (34)

All methods with their abbreviations and colors used consistently in the text and figures

in this article are listed in Table I Do we really need this?.

APPLICATION TO TERMINALLY-BLOCKED ALANINE DIPEPTIDE

System Setup

To illustrate the dynamical reweighting method described above, we apply it to es-

timate transition probabilities between conformational states for the terminally-blocked

alanine peptide (Ace-Ala-Nme).

For the analysis a parallel tempering dataset for the terminally-blocked alanine pep-

tide in a box of 431 TIP-3P water molecules was generated as described previously [11].

The parallel tempering simulation was conducted according to the modified protocol de-

scribed in the theory section generating an ensemble of 501 Hamiltonian trajectories of 20
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FIG. 1: Distribution of energies in the trajectories in kJ/mol for all 40 temperatures. Highlighted

are temperatures 302 K, 426 K and 600 K to allow reference with convergence properties in Figure

8. The temperature spacing was chosen as exponential so as to provide an average overlap of

∼ 50% between neighboring temperatures.

ps length at each of 40 temperatures spanning 273 to 600 K, with peptide configurations

stored every 0.1 ps. The temperatures were exponentially spaced, thus providing good

overlap in the potential and total energy distributions between neighboring temperatures

and resulting in an average exchange acceptance probability of ∼ 50% (see Figure 1).

A velocity Verlet integrator[24] (with bonds involving hydrogen atoms constrained) was

used to produce the dynamical trajectories. The fluctuations in total energy over the 20

ps trajectories was minimal and the drift negligible (see Table II). The production run

followed a 1 ns equilibration phase, ensuring that all initial configurations were drawn

from equilibrium at their respective temperatures. Previous work has demonstrated that

a Markov model based on a six-state decomposition as depicted in Figure 2 can accu-

rately describe the dynamics of this peptide for lagtimes longer than τ = 6 ps[11]. In

order to conveniently directly apply the reweighting procedure we used the same state
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Temp [K] RMS [J/mol] rel. RMS Drift [J/(ps mol)] rel. Drift [1/ps]

302 214.844± 0.648 6.41 · 10−5 0.608± 0.249 1.82 · 10−7

600 26.617± 0.083 1.67 · 10−5 1.061± 0.432 6.66 · 10−7

TABLE II: RMS and Drift of Energies over 20ps trajectories

decomposition for all temperatures.

To evaluate the accuracy of the methods for estimating transition probabilities, we

compare the separate estimates from (DR),(TE) and (RE) to a reference simulation of

6x10000 short, 10 ps trajectories shot out of the equilibrium of each state at 302 K. The

PT simulation in comparison furishes a total of 1500 independent transitions shared be-

tween all states at that temperature, which means that the shooting dataset has 40 times

more observations compared to the PT simulation, thus providing a statistically reliable

reference.

The system is small enough such that a reasonable statistics can be obtained with

moderate CPU requirements while at the same time being complex enough such that

some transitions (and even some states) are sampled only at high temperatures. In what

follows, the results from the Markov model obtained from the dynamical reweighting

method are compared to the model computed by Bayesian analyses using data from a

single temperature only.

Estimated transition probabilities as a function of temperature

A comparison of the transition probabilities between all 6x6 pairs of states as a func-

tion of temperature is given in Figure 3. The blue solid lines give the estimates from
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Fig. 1. Potential of mean force and state boundaries. Left: The terminally blocked alanine
peptide with (φ, ψ) torsions labeled. Right: The potential of mean force in the (φ, ψ) torsions at
302 K estimated from the parallel tempering simulation, truncated at 10kBT (white regions), with
reference scale (far right) labeled in units of kBT . Boundaries defining the six manually identified
states are superimposed and the states labeled.

Swope, Pitera, and Suits in the special case that the selection cells from which sets
of simulations are initiated are coincident with the states [49].

We do not expect dynamics of a macromolecule in solution to resemble a Markov
process for all observation intervals τ , as ballistic motion dominates on very short
times, and sufficient time must be allowed for collisions with the solvent and decor-
relation of the trajectory within a metastable state. Imperfect definitions of the
metastable states may also lead to non-Markovian behavior on short times [49]. At
sufficiently long intervals τ , however, we might observe that dynamics resembles a
Markov process. While it is impractical to test the condition of complete history
independence (see (2.1)), we can simply check the (weaker) condition imposed by the
Chapman–Kolmogorov equation (see (2.3)): For transition matrices constructed for
a given τ , we check whether (2.3) holds for several lag times n = 2, 3, 4, . . . to within
statistical uncertainty. If so, the Markovian model can be assumed to be a reasonable
model of dynamics.

