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Parallel tempering (PT) molecular dynamics (MD) simulations have been extensively investigated
as a means of efficient sampling of the configurations of biomolecular systems. Recent work has
demonstrated how the short physical trajectories generated in PT simulations of biomolecules can be
used to construct Markov models describing biomolecular dynamics at each simulated temperature.
While this approach describes the temperature-dependent kinetics, it does not make optimal use of
all available PT data, instead estimating the rates at a given temperature using only data from that
temperature. This can be problematic, as some relevant transitions or states may not be sufficiently
sampled at the temperature of interest, but might be readily sampled at nearby temperatures. Further,
the comparison of temperature-dependent properties can suffer from the false assumption that data
collected from different temperatures are uncorrelated. We propose here a strategy in which, by a
simple modification of the parallel tempering protocol, the harvested trajectories can be reweighted,
permitting data from all temperatures to contribute to the estimated kinetic model. The method
reduces the statistical uncertainty in the kinetic model relative to the single temperature approach and
provides estimates of transition probabilities even for transitions not observed at the temperature of
interest. Further, the method allows the kinetics to be estimated at temperatures other than those at
which simulations were run. We illustrate this method by applying it to generating a Markov model
of the conformational dynamics of the solvated terminally-blocked alanine peptide.

INTRODUCTION

Biological macromolecules are not static structures,
but are driven by thermal motion and interactions with
their molecular environment, undergoing conforma-
tional fluctuations and changing conformational states.
The characterization of the statistical conformational dy-
namics of biomolecules is essential to understanding
how these molecules work as molecular machines.

Often, a separation of timescales of characteris-
tic dynamical relaxation times gives rise to the exis-
tence of metastable conformational states, such that the
biomolecule remains in any one of these states for a
long time before making a rapid transition to another
state. A wealth of experimental data now supports
the existence of such states, including NMR [1, 2], flu-
orescence emission [3, 4], energy transfer[5], correla-
tion spectroscopy [6], and non-equilibrium perturba-
tion experiments[4]. [ADD MORE CITATIONS !] Devel-
oping a quantitative understanding of what gives rise
to these conformational states and the interactions that
govern their transitions will provide insight into how
post-translational modification and non-covalent asso-
ciation can affect dynamics and function, and will have
a significant impact on our understanding of many bio-

logical processes, such as signaling events, enzyme reg-
ulation, allostery, and drug design for conformationally
flexible molecules.

Sampling the underlying phase-space by straight-
forward molecular dynamics simulation often suffers
from the problem that the timescales of conformational
changes are usually orders of magnitude larger than
simulation times accessible by available computational
ressources. In these cases the use of parallel tempering
molecular dynamics (PT) simulations has been an effec-
tive and thus popular approach to overcoming the issue
of convergence in molecular simluations, by allowing
replicas to heat up and overcome enthalpic barriers as
the simulation proceed while still sampling from an ap-
propriate equilibrium distribution [7] [CITE: More ref-
erences from theory paper]. At the same time this ap-
proach permits an analysis of temperature dependence
of properties of interest, which is especially important
for comparisons with certain experimental results[8]
(e.g. melting curves, heat capacities). Although paral-
lel tempering molecular dynamics produces unphysical
replica trajectories, the short physical trajectories in be-
tween these exchanges can provide useful dynamical in-
formation. If the parallel tempering simulation is well-
equilibrated, these initial configurations of the short tra-
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jectory segments will be sampled from the equilibrium
at their corresponding temperatures.

Markov models provide a way of modeling the slow
conformational dynamics of biomolecules based on
short simulations [9–17]. In these models conforma-
tional states are envisioned as disjoint but connected re-
gions of configurational space. The biomolecule spends
long times within individual regions before undergo-
ing rapid stochastic transitions between regions. If a
separation of timescales exists between fast relaxation
times within a region and slow equilibration between
regions, the inter-state dynamics can be well described
by a Markov model in discrete timesteps τ , where a
coarse graining in time is required as the discretization
in space prohibits the characterization of relaxation pro-
cesses faster than τ . If the system is partitioned into
its metastable states, τ is related to the time required
to overcome internal barriers within each conforma-
tional state. However, it has been recently shown that
even in the absence of many metastable states, a Marko-
vian model can well-approximate the dynamics at long
times, with this approximation error decreasing with in-
creasing number of states[18].

Recently, Buchete and Hummer have shown that both
thermodynamic and kinetic properties can be estimated
over the range of temperatures by constructing Markov
models using the short physical trajectories generated
from parallel tempering simulations[19]. However, if
a complete description of dynamics across the entire
thermally-accessible configurational space is desired,
one quickly runs into problems if use is made of trajecto-
ries only from the temperature of interest, as some states
that are sampled at other temperatures may not be well
sampled at the a single temperature[19]. One would like
to make use of the data collected at all temperatures to
characterize the kinetic behavior in all regions sampled
over the full range of temperatures spanned by the par-
allel tempering simulation in a manner similar to equi-
librium reweighting.[CITE: paper]

Here, we propose a method for integrating MD
data from all temperatures by making use of dynamical
reweighting[20], allowing a smooth, continuous and dif-
ferentiable estimate of the transition probabilities at any
temperature without requiring the assumption of any
kinetic model (such as Arrhenius kinetics[12]) and tak-
ing advantage of the increased transition rates at higher
(or, for transitions with entropic barriers, lower) tem-
peratures. Reweighting methods (such as histogram-
based[21–24] or histogram-free[25, 26]) allow the use of
samples collected from multiple distributions to pro-
vide an improved estimate of the expectation value
of some static property at the distribution of interest,
and have been used extensively in the analysis of equi-
librium thermodynamic properties in replica-exchange
simulations[27].

Dynamical reweighting has recently been proposed

as a way of estimating dynamical properties (such as
correlation functions) using an asymptotically optimal
estimator, and also provides an estimate of the statisti-
cal error[20]. Here, we show how dynamical reweight-
ing can be used to estimate transition probabilities (and
their statistical uncertainties) for the construction of a
Markov model as a smooth function of temperature,
making use of data from all temperatures. This has the
advantage of producing a useful Markov model at any
temperature containing the dependence of kinetic prop-
erties on temperature, and providing an assessment of
the error in the model.

