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Abstract
Parallel tempering (PT) molecular dynamics (MD) simulations have been extensively investi-

gated as a means of efficient sampling of the configurations of biomolecular systems. Recent work

has demonstrated how the short physical trajectories generated in PT simulations of biomolecules

can be used to construct Markov models describing biomolecular dynamics at each simulated

temperature. While this approach describes the temperature-dependent kinetics, it does not make

optimal use of all available PT data, instead estimating the rates at a given temperature using only

data from that temperature. This can be problematic, as some relevant transitions or states may

not be sufficiently sampled at the temperature of interest, but might be readily sampled at nearby

temperatures. Further, the comparison of temperature-dependent properties can suffer from the

false assumption that data collected from different temperatures are uncorrelated. We propose

here a strategy in which, by a simple modification of the PT protocol, the harvested trajectories

can be reweighted, permitting data from all temperatures to contribute to the estimated kinetic

model. The method reduces the statistical uncertainty in the kinetic model relative to the sin-

gle temperature approach and provides estimates of transition probabilities even for transitions

not observed at the temperature of interest. Further, the method allows the kinetics to be esti-

mated at temperatures other than those at which simulations were run. We illustrate this method

by applying it to generating a Markov model of the conformational dynamics of the solvated

terminally-blocked alanine peptide.

Keywords: temperature reweighting; temperature-dependent dynamics; parallel tempering; molecular

dynamics; markov state model.
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I. INTRODUCTION

Biological macromolecules are not static structures, but are driven by thermal motion

and interactions with their molecular environment, undergoing conformational fluctua-

tions and changing conformational states. The characterization of the statistical confor-

mational dynamics of biomolecules is essential to understanding how these molecules

work as molecular machines.

Often, a separation of timescales of characteristic dynamical relaxation times gives

rise to the existence of metastable conformational states, such that the biomolecule re-

mains in any one of these states for a long time before making a rapid transition to an-

other state. A wealth of experimental data now supports the existence of such states,

including NMR [1–3], fluorescence emission [4, 5], energy transfer [6, 7], correlation spec-

troscopy [8, 9], and non-equilibrium perturbation experiments [5]. Developing a quan-

titative understanding of what gives rise to these conformational states and the interac-

tions that govern transitions between them will have a significant impact on our under-

standing of many biological processes, such as, for example, signaling events, enzyme

regulation, allostery, and drug design with conformationally flexible molecules.

Sampling the underlying phase space by straightforward molecular dynamics simula-

tion often suffers from the problem that the timescales of conformational changes can be

orders of magnitude larger than simulation times accessible using current computational

resources. PT molecular dynamics simulation has been an effective and thus popular

approach to overcoming the issue of convergence in molecular simluations, by allow-

ing replicas to heat up and overcome enthalpic barriers as the simulation proceeds while

still sampling from an appropriate equilibrium distribution [10–13]. At the same time

this approach permits an analysis of the temperature dependence of properties of inter-

est, which is especially important for comparisons with certain experimental results (e.g.

melting curves, heat capacities) [14]. Although PT molecular dynamics produces un-

physical replica trajectories, the short physical trajectories in between the exchanges can

provide useful dynamical information. If the PT simulation is well-equilibrated, these

initial configurations of the short trajectory segments will be sampled from the equilib-

rium at their corresponding temperatures.

Markov models provide a way of modeling the slow conformational dynamics of
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biomolecules based on short simulations [15–23]. In these models conformational states

are envisioned as disjoint but connected regions of configurational space. The biomolecule

spends long times within individual regions before undergoing rapid stochastic transi-

tions between them. If a separation of timescales exists between fast relaxation times

within and slow equilibration between regions, the inter-state dynamics can be well

described by a Markov model in discrete timesteps τ , where coarse graining in time is re-

quired as the discretization in space prohibits the characterization of relaxation processes

faster than τ . If the system is partitioned into its metastable states, τ is related to the time

required to overcome internal barriers within each conformational state. However, it has

been recently shown that, even in the absence of many metastable states, a Markovian

model can well approximate the dynamics at long times, with this approximation error

decreasing with increasing number of states [24].