3. Application to terminally blocked alanine peptide.

3.1. System setup and equilibration. Using the LEaP program from the
AMBER7 molecular mechanics package [6], a terminally blocked alanine peptide (se-
quence ACE-ALA-NME; see Figure 1) was generated in the extended conformation
with peptide force field parameters taken from the AMBER parm96 parameter set [23].
The system was subsequently solvated with 431 TIP3P water molecules [21] in a trun-
cated octahedral simulation box with dimensions chosen to ensure all box boundaries
were at least 7 Å from any atom of the extended peptide. All minimization and

FIG. 2: Terminally-blocked alanine potential of mean force and state boundaries. Left: The ter-

minally blocked alanine peptide with (φ, ψ) torsions labeled. Right: The potential of mean force

as a function of (φ, ψ) torsions at 302 K in units of kBT estimated from the parallel tempering

simulation using WHAM[18, 25], truncated at 10kBT (white regions). The six manually identified

states are labelled in black[11].

dynamical reweighting (DR)[11] using all available data at all temperatures as described

in the Theory section. To obtain the dimensionless free energy estimates f̂i we solved the

set of self-consistent equations in (23) with a relative convergence tolerance in the resid-

ual of 10−7. Transition probabilities were also estimated at one intermediate temperature

between each pair of simulated temperatures.

The red dashed lines in Figure 3 show transition probabilities for the reversible sin-

gle temperature estimation of transition matrices (TE)[23]. For each of the 40 tempera-

tures the sampler was run to collect a total of 10,000 samples. For the sampling of re-

versible rate matrices (RE), depicted by dotted green lines, the sampling as proposed in

Ref. [14] was used. After an equilibration phase again a total of 10,000 samples were

stored for each temperature separately. For the convergence of both methods see sup-

plementary Figure 8. The black cross-hair in Figure 3 refers to the reference values at
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302 K. Qualitatively all methods agree, especially in the lower energy states (1 to 4).

However, the reweighting estimate, which uses the combined data from all temperatures,

has smaller uncertainties than the estimators that use only individual temperatures. The

overall agreement with the reference simulation is best for dynamical reweighting. The

two Bayesian methods have almost identical predictions for states with many observed

transitions, which is as expected since they use the same likelihood functions and the

influence of the choice of the prior probaility distribution is minimal here. However, the

differences in the states with few observations (states 5 and 6) arise from the influence of

different prior probability distributions.

Detailed comparison of transition probability estimates at 302 K

For a detailed comparison the Bayesian analysis method with reversibility constraint

for transition matrices[23] (TE) was applied to the set of shooting trajectories at 302 K as

well to generate an estimate of reference transition probabilities obeying detailed balance.

The results of the comparison at 302 K between the different estimation methods are

shown in Figure 4. All colors are the same as in Figure 3.

For transitions that are not sampled at certain temperature ranges, the maximum-

likelihood estimates obtained with the present reweighting method are close to zero (see

Figure 3). Generally, for transition probabilities close to zero or one the normal distribu-

tion is a poor approximation to this highly asymmetric distribution and therefore leads

to too large uncertainties (see Figure 4) in cases. Thus we suspect that reweighting will

significantly overestimate the uncertainty in these cases since this is derived from the

locally estimated Hessian of the probability distriution.
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FIG. 3: Comparison of all 6x6 inter-state transition probabilities as a function of temperature

with error bars showing 95% confidence intervals. Blue lines show the transition probabilities

estimated using the present method (DR). Red lines show the estimates from transition matrix

estimation (TE) computed from only single temperature data. The black cross-hair indicates the

reference using the shooting trajectory data (ST) at 302K only. It is apparent that the reweighting

method provides useful and bounded estimates across the whole temperature range even at tem-

peratures where the corresponding transition was not observed (e.g., at transitions from state 5

and 6 for low temperatures). The Bayesian counting method without reweighting is very noisy

and not useful in situations at low temperatures for transitions with poor statistics.