We illustrate this approach for the standard test case
of the terminally-blocked alanine peptide in explicit sol-
vent. A Markov model constructed from short (6 ps)
trajectories from each state has been previously shown
to accurately describe the kinetics of this system at 302
K[11]. The peptide system presents a challenge for es-
timators based on individual temperatures, due to the
presence of highly metastable states with very high free
energies relative to the most populated states. These
states are poorly sampled at temperatures near 300 K,
even though their temporal behavior can dominate the
nonequilibrium relaxation kinetics at this temperature.
Finally, we determine whether using all the data us-
ing reweighting produces substantially improved ki-
netic models at this particular temperature and across
the full range of temperatures in the parallel tempering
simulation.

This paper is organized as follows: In Section we
review the theory behind Markov models of multi-
state conformational dynamics. We then show in Sec-
tion how dynamical reweighting can be used to es-
timate temperature-dependent transition probabilities
and rates for a given state decomposition. Finally, we
illustrate the method in Section by applying it to a
six-state decomposition of an MD simulation of the
terminally-blocked alanine peptide, and compare the re-
sults to the approach of Buchete and Hummer[19], in
which Bayesian estimates of transition probabilities are
obtained from a single temperature alone.

THEORY

Markov Models

Consider a system that evolves according to some sta-
tionary dynamical process. Let Ω be the configuration
space with a complete decomposition[16] into M dis-
joint sets Γi ⊂ Ω such that

M⋃
i=1

Γi = Ω; Γi ∩ Γj = ∅, ∀i, j ∈ {1, . . . ,M}, i 6= j. (1)
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For convenience we also define indicator functions
χi(q) ∈ {0, 1} for points in configuration space q ∈ Ω
by setting

χi(q) =

{
1 if q ∈ Γi

0 else
(2)

i.e., the function assumes the value of unity if q belongs
to set Γi, and zero otherwise. Based on this discretiza-
tion of state space, we can define a row-stochastic tran-
sition matrix T(τ) with conditional probabilities of find-
ing the system in state j at time τ after it was originally
in state i:

Tij(τ) = P (q(τ) ∈ χj | q(0) ∈ χi) (3)

=
〈χi(0)χj(τ)〉
〈χi〉

, (4)

and introduce χi(t) ≡ χi(q(t)), where the dynam-
ics is assumed to be governed by a stationary (time-
independent) process. We aim here to construct a
discrete-time, discrete-space Markov model that ap-
proximates the long-time dynamics of the system by
virtue of

p(t+ kτ) ≈ p(t)Tk(τ) (5)

with p being the projection of some continous distribu-
tion ρ(q) onto the discrete subsets Γi. Eq.5 is only an
approximation to the real dynamics due to the introduc-
tion of the coarse-graining Γ ≡ {Γ1, . . . ,ΓM} [16, 17]. It
has been shown [18] that the approximation error intro-
dueced by the discretization Γ can be made arbitrarily
small by either choosing more statesM or increasing the
underlying lag time τ . Thus, with an appropriate choice
of states, we can ensure an approximation of the true
dynamics by a discrete-time and discrete-space Markov
model to the desired precision. Although this is a cru-
cial step, the process of finding an optimal decomposi-
tion of state space and appropriate lag time τ is beyond
the scope of this paper, and has been discussed at length
elsewhere [10, 13].

Estimating transition probabilities vs estimating transition
rates

In many studies coarse-grained dynamics is equiva-
lently described by the continuous-time master equation

ṗ(t) = p(t) K (6)

where K ∈ Rm×m denotes the rate matrix. Kij is the rate
associated with the transition i → j, with Kij > 0 for
i 6= j and Kii = −

∑
j 6=iKij [19, 28, 29]. While T(τ) can

be straightforwardly estimated from a trajectory using
Eq. 4, K cannot because inversion of the equation

T(τ) = exp(τK) (7)

is not unique for stochastic matrices unless T(τ) is posi-
tive definite and reversible. The dynamics is only repre-
sented correctly for times larger than some Markov time
τ∗ and suffers from numerical issues as well. In the fol-
lowing we focus on the estimation of time-discrete tran-
sition probabilities. One potential solution, therefore, is
to use Bayesian inference to estimate the likely rate ma-
trix given data[9] - we discuss this issue further in Sec-
tion .

Estimation from time-discrete trajectories

Considering a trajectory q(t) sampled at time inter-
vals ∆t we introduce τ̂ ≡ τ/∆t ∈ N and L̂ ≡ L/∆t ∈ N
and define a temporally discrete trajectory q by

qi = q(i∆t) ∈ Ω, i ∈ {0, . . . , L̂} (8)

and the fractional count matrix B(τ) of independent ob-
served transitions by

Bij(τ) =
1

τ̂

L̂−τ̂∑
n=0

χi (qn)χj (qn+τ̂ ) (9)

If the lagtime τ is large enough, the dynamics in the dis-
crete trajectory can assumed to be Markovian [CITE: pa-
pers on lagtime and markovianity], and the likelihood
that a given transition matrix produces the observations
stored in the count matrix B is given by the multinomial
distribution

L(T) = P(B|T) ∝
M∏

i,j=1

T
Bij

ij . (10)

As a representative, we choose the unique transition ma-
trix T̂(τ) which maximizes this likelihood:

T̂ij(τ) = [argmax L(T)]ij =
Bij(τ)∑
k

Bik(τ)
. (11)

Alternatively, we can use the state-to-state time-
correlation function Cij(τ) [16, 17] given by

Cij(τ) ≡ 〈χi(0)χj(τ)〉 (12)

which can be estimated in a similar fashion

Ĉij(τ) =
1

L̂− τ̂

L̂−τ̂∑
n=0

χi(qn)χj(qn+τ̂ ) =
τ̂

L̂− τ̂
Bij .(13)

Although dynamical reweighting can be formulated for
different dynamical models[20], the present approach
is based on Hamiltonian dynamics in the canonical
ensemble[20], which is time-reversible, and thus equi-
librium molecular dynamics fulfills detailed balance in
state space. Consequently, for trajectories sampled from
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equilibrium, the correlation matrix will have a symmet-
ric form Cij(τ) = Cji(τ). In this case, we can use the
estimator

Ĉij =
τ̂

2(L̂− τ̂)
(Bij +Bji) = Ĉji (14)

and write the transition matrix estimate T̂(τ) in terms of
the correlation matrix estimate Ĉ(τ) as

T̂ij(τ) =
Ĉij(τ)∑
k

Ĉik(τ)
(15)

which will also fulfill detailed balance.