Recently, Buchete and Hummer have shown that both thermodynamic and kinetic

properties can be estimated over the range of temperatures by constructing Markov mod-

els using the short physical trajectories generated from PT simulations[25]. However, if a

complete description of dynamics across the entire configurational space at a given tem-

perature is desired, one quickly runs into problems if use is made of trajectories only

from the temperature of interest, as some states that are sampled at other temperatures

may not be well sampled at the single temperature [25]. One would like to make use of

the data collected at all temperatures to characterize the kinetic behavior in all regions

sampled over the full range of temperatures spanned by the PT simulation in a manner

similar to equilibrium reweighting [26–31].

Here, we propose a method for integrating MD data from all temperatures by mak-

ing use of dynamical reweighting [32], allowing a smooth, continuous and differentiable

estimate of the transition probabilities at any temperature without requiring the assump-

tion of any kinetic model (such as Arrhenius kinetics [18]) and taking advantage of the

increased transition rates at higher (or, for transitions with entropic barriers, lower) tem-

peratures. Reweighting methods (such as histogram-based [26–29] or histogram-free [30,

31]) allow the use of samples collected from multiple distributions to provide an im-

proved estimate of the expectation value of some static property at the distribution of

interest, and have been used extensively in the analysis of equilibrium thermodynamic

properties in replica-exchange simulations [33].
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Dynamical reweighting has recently been proposed as a way of estimating dynami-

cal properties (such as correlation functions) using an asymptotically optimal estimator,

and also provides an estimate of the statistical error [32]. Here, we show how dynamical

reweighting can be used to estimate transition probabilities (and their statistical uncer-

tainties) for the construction of a Markov model as a smooth function of temperature,

making use of data from all temperatures. This has the advantage of producing a useful

Markov model at any temperature containing the dependence of kinetic properties on

temperature, and providing an assessment of the error in the model.

We illustrate this approach for the standard test case of the terminally-blocked alanine

peptide in explicit solvent. A Markov model constructed from short (6 ps) trajectories

from each state has been previously shown to accurately describe the kinetics of this sys-

tem at 302 K [17]. This peptide system presents a challenge for estimators based on indi-

vidual temperatures, due to the presence of highly metastable states with very high free

energies relative to the most populated states. These states are poorly sampled at temper-

atures near 300 K, even though their temporal behavior can dominate the nonequilibrium

relaxation kinetics at this temperature. Finally, we determine whether using all the data

using reweighting produces substantially improved kinetic models at this particular tem-

perature and across the full range of temperatures in the PT simulation.

This paper is organized as follows: In Section II we review the theory behind Markov

models of multistate conformational dynamics. We then show in Section II D how dy-

namical reweighting can be used to estimate temperature-dependent transition prob-

abilities and rates for a given state decomposition. Finally, we illustrate the method

in Section III by applying it to a six-state decomposition of an MD simulation of the

terminally-blocked alanine peptide, and compare the results to the approach of Buchete

and Hummer [25], in which Bayesian estimates of transition probabilities are obtained

from a single temperature alone.
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II. THEORY

A. Markov Models

Consider a system that evolves according to some stationary dynamical process. Let Ω

be the configuration space with a complete decomposition [22] intoM disjoint sets Γi ⊂ Ω

such that
M⋃
i=1

Γi = Ω; Γi ∩ Γj = ∅, ∀i, j ∈ {1, . . . ,M}, i 6= j. (1)

For convenience we also define indicator functions χi(q) ∈ {0, 1} for points in configura-

tion space q ∈ Ω by setting

χi(q) =

1 if q ∈ Γi

0 else
(2)

i.e., the function assumes the value of unity if q belongs to set Γi, and zero otherwise.