The reweighting method performs overall very well compared to the single-

temperature estimates. Even transition probabilities that are sampled very poorly at

302 K (such as for transitions involving states 5 and 6) have a good agreement with the
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Variance in Estimation

(DR) (TE) (RE)

Low-energy states (1 to 4) 0.007 0.023 0.055

High-energy states (5 and 6) 0.140 0.267 0.288

All Transitions 0.079 0.151 0.167

TABLE III: Standard Deviation in the absolute difference of transition probabilities compared to

the reference simulation (ST) at 302K for the three methods of Markov model estimation and high-

and low-energy subsets of transitions. Dynamical reweighting (DR) shows the smallest spread in

deviation from the reference simulation (ST).

reference values at 302 K. Table III shows the standard deviation in the absolute differ-

ence of the estimation methods compared to the reference simulation (ST). The dynamical

reweighting has a smaller deviation than both Bayesian methods for both high- and low-

energy states.

Comparison of temperature dependence of eigenvalues

Dynamical reweighting can also be applied to estimate properties derived from the

transition probabilities. For example, the eigenvalues λi of a transition matrix are related

to the timescales of processes t∗i indicated by the corresponding eigenvector by

t∗i = −τ/ log(λi). (35)

Hence, eigenvalues close to one imply slow processes i.e., those we are mostly interested

in. We investigated the dependence of the eigenvalues on the temperature in the present
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FIG. 4: Detailed Comparison of transition probabilities at 302 K. Red: Single temperature esti-

mation of transition matrix (TE), Green: Single temperature estimation of rate matrix (RE), Blue:

dynamical reweighting estimation (DR), Black: reference using shooting trajectories (ST).

system. Figure 5 compares estimates for the second and third eigenvalue λ2, λ3 of the

transition matrix estimated at each temperature with the different methods. The vari-

ance in the TE case was estimated from the set of eigenvalues of each sampled transition

matrix. To estimate the errors of DR we used linear error propagation of the uncertainties

in the transition matrix to the errors in the eigenvalues [26]. At low temperatures, the sec-

ond eigenvalue is estimated correctly by dynamical reweighting (DR), but not by single-

temperature estimations. This is due to the fact that the transition process corresponding

to this slowest timescale is not sampled at these low temperatures. Thus, estimates us-

ing only data collected at that temperature are errorneous. The agreement of dynamical
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FIG. 5: Red: Single temperature estimation of transition matrix (TE), Blue: dynamical reweighting

estimation (DR), Black: reference using shooting trajectories (ST). Left: Comparison of the second

eigenvalue vs temperature, Right: Comparison for third eigenvalue. The third eigenvalue is well

predicted by both estimation methods at all temperatures, while the second eigenvalue at low

temperatures is only detected by dynamical reweighting.

reweighting timescales with the reference simulation is very good, although the error

bars of the reweighted estimate are still very large compared the good agreement of the

expectation values with the reference. We assume that the inappropriate approximation

of the asymmetric distributions with normal distributions used for the linear error prop-

agation lead here as well to an overestimation of the errors in the transition probabilities.

The third largest eigenvalue is predicted by both methods equally well (Fig. 5). Al-

though this was found as the second-largest eigenvalues in the single-temperature esti-

mates, which missed sampling the slowest process completely. A direct comparison of

the predicted eigenvectors (Fig. 6) reveals that the slowest process (given by the second

eigenvector of the reference transition matrix (ST)) is not detected by any of the single

temperature methods. However, Dynamical reweighting successfully finds all the pro-

cesses, although the matching eigenvalues and thus timescales are mixed up for faster
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processes. The comparison of Markov Models is a nontrivial task, for which we used a

symmetrized form of the transition matrix Tsym and expand it into a sum of rank one

matrices Qi spanned by an outer product of the eigenvectors of Tsym by

Tsym = diag(π1/2) T diag(π−1/2) (36)

= R diag(π1/2) RT (37)

=
M∑
i=1

λiri r
T
i (38)

=
M∑
i=1

Qi. (39)

Here, π = {π1, . . . , πM} is the equilibrium distribution, R = {r1, . . . , rM} the matrix of

eigenvectors of Tsym and λi the corresponding eigenvalues, which are equal to the eigen-

values of T. Each of the submatrices Qi can be considered as a part of the full transition

matrix working on a timescale given by the respective eigenvalue. These subprocesses

are similar if their eigenvectors match, as can be determined by the scalar product.