Transition probabilities from dynamical reweighting

We now demonstrate how transitions observed at
all temperatures can be used to infer transition prob-
abilities at any temperature of interest. For a canoni-
cal ensemble at inverse temperature β ≡ (kBT )−1 the
state-to-state correlation functions can be expressed as
Boltzmann-weighted expectation functions

Cij(τ ;β) =

1

Z(β)

∫
dq0dp0 exp (−βH(q0,p0))χi(q0)χj(qτ ) (16)

where Z(β) is the complete partition function of both
kinetic and potential energies.

Suppose we have a set of Nk Hamiltonian trajecto-
ries zkn(t), n = 1, . . . , Nk, t ∈ [0, T ], in which the ini-
tial phase space points zkn(0) are sampled from canon-
ical (NVT) distributions at corresponding inverse tem-
peratures βk, k = 1, . . . ,K. By the application of dy-
namical reweighting[26] , a correlation function Cij(τ ;β)
can be estimated using the entire set of trajectories at
all temperatures. For the procedure the association
of a trajectory with the temperature it was sampled
at — although being counter-intuitive — is no longer
relevant[26], which allows for convenient indexing of
all trajectories zn by one single index n = 1 . . . N with
N ≡

∑K
k=1Nk obtaining

Ĉij(τ ;β) ≈
N∑
n=1

wn(β) · Ĉ(n)
ij (τ) (17)

where the individual trajectory contributions to the cor-
relation functions Ĉij(τ, β) are given by Eq. (14)

Ĉ
(n)
ij =

τ̂

2(L̂− τ̂)

(
B

(n)
ij +B

(n)
ji

)
(18)

with B(n) being the (possibly fractional) count matrix
and Ĉ(n) the correlation matrix computed from trajec-
tory n sampled at the respective inverse temperature

βkn [16, 17]. For later analysis we keep the information
which trajectory n was sampled at which at respective
temperature βk in a vector ewith en = k.

The row-stochastic transition matrix estimate T̂(τ ;β)
is then computed from (15)

T̂ij(τ ;β) =
Ĉij(τ ;β)∑
k

Ĉik(τ ;β)
(19)

As Ĉ(τ ;β) is symmetric by construction, T̂(τ ;β) will be
reversible (i.e., will satisfy detailed balance).

The normalized trajectory weights wn(β) can be com-
puted by

wn(β) = Ẑ(β)−1

[
K∑
k=1

NkẐ
−1
k exp (−(βk − β)En)

]−1
(20)

with normalization constants Zk ≡ Z(βk), and

Ẑ(β) =

N∑
n=1

[
K∑
k=1

NkẐ
−1
k exp (−(βk − β)En)

]−1
(21)

where Ekn ≡ H(zn(0)) denotes the total energy of the
trajectory, which is constant over trajectories for Hamil-
tonian dynamics[20]. The normalization constants Zk
are determined by the solution of a set of self-consistent
equations

Ẑk =

N∑
n=1

wn(βk), ∀ i ∈ {1, . . . ,K} (22)

which can be obtained efficiently by a number of
means (see Appendix ), although it is often necessary
to work with logarithmic representations to avoid nu-
merical instability. A detailed exposition is presented in
Ref. [20].

Estimation of uncertainties in transition probabilities

For a given temperature β, the statistical uncertainty
in Ĉab ≡ Ĉab(τ ;β) can be estimated in a straightforward
manner[26]. We start with the N ×K weight matrix W
where elements are given by

wnk ≡ wn(βk). (23)

augmenting it by three additional columns, indexed by
x, X , and Y , consisting of

wnx = wn(β) (24)

wnX =
Ĉ

(n)
ab

Ĉab(τ ;β)
wnx ; wnY =

Ĉ
(n)
a′b′

Ĉa′b′(τ ;β)
wnx (25)
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The uncertainty in the transition probabilities Tij(Ĉ) can
then be estimated from the uncertainty in Ĉ by first-
order Taylor expansion

δ2T̂ij ≡
〈

(T̂ij −
〈
T̂ij

〉
β
)2
〉
β

≈
M∑

a,a′ ,b,b′=1

[
∂T̂ij

∂Ĉab

] [
∂T̂ij

∂Ĉa′b′

]
δĈabδĈa′b′ (26)

where the covariance of the estimates Ĉab and Ĉa′b′ can
be estimated as[20]

δĈabδĈa′b′ ≈ Ĉab Ĉa′b′
[
Θ̂xx − Θ̂xY − Θ̂Xx + Θ̂XY

]
(27)

with covariance matrix estimate Θ computed as

Θ̂ ≡WT [IN −WNWT]+W, (28)

there, IN the identity matrix of rank N and N =
diag(N1, . . . , NK , 0, 0, 0). The []+ here denotes the gen-
eralized inverse. Using Eq. (4) the sensitivity of T̂ij to
the correlation Ĉab is given by

∂T̂ij

∂Ĉab
=
δajδbi + δaiδbj − δab

Ĉi
− Ĉij (−Mδab + δai + δbi)

Ĉ2
i

,

(29)
with Ĉi =

∑
i Ĉij being the row sum of the correlation

matrix C. The final expression for the covariance matrix
of transition probabilities δ2Tij is complex but still cal-
culable. A detailed exposition of this procedure can be
found in [20, 26].