Based on this discretization of state space, we can define a row-stochastic transition ma-

trix T(τ) with conditional probabilities of finding the system in state j at time τ after it

was originally in state i:

Tij(τ) = P (q(τ) ∈ Ωj | q(0) ∈ Ωi) (3)

=
〈χi(0)χj(τ)〉
〈χi〉

, (4)

and introduce χi(t) ≡ χi(q(t)), where the dynamics is assumed to be governed by a

stationary (time-independent) process. We aim here to construct a discrete-time, discrete-

space Markov model that approximates the long-time dynamics of the system by virtue

of

p(t+ kτ) ≈ p(t)Tk(τ) (5)

with p being the projection of some continuous distribution ρ(q) onto the discrete subsets

Γi. Eq. 5 is only an approximation to the real dynamics due to the introduction of the

coarse-graining Γ ≡ {Γ1, . . . ,ΓM} [22, 23]. It has been shown [24] that the approximation

error introduced by the discretization Γ can be made arbitrarily small by either choosing

more states M or increasing the underlying lag time τ . Thus, with an appropriate choice

of states, we can ensure an approximation of the true dynamics by a discrete-time and

discrete-space Markov model to the desired precision. Although this is a crucial step, the
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process of finding an optimal decomposition of state space and appropriate lag time τ is

beyond the scope of this paper, and has been discussed at length elsewhere [16, 19].

B. Estimating transition probabilities vs estimating transition rates

In many studies coarse-grained dynamics is equivalently described by the continuous-

time master equation

ṗ(t) = p(t) K (6)

where K ∈ Rm×m denotes the rate matrix. Kij is the rate associated with the transition

i → j, with Kij > 0 for i 6= j and Kii = −
∑

j 6=iKij [25, 34, 35]. While T(τ) can be

straightforwardly estimated from a trajectory using Eq. 4, K cannot because inversion of

the equation

T(τ) = exp(τK) (7)

is not unique for stochastic matrices unless T(τ) is positive definite and reversible. The

dynamics is represented correctly only for times larger than some Markov time τ ∗ and

suffers from numerical issues as well. In the following we focus on the estimation of

time-discrete transition probabilities. One potential solution, therefore, is to use Bayesian

inference to estimate the likely rate matrix given data [15] - we discuss this issue further

in Section II G 2.

C. Estimation from time-discrete trajectories

Considering a trajectory q(t) sampled at time intervals ∆t we introduce τ̂ ≡ τ/∆t ∈ N

and L̂ ≡ L/∆t ∈ N and define a temporally discrete trajectory q by

qi = q(i∆t) ∈ Ω, i ∈ {0, . . . , L̂} (8)

and the fractional count matrix B(τ) of independent observed transitions by

Bij(τ) =
1

τ̂

L̂−τ̂∑
n=0

χi (qn)χj (qn+τ̂ ) (9)

If the lagtime τ is long enough, the statistical dynamics over times τ and longer can

be well-approximated by a Markov chain [23, 24, 36], and the likelihood that a given
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transition matrix produces the observations stored in the count matrix B is given by the

multinomial distribution

L(T) = P(B|T) ∝
M∏
i,j=1

T
Bij

ij . (10)

As a representative, we choose the unique transition matrix T̂(τ) which maximizes this

likelihood:

T̂ij(τ) = [argmax L(T)]ij =
Bij(τ)∑
k

Bik(τ)
. (11)

Alternatively, we can use the state-to-state time-correlation function Cij(τ) [22, 23]

given by

Cij(τ) ≡ 〈χi(0)χj(τ)〉 (12)

which can be estimated in a similar fashion

Ĉij(τ) =
1

L̂− τ̂

L̂−τ̂∑
n=0

χi(qn)χj(qn+τ̂ ) =
τ̂

L̂− τ̂
Bij. (13)

Although dynamical reweighting can be formulated for different dynamical models [32],

the present approach