Contributions from different temperatures to the estimates of expectation values

The contribution of each trajectory snippet to the estimation of any expectation value

at any given temperature is illustrated in Fig. 7. The left plot shows the average normal-

ized weights

w̄kl =
1

Nk

∑
n

wkn(βl) (40)

given in (22), where, on average, seven temperatures contribute more than 1% to the

expectation. The right hand plot illustrates the contribution to the transition counts N65
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FIG. 6: Similarity matrices (scalar product) of eigenvectors from symmetrized transition matrices

estimated with different methods (ST, DR, TE, RE) at 302 K. The eigenvectors indicate the states

involved in the process, thus high similarity (red) indicates a good approximation to the reference

process (ST). Eigenvectors are sorted as descending eigenvalues. The 2nd eigenvector is found

correctly only by dynamical reweighting, meaning that the single temperature estimations are

unable to correctly predict the slowest process at 302 K.

for the transition 6→ 5 given by

1

Nk

Nk∑
n=1

w̃kn(βl)Ĉ
kn
ij , (41)

with k indicating the temperature contributed from, l the temperature estimated at and

i, j representing the transition i → j. As expected most information contributing to a

specific temperature estimate is always contained in the simulations performed at the

nearest temperatures.

DISCUSSION

The present method provides a means of generating an estimate of transition proba-

bilities from parallel tempering MD simulations of biomolecules as a continuous function
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FIG. 7: Left: Relative contribution w̄kl in Eq. 40 to the estimates at inverse temperature βk from

simulations at inverse temperature βl averaged over all trajectories at the same temperature. On

average, 7 temperatures contribute more than 1% each to the estimation. Right: Contributions to

the estimation of transition counts for the transition 6→ 5. The sum of one row equals to the total

counts estimated by the method at the desired temperature.

of temperature. Even at intermediate temperatures not simulated at, the error bars are

much smaller then obtained with either single-temperature methods. At low tempera-

tures, where some transitions are not observed at all, non-zero transition probabilities

can still be estimated.

Additionally, the method allows to differentiation of the estimates of transition prob-

abilities with respect to the inverse temperature β, because the trajectory weights wkn(β)

are differentiable functions with respect to temperature (22). This allows, in principle,

thermodynamic properties to be computed (e.g., heatcapacities), although these quanti-

ties are in general numerically difficult to handle, since the trajectory weights can easily

span hundreds of orders of magnitude.

The method requires a set of parallel tempering simulations with a modified protocol

to produce a series of NVE trajectories with initial configurations drawn from the NVT

ensemble. For very large systems, the PT simulation might not be long enough to glob-
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ally converge. In this case we cannot use reversible counting as in Eq. (19) to enhanced

the statistics, but the method can still be applied without the detailed balance constraint

as long as we draw from equilibrium inside each set Γi. The PT requirement of good

exchange rates also ensures good overlap in the contribution to the dynamical reweight-

ing for neighboring temperatures. The approach itself is not limited to Hamiltonian

trajectories but can be extended to other dynamics as long as an analytical connection

between the weighting factors and the temperature exists (e.g. Boltzmann distributed

probabilities)[21]. For example, this is the case for Brownian and Langevin dynamics.

The degree to which the use of parallel tempering can speed up convergence is a mat-

ter of discussion. [JCS] Needs: References While activated processes will be sampled

more often at higher temperatures, entropic barriers become less and less probable to

pass, effectively limiting the possible increase in simulation speed. The same problem

limits the range of contributing temperatures here, too. Nevertheless, information about

activated processes is transferred from higher to lower temperatures and, for entropic

barriers from lower to higher temperatures. Transitions in the alanine peptide are domi-

nated by activated processes (i.e., enthalpic barriers).

Both single-temperature methods give quite similar results for transitions with good

statistics, differing mostly for transitions that have only rarely been sampled due pre-

sumably to the influence of different prior probability distributions. Surprisingly, the

Bayesian estimates provide a reasonable bound on transition probabilities to and from a

state even when the state is not even sampled. This is most likely due to the reversibil-

ity constraint, which seems to provide information even in cases where there are few

transitions to or from a state.

There is, however, a dependence on the prior, which leads to different predictions
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in cases where the state is not or only rarely sampled. The rate matrix estimation (RE)

assumes, in addition to the detailed balance constraint, positivity of all eigenvalues and

non-negative off-diagonal entries. The uniform distribution of parameters in logarithmic

space leads most likely to favoring of small transition probabilities in states with poor

transition statistics.

The way in ehich the transition probabilities are estimated in terms of equilibrium

correlation functions requires that the trajectory segments sampled during the parallel

tempering simulation are drawn from the equilibrium distribution and that the trajec-

tories to be reweighted are uncorrelated so as to permit an estimation of the statistical

error.

The predictions of mean values are very good, while the quality of the error estimation

is limited to a Gaussian approximation, which is problematic in cases where transition

probabilities are close to 0 or 1 and the probability distribution is thus very asymmetric.