Modified parallel tempering protocol

We employ a modified parallel tempering protocol in
which, a set of Hamiltonian trajectory segments zkn(t)
of uniform length T ≥ τ generated, with the initial
phase space points zkn(0) are sampled from the canon-
ical (NVT) ensemble at corresponding inverse temper-
atures β1, . . . , βK[20]. We start by assuming that some
process was used to generate the initial phase space
points zk0(0) from equilibrium within the canonical en-
semble at each corresponding inverse temperature βk

P (zk0(0)) = [Z(βk)]−1 e−βkH(zk0(0)) (30)

This initial phase space points may be, for example, by
a standard parallel tempering protocol, or by running
the modified protocol for a number of iterations starting
from one or more arbitrary initial configurations.

Consider iteration n of the algorithm. For each tem-
perature index k = 1, . . . ,K, Hamilton’s equations of
motion are propagated using a symplectic integrator
with sufficiently small timesteps to generate trajectories
of zkn(t) of length T . Finally, we propose exchanges

between the final configurations zin(T ) and zjn(T ) of
neighboring temperatures βi and βi±1, starting from the
highest temperature down to the lowest one in odd it-
erations and in reverse order in even ones[11].1 The
Metropolis-like probability[7] of accepting or rejecting
the exchange depends on the final potential energies of
the configurations Ui and Uj with

Pexch(Ui, βi;Uj , βj) = min {1, exp[−(βi − βj)(Uj − Ui)]}

Regardless of whether the exchange is accepted or
rejected, we reassign the velocities according to the
Maxwell-Boltzmann distribution[31] at the new (or old,
if rejected) temperatures, and denote the new phase
space points from which the next iteration can be carried
out as zk(n+1)(0) (see proof in Appendix ??). This satis-
fies the conditions defined by Okamoto[7] in order for
the kinetic energies to not appear in Pexch and is equiv-
alent to rescaling the velocities for accepted exchanges
and then applying a massive collision for the Ander-
sen thermostat.[31] The reason for reassignment of ve-
locities instead of rescaling is that, when using Hamil-
tonian trajectories minimal thermostatting would other-
wise take place.

Bayesian estimation of transition probabilities from a
single temperature

We also consider two Bayesian methods for estima-
tion transition matrices and rate matrices using data col-
lected from a single temperature. Both methods sample
transition probabilities or rates according to the same
likelihood function, but employ different model param-
eterizations and, more importantly, different prior prob-
ability distributions.

Reversible Transition Matrices

We use the approach described in [32]. Starting with
an observation represented by the fractional count ma-
trix B, the posterior probability of a transition matrix
T(τ) given this observation is

P(T|B) ∝ P(B|T) P(T) =
∏
i,j∈S

T
Bij

ij P(T). (31)

As the prior, P(T), we choose a Dirichlet distribution for
each row which adds no additional observations to the

1 Note that other exchange proposal schemes can be used, provided
the resulting algorithm satisfies the condition of “balance” (not de-
tailed balance) [30]
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likelihood probability

P(T ) ≡
∏
i,j∈S

T−1ij . (32)

Furthermore, we restrict ourselves to transition matri-
ces that fulfill detailed balance, i.e., are reversible with
respect to the stationary distribution π:

πiTij = πjTji (33)

Here, the distribution in Eq. (31) was sampled using a
Markov chain Monte Carlo procedure described in Ref.
[32].

Reversible Rate Matrices

To sample rate matrices K with elements Kij > 0 for
i 6= j and Kii = −

∑
j 6=iKij we use the approach pro-

posed in Ref. [19], which does not estimate the tran-
sition probabilities directly, but uses a parametric form
of a reversible rate matrix K, that uses the logarithms of
the elements in the upper-right triangular matrixKij for
j > i (without diagonal entries) and the equilibrium dis-
tribution πi, i = 1 . . .M thus assuring a rate matrix with
non-positive eigenvalues and also positive off-diagonal
rates. The posterior in Eq. 31, written in terms of the
rate matrix K, is given by

P(K|B) ∝ P(B|K)P(K) =
∏
i,j∈S

exp (τK)
Bij

ij P(K) (34)

where the Prior is uniform in lnKij , j > i and lnπi, i =
1 . . . (N − 1) and the detailed balance constraint

πiKij = πjKji (35)

holds. After sampling rate matrices with a Metropolis
Monte Carlo scheme[CITE: MONTECARLO or Hum-
mer ?] the related set of transition matrices with the lag
time τ is computed by

T(τ) = exp (τK) (36)

All methods with their abbreviations and colors used
consistently in the text and figures in this article are
listed in Table I.

APPLICATION TO TERMINALLY-BLOCKED ALANINE
DIPEPTIDE

System Setup

To illustrate the construction of temperature-
dependent Markov models using dynamical reweight-
ing, we estimated the transition probabilities between

Method Abbreviation Color
Transition matrix estimation [32] [TE] RED
Rate matrix estimation [19] [RE] GREEN
Dynamical reweighting [20] [DR] BLUE
Shooting trajectories at 302 K [11] [ST] BLACK

TABLE I. Table of methods used for transition probability or
rate estimation with their corresponding abbreviations and
colors used consistently throughout this paper

Temp [K] RMS [kcal/mol] Drift [kcal/(ps mol)]
302 0.214± 0.014 0.0056± 0.0006

426 0.280± 0.019 0.0073± 0.0006

600 0.376± 0.026 0.0097± 0.0011

TABLE II. [THIS IS NOT REALLY RMS, CHOOSE WHAT EX-
ACTLY TO PUT HERE!] RMS and drift energies of leapfrog
integrator averaged over all 20 ps trajectories of given temper-
ature

conformational states for the terminally-blocked alanine
peptide (Ace-Ala-Nme) [JCS: As chemical formula !]
in explicit solvent from a parallel tempering molecular
dynamics (PT) simulation.

The dataset was described previously [11]. Briefly
[PUT PROTOCOL HERE !] [FIX THIS PARAGRAPH
!!!!] A leapfrog Verlet integrator [CITE: LEAPFROG
PAPER] (with bonds involving hydrogen atoms con-
strained) was used to produce the dynamical trajec-
tories. The fluctuation in total energy averaged over
all 20 ps trajectories at each temperature was minimal
and the drift negligible (see Table II). The production
run followed a 1 ns equilibration phase during which
exchanges were attempted at 1 ps intervals, ensuring
that all initial configurations were drawn from equilib-
rium at their respective temperatures. Previous work
has demonstrated that a Markov model based on a six-
state decomposition, as depicted in Figure 2, can accu-
rately describe the dynamics of this peptide for lagtimes
longer than τ = 6 ps[11]. We employ the same state de-
composition for all temperatures.

To evaluate the accuracy of the methods for estimat-
ing transition probabilities, we compare the separate
estimates obtained using dynamical reweighting (DR),
transition matrix estimation (TE), and rate matrix esti-
mation (RE) with a simulation of 6 × 10 000 short (10 ps)
trajectories (ST) initiated from the equilibrium ensemble
within each state at 302 K. The PT simulation, in com-
parison, furnishes a total of 501 independent trajectories
at that temperature.

The system is small enough that reasonable statis-
tics can be obtained with moderate CPU requirements,
while complex enough that some transitions (and even
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FIG. 1. Distribution of total trajectory energies in kcal/mol for all 40 temperatures from parallel tempering simulation. High-
lighted are temperatures 302 K, 425 K, and 600 K whose single-temperature Bayesian analysis convergence properties are sown
in Figure 8.
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Fig. 1. Potential of mean force and state boundaries. Left: The terminally blocked alanine
peptide with (φ, ψ) torsions labeled. Right: The potential of mean force in the (φ, ψ) torsions at
302 K estimated from the parallel tempering simulation, truncated at 10kBT (white regions), with
reference scale (far right) labeled in units of kBT . Boundaries defining the six manually identified
states are superimposed and the states labeled.

Swope, Pitera, and Suits in the special case that the selection cells from which sets
of simulations are initiated are coincident with the states [49].

We do not expect dynamics of a macromolecule in solution to resemble a Markov
process for all observation intervals τ , as ballistic motion dominates on very short
times, and sufficient time must be allowed for collisions with the solvent and decor-
relation of the trajectory within a metastable state. Imperfect definitions of the
metastable states may also lead to non-Markovian behavior on short times [49]. At
sufficiently long intervals τ , however, we might observe that dynamics resembles a
Markov process. While it is impractical to test the condition of complete history
independence (see (2.1)), we can simply check the (weaker) condition imposed by the
Chapman–Kolmogorov equation (see (2.3)): For transition matrices constructed for
a given τ , we check whether (2.3) holds for several lag times n = 2, 3, 4, . . . to within
statistical uncertainty. If so, the Markovian model can be assumed to be a reasonable
model of dynamics.

3. Application to terminally blocked alanine peptide.

3.1. System setup and equilibration. Using the LEaP program from the
AMBER7 molecular mechanics package [6], a terminally blocked alanine peptide (se-
quence ACE-ALA-NME; see Figure 1) was generated in the extended conformation
with peptide force field parameters taken from the AMBER parm96 parameter set [23].
The system was subsequently solvated with 431 TIP3P water molecules [21] in a trun-
cated octahedral simulation box with dimensions chosen to ensure all box boundaries
were at least 7 Å from any atom of the extended peptide. All minimization and

FIG. 2. Terminally-blocked alanine peptide potential of mean
force and Markov state definitions. Left: The terminally
blocked alanine peptide with (φ, ψ) torsions labeled. Right:
The potential of mean force as a function of (φ, ψ) torsions at
302 K in units of kBT , estimated from the parallel tempering
simulation using WHAM[23, 33], truncated at 10 kBT (white
regions). The six manually identified states are labelled in
black[11].

some states) are sampled only at high temperatures.
In what follows, the results from the Markov model
obtained from the dynamical reweighting method are
compared to the model computed by Bayesian analyses
using data from a single temperature only, as in Buchete
and Hummer[19].

Estimated transition probabilities as a function of
temperature

A comparison of the transition probabilities between
all 6 × 6 pairs of states as a function of temperature is
given in Figure 3. The blue solid lines give the esti-

mates from dynamical reweighting (DR)[11] using all
available data at all temperatures, as described in Sec-
tion . To obtain the dimensionless free energy estimates
f̂i, we solved the set of self-consistent equations in Eq.
(22) with a relative convergence tolerance in the residual
of 10−7 (see Appendix ). Transition probabilities were
also estimated at one intermediate temperature between
each pair of simulated temperatures.

The red dashed lines in Figure 3 show transition prob-
abilities for the reversible single temperature estimation
of transition matrices (TE)[32]. For each of the 40 tem-
peratures the sampler was run to collect a total of 10 000
samples. For the sampling of reversible rate matrices
(RE), depicted by dotted green lines, the sampling as
proposed in Ref. [19] was used. After an equilibra-
tion phase [How long? Look in paper] again a total of
10 000 samples were stored for each temperature sepa-
rately. Diagnostics of convergence for both methods ap-
pear as supplementary Figure 8. The black cross-hair in
Figure 3 refers to the reference values at 302 K.

Qualitatively, all methods agree, especially transitions
among highly populated states (1 to 4). However, the
reweighting estimate, which uses the combined data
from all temperatures, has smaller uncertainties than the
estimators that use only individual temperatures. The
overall agreement with the reference simulation is best
for dynamical reweighting. The two Bayesian methods
have almost identical predictions for transitions among
states with many observed transitions, which is as ex-
pected since they use the same likelihood functions and
the influence of the choice of the prior probability distri-
bution is minimal here. However, the differences in the
transition probabilites among states with few observa-
tions (states 5 and 6) arise from the influence of different
prior probability distributions. See Table III for compar-
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RMS in Estimation
(DR) (TE) (RE)

Low-energy states (1 to 4) 0.007 0.023 0.055
High-energy states (5 and 6) 0.140 0.267 0.288
All Transitions 0.079 0.151 0.167

TABLE III. RMS in the absolute difference of transition proba-
bilities for τ = 6 ps compared to the reference simulation (ST)
at 302 K for the three methods of Markov model estimation
and high- and low-energy subsets of transitions. Dynamical
reweighting (DR) shows the smallest RMS error compared to
the reference simulation (ST).

ison.