Some combination of Bayesian and reweighting methods (such as T-WHAM[19]) may

provide the best of both types of estimators by yielding more accurate uncertainties at

the expense of introducing some bias from the introduction of energy histograms. Finally,

the enhanced estimates of mean values and their respective statistical uncertainties may

be used to guide subsequent (potentially adaptive) sampling strategies, as described in

Ref. [27].
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Proof that modified parallel tempering protocol generates canonical distribution

Here we prove that the modified parallel tempering protocol described in the theory

section samples from the canonical stationary distribution at all temperatures.

We define stationary distributions for momenta p and coordinates q in Cartesian space

<3N at inverse temperature β:

πp(p|β) = [P (β)]−1 e−βT (p) ; P (β) =

∫
dp e−βT (p)

πq(q|β) = [Q(β)]−1 e−βU(q) ; Q(β) =

∫
dq e−βU(q) (42)

where T (p) denotes the kinetic energy and U(q) the potential energy function. Suppose

we have two replicas the current phase space points of which are denoted by z1 = (q1,p1)

and z2 = (q2,p2), initially at equilibrium at their respective inverse temperatures β1 and

β2, such that

p1 ∼ πp(p1|β1) ; q1 ∼ πq(q1|β1)

p2 ∼ πp(p2|β2) ; q2 ∼ πq(q2|β2). (43)

We now consider what happens to the distributions of z1 and z2 after an exchange at-

tempt. Define “post-exchange attempt” coordinates and momenta for inverse tempera-
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ture β1:

q′1 ←


q1 with prob. 1− θ(q1, q2|β1, β2) (rejected)

q2 with prob. θ(q1, q2|β1, β2) (accepted)

p′1 ∼ πp(p
′
1|β1) (velocity randomization)

where the exchange acceptance probability θ(q1, q2|β1, β2) is given by

θ(q1, q2|β1, β2) = min{1, exp[−β1U(q2)− β2U(q1) + β1U(q1) + β2U(q2)} (44)

We now compute the distribution of q′1, the configuration supposedly at temperature β1

after the exchange attempt:

ρ1(q′1) =

∫
dq2 [1− θ(q′1, q2|β1, β2)]πq(q

′
1|β1)πq(q2|β2) +

∫
dq2 θ(q2, q

′
1|β1, β2)πq(q2|β1) πq(q

′
1|β2)

=

∫
dq2 [1−min{1, e−β1U(q2) e−β2U(q′

1) e+β1U(q′
1) e+β2U(q2)}] e

−β1U(q′
1)

Q(β1)

e−β2U(q2)

Q(β2)

+

∫
dq2 min{1, e−β1U(q′

1) e−β2U(q2) e+β1U(q2) e+β2U(q′
1)} e

−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)

=
e−β1U(q′

1)

Q(β1)
−min

{
e−β1U(q′

1)

Q(β1)
,
e−β2U(q′

1)

Q(β1)

Q(β1)

Q(β2)

}
+ min

{
e−β2U(q′

1)

Q(β2)
,
e−β1U(q′

1)

Q(β2)

Q(β2)

Q(β1)

}
= πq(q

′
1|β1)−min{πq(q′1|β1), πq(q

′
1|β2)}+ min{πq(q′1|β2, πq(q

′
1|β1)

= πq(q
′
1|β1) (45)

Therefore, after the exchange attempt, the new configuration q′1 is still at equilibrium at

the inverse temperature β1. (A similar series of steps can be applied for the temperature

β2.)

Again redrawing the momentum from a Maxwell-Boltzmann distribution at inverse

temperature β1 will, of course, not change the equilibrium distribution, and can be shown

to only support the canonical distribution at inverse temperature β1, and no other station-

ary distribution [28]. Evolution by Hamiltonian dynamics for any length of time does not
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alter the stationary canonical distribution [29]. Therefore, the proposed protocol samples

from the canonical distribution at the desired temperatures, provided sufficient time is

allowed for equilibration.

Convergence of transition probabilities in Bayesian Methods

The convergence of transition probabilities from the Bayesian sampling methods is

presented in figure 8 for various temperatures. Both methods converge after approxi-

mately 5000 samples.
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FIG. 8: 95% confidence intervals of Transition Probabilities sampled by the transition matrix

estimation (upper Plot) (TE) and rate matrix estimation (lower plot) (RE) versus number of drawn

samples. Color indicates performance by temperature. Blue: 273K, Yellow: 426K, Red: 600K.

After about 5000 samples the confidence intervals stabilize suggesting reasonably well sampled

transition probabilities.
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