Detailed comparison of transition probability estimates at
302 K

For a detailed comparison with precisely known tran-
sition probabilites, the Bayesian analysis method with
reversibility constraint for transition matrices[32] (TE)
was also applied to a large set of shooting trajectories at
302 K, in which many trajectories are initiated from an
equilibrium distribution within each state. The results
of the comparison at 302 K and a lag time of τ = 6 ps
between the different estimation methods are shown in
Figure 4. All colors are the same as in Figure 3 and Ta-
ble I.

For transitions that are not sampled at certain tem-
perature ranges, the maximum-likelihood estimates ob-
tained with the present reweighting method are close to
zero (see Figure 3). Generally, for transition probabili-
ties close to zero or unity, the normal distribution is a
poor approximation to this highly asymmetric distribu-
tion and therefore leads to too large uncertainties (see
Figure 4) in cases. Thus we suspect that reweighting will
significantly overestimate the uncertainty in these cases
since this is derived from the locally estimated Hessian
of the probability distribution.

Overall the reweighting method performs overall
very well compared to the single-temperature estimates.
Even transition probabilities that are sampled very
poorly at 302 K (such as for transitions involving states
5 and 6) have a good agreement with the reference val-
ues at 302 K. Table III shows the standard deviation in
the absolute difference of the estimation methods com-
pared to the reference simulation (ST) using a lag time of
τ = 6 ps. The dynamical reweighting has a smaller de-
viation than both Bayesian methods for both high and
low free-energy states.

Comparison of temperature dependence of eigenvalues

Dynamical reweighting can also be applied to esti-
mate properties derived from the transition probabili-
ties. For example, the eigenvalues λi of a transition ma-
trix are related to the timescales of processes t∗i indicated
by the corresponding eigenvector by

t∗i = −τ/ ln(λi), (37)

where we assume that the eigenvalues λi are sorted in
order of descending modulus (λ1 = 1 > |λ2| > . . . >
|λM | > 0) [17]. Hence, eigenvalues close to unity imply
slow processes i.e., those we are mostly interested in. We
investigated the dependence of the eigenvalues on the
temperature in the present system. Figure 5 compares
estimates for the second and third eigenvalues (λ2, λ3)
of the transition matrix estimated at each temperature
with the different methods. The variance in the TE case
was estimated from the set of eigenvalues of each sam-
pled transition matrix. To estimate the errors of (DR),
we used linear error propagation of the uncertainties
in the transition matrix to the errors in the eigenvalues
[14]. At low temperatures, the second eigenvalue is es-
timated correctly by dynamical reweighting (DR), but
not by single-temperature estimations. This is due to
the fact that the transition process corresponding to this
slowest timescale is not sampled at these low tempera-
tures. Thus, estimates using only data collected at that
temperature are erroneous. The agreement of dynamical
reweighting timescales with the reference simulation is
very good, although the error bars of the reweighted es-
timate are still very large compared the good agreement
of the expectation values with the reference. We assume
that the inappropriate approximation of the asymmet-
ric distributions with normal distributions used for the
linear error propagation lead here as well to an overes-
timation of the errors in the transition probabilities.

The third largest eigenvalue is predicted by both
methods equally well (Fig. 5), although it occurs as the
second-largest eigenvalue in the single-temperature es-
timates, which missed sampling the slowest process (de-
scribed by λ2) completely. A direct comparison of the
predicted eigenvectors (Fig. 6) reveals that the slowest
process (given by the second eigenvector of the refer-
ence transition matrix (ST)) is not detected by any of
the single temperature methods. However, dynami-
cal reweighting successfully finds all the processes, al-
though the matching eigenvalues, and thus timescales,
are permuted for faster processes.

The comparison of Markov models is a nontrivial task
[34] [VSP] Sergio Bacallados work might be of help here.
, for which we used a symmetrized form of the transi-
tion matrix Tsym and expand it into a sum of rank one
matrices Qi spanned by an outer product of the eigen-
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FIG. 3. [JCS: Figure and Caption incomprehensible] Comparison of all 6x6 inter-state transition probabilities as a function of
temperature with error bars showing 95% confidence intervals. Blue lines show the transition probabilities estimated using the
present method (DR). Red lines show the estimates from transition matrix estimation (TE) computed from only single temperature
data. The black cross-hair indicates the reference using the shooting trajectory data (ST) at 302 K only.

vectors of Tsym by

Tsym = diag(π1/2) T diag(π−1/2) (38)
= R diag(π1/2) RT (39)

=

M∑
i=1

λiri r
T
i ≡

M∑
i=1

Qi. (40)

Here, π = {π1, . . . , πM} is the equilibrium distribu-
tion, R = {r1, . . . , rM} the matrix of normalized eigen-
vectors of Tsym and λi the corresponding eigenvalues,
which are equal to the eigenvalues of T. Each of the
submatrices Qi can be considered as a part of the full
transition matrix working on a timescale given by the re-
spective eigenvalue. These subprocesses are similar in-
dependent of their respective eigenvalues if their eigen-
vectors match, as can be determined by the scalar prod-
uct between the spanning eigenvectors ri:

Sim(Qi,Q
′
j) = rTi r

′
j . (41)

Contributions from different temperatures to the estimates
of expectation values

The contribution of each trajectory segment to the es-
timation of any expectation value at any given tempera-
ture is illustrated in Fig. 7. The left plot shows the aver-
age normalized weights from trajectories sampled from
the distribution at βk reweighted to βl:

w̄(βl|βk) =
1∑

n∈Q(k) 1

∑
n∈Q(k)

wn(βl) (42)

with Q(k) = {n ∈ 1 . . . N | en = k} being the set of tra-
jectories sampled from the distribution at βk and the
unnormalized trajectory weights wn(β) given in (20),
where, on average, seven temperatures contribute more
than 1% to the expectation. The right hand plot illus-
trates the contribution from the sampled data at βk to
the transition counts Bij(βl) for the transition 6 → 5
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FIG. 4. Detailed comparison of transition probabilities for τ = 6 ps and uncertainty estimations at 302 K. Red: Single temperature
estimation of transition matrix (TE); Green: Single temperature estimation of rate matrix (RE); Blue: dynamical reweighting
estimation (DR), Black: reference using shooting trajectories (ST).

given by

Bij(βl | βk) =
1

#Q(k)

∑
n∈Q(k)

w̃n(βl)Ĉ
(n)
ij , (43)

with k indicating the temperature contributed from, l
the temperature estimated at and i, j representing the
transition i → j. As expected, most information con-
tributing to a specific temperature estimate is always
contained in the simulations performed at the nearest
temperatures.

DISCUSSION

The present method provides a means of generat-
ing an estimate of transition probabilities from paral-
lel tempering MD simulations of biomolecules as a con-
tinuous function of temperature. Even at intermediate
temperatures not included in the simulation the esti-
mate is much more precise than that with either single-
temperature methods. At low temperatures, where

some transitions are not observed at all, small transition
probabilities can still be estimated.

Additionally, the estimates of transition probabilities
can be differentiated with respect to the inverse temper-
ature β, because the trajectory weights wn(β) are dif-
ferentiable functions of temperature (20). This allows,
in principle, thermodynamic properties to be computed
(e.g., heat capacities), provided caution is taken in deal-
ing with numerical issues since the trajectory weights
wn(β) can easily span hundreds of orders of magnitude.

Although the method can be applied to several dy-
namical models[20], we chose a set of parallel temper-
ing simulations with a modified protocol to produce
a series of NVE trajectories with initial configurations
drawn from the NVT ensemble. For very large sys-
tems, the PT simulation might not be long enough to
globally converge. In this case we cannot use reversible
counting as in Eq. (18) to enhance the statistics, but the
method can still be applied without the detailed balance
constraint as long as we draw from equilibrium inside
each set Γi. The PT requirement of good exchange rates
also ensures good overlap in the contribution to the dy-
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FIG. 5. Temperature dependence of estimed eigenvalues. Red:
Single temperature estimation of transition matrix (TE), Blue:
dynamical reweighting estimation (DR), Black: reference us-
ing shooting trajectories (ST). Left: Comparison of the sec-
ond largest eigenvalue vs temperature, Right: Comparison for
third eigenvalue. The third eigenvalue is well predicted by
both estimation methods at all temperatures, while the second
eigenvalue at low temperatures is only detected by dynamical
reweighting.

namical reweighting for neighboring temperatures. The
approach itself is not limited to Hamiltonian trajecto-
ries but can be extended to other dynamics as long as
an analytical connection between the weighting factors
and the temperature exists (e.g. Brownian and Langevin
dynamics)[20].

The degree to which the use of parallel tempering can
enhance thermodynamic sampling efficiency has been a
matter of much discussion. While activated processes
will be sampled more often at higher temperatures, en-
tropic barriers become less and less probable to pass,
effectively limiting the possible improvement in sam-
pling. The same problem limits the range of contribut-
ing temperatures here, too. On the other hand can lower
tempereature increase the sampling of entpropic barri-
ers, while at the same time decreased probabilities for
enthalpic barriers. Nevertheless, information about ac-
tivated processes is transferred from higher to lower
temperatures and, for entropic barriers from lower to

higher temperatures. Transitions in the alanine peptide
are dominated by activated processes (i.e., enthalpic bar-
riers).

Both single-temperature methods give similar results
for transitions with good statistics, differing mostly for
transitions that have only rarely been sampled due pre-
sumably to the influence of different prior probability
distributions. Surprisingly, the Bayesian estimates pro-
vide a reasonable bound on transition probabilities to
and from a state even when the state is not even sam-
pled. This is most likely due to the reversibility con-
straint, which seems to provide information even in
cases where there are few transitions to or from a state.

There is, however, a dependence on the Bayesian
prior, which leads to different predictions in cases where
the state is not sampled or only rarely sampled. The
rate matrix estimation (RE) assumes, in addition to the
detailed balance constraint, positivity of all eigenval-
ues and non-negative off-diagonal entries. The uniform
distribution of parameters in logarithmic space leads
most likely to favoring of small transition probabilities
in states with poor transition statistics.

The way in which the transition probabilities are es-
timated in terms of equilibrium correlation functions
requires that the trajectory segments sampled during
the parallel tempering simulation are drawn from the
equilibrium distribution and that the trajectories to be
reweighted are uncorrelated so as to permit an estima-
tion of the statistical error.

The predictions of mean values are very good, while
the quality of the error estimation is limited to a Gaus-
sian approximation, which is problematic in cases where
transition probabilities are close to the extremes (0 or
1) and the probability distribution is thus very asym-
metric. Some combination of Bayesian and reweighting
methods (such as T-WHAM[24]) may provide the best of
both types of estimators by yielding more accurate un-
certainties at the expense of introducing some bias from
the introduction of energy histograms or some other
parametric distributions for describing the energy den-
sity of states. Finally, the enhanced estimates of mean
values and their respective statistical uncertainties may
be used to guide subsequent (potentially adaptive) sam-
pling strategies, as described in Ref. [15].
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Efficient solution of the self-consistent equations for canonical distribution of Hamiltonian trajectories

For the case of a canonical distribution of Hamiltonian trajectories, the normalilazion constants Zk or alternatively
the dimensionless free energies f̂i ≡ − ln Ẑi are defined through a set of K coupled nonlinear equations involving
the trajectory energies Ekn ≡ H(zkn(0)):

f̂i = − ln

K∑
j=1

Nk∑
n=1

[
K∑
k=1

Nk exp[f̂k − (βk − βi)Ekn]

]−1
(44)
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Any numerically stable method for solving a set of coupled nonlinear equations can, in principle, be used to obtain
the f̂i. A scheme for solving a more general form of these equations by self-consistent iteration or Newton-Raphson
is described in Appendix C of [35].

Because of the structure of this specific case, we can rapidly obtain a close initial guess for the f̂i by using a form
inspired by the weighted histogram analysis method (WHAM) [36]. By instead constructing M bins in the total
energy E spanning a range (Emin, Emax), we can approximate Eq. 44) with a sum over histograms (as in Eqs. 19–20
of [36]):

f̂
(n+1)
i = − ln

M∑
m=1

Hm

[
K∑
k=1

Nk exp[f̂
(n)
k − (βk − βi)Em

]−1
(45)

where Hm denotes the number of samples Ekn falling in histogram bin m, and Em represents the energy at the
midpoint of that bin. Typically, a value of M ≈ 100 can be used. One value, say f1, is generally fixed to 0 by
subtracting off the computed value of f (n+1)

1 after each iteration in order to avoid numerical drift.
After an initial guess has been reached, self-consistent iteration can rapidly refine the free energies to the desired

tolerance while eliminating the bias arising from the use of histograms:

f̂
(n+1)
i = − ln

K∑
k=1

N∑
n=1

[
K∑
k=1

Nk exp[f̂
(n)
k − (βk − βi)Ekn]

]−1
(46)

Again, we fix f̂1 = 0 and terminate iterations when a relative tolerance maxi=2,...,K |f (n+1)
i − f (n)i |/|f

(n+1)
i + f

(n)
i |

is less than some given tolerance that ensures the computed expectations of properties of interest are no longer
changing. We find that 10−7 is often a safe choice.

Cautions observed in Appendix C of [35] regarding sums of logarithms and numerical over/underflow in the
evaluation of exponentials should be observed in implementation of this, or any, algorithm for obtaining the f̂i.

Proof that modified parallel tempering protocol generates canonical distribution

Here, we prove that the modified parallel tempering protocol described in Section samples from the canonical
stationary distribution at all temperatures.

Define stationary distributions for momenta p and coordinates q in Cartesian space <3N at inverse temperature β:

πp(p|β) = [P (β)]−1 e−βT (p);P (β) =

∫
dp e−βT (p)

πq(q|β) = [Q(β)]−1 e−βU(q);Q(β) =

∫
dq e−βU(q) (47)

where T (p) denotes the kinetic energy and U(q) the potential energy function. Suppose we have two replicas whose
current phase space points are denoted by z1 = (q1,p1) and z2 = (q2,p2), initially at equilibrium at their respective
inverse temperatures β1 and β2, such that

p1 ∼ πp(p1|β1); q1 ∼ πq(q1|β1)

p2 ∼ πp(p2|β2); q2 ∼ πq(q2|β2). (48)

We now consider what happens to the distributions of z1 and z2 after an exchange attempt. Define “post-exchange
attempt” coordinates and momenta for inverse temperature β1:

q′1 ←

{
q1 with prob. 1− θ(q1, q2|β1, β2) (rejected)

q2 with prob. θ(q1, q2|β1, β2) (accepted)

p′1 ∼ πp(p
′
1|β1) (velocity randomization)

where the exchange acceptance probability θ(q1, q2|β1, β2) is given by

θ(q1, q2|β1, β2) = min{1, exp[−β1U(q2)− β2U(q1) + β1U(q1) + β2U(q2)} (49)
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We now compute the distribution of q′1, the configuration supposedly at temperature β1 after the exchange attempt:

ρ1(q′1) =

∫
dq2 [1− θ(q′1, q2|β1, β2)]πq(q

′
1|β1)πq(q2|β2) +

∫
dq2 θ(q2, q

′
1|β1, β2)πq(q2|β1)πq(q

′
1|β2)

=

∫
dq2 [1−min{1, e−β1U(q2) e−β2U(q′

1) e+β1U(q′
1) e+β2U(q2)}] e

−β1U(q′
1)

Q(β1)

e−β2U(q2)

Q(β2)

+

∫
dq2 min{1, e−β1U(q′

1) e−β2U(q2) e+β1U(q2) e+β2U(q′
1)} e

−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)

=
e−β1U(q′

1)

Q(β1)
−
∫
dq2 min

{
e−β1U(q′

1)

Q(β1)

e−β2U(q2)

Q(β2)
,
e−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)

}

+

∫
dq2 min

{
e−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)
,
e−β1U(q′

1)

Q(β1)

e−β2U(q2)

Q(β2)

}
= πq(q

′
1|β1) (50)

Therefore, after the exchange attempt, the new configuration q′1 is still at equilibrium at inverse temperature β1. (A
similar series of steps can be applied for the temperature β2.)

Redrawing the momentum from the Maxwell-Boltzmann distribution at inverse temperature β1 will, of course,
not change the equilibrium distribution, and can be shown to only support the canonical distribution at inverse
temperature β1, and no other stationary distribution [37]. Evolution by Hamiltonian dynamics for any length of
time does not alter the stationary canonical distribution [38]. Therefore, the proposed protocol samples from the
canonical distribution at the desired temperatures, provided sufficient time is allowed for equilibration.

JDC: This proof could use some tightening — especially the last paragraph.

Convergence of transition probabilities in Bayesian Methods

The convergence of transition probabilities from the Bayesian sampling methods is presented in Supplementary
Figure 8 for various temperatures. Therefore, the proposed protocol generates the canonical distribution at the
desired temperature.
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FIG. 8. 95% confidence intervals of Transition Probabilities sampled by the transition matrix estimation (upper Plot) (TE) and
rate matrix estimation (lower plot) (RE) versus number of drawn samples. Color indicates performance by temperature. Blue:
273 K, Yellow: 426 K, Red: 600 K. After about 5 000 samples the confidence intervals stabilize suggesting reasonably well sampled
transition probabilities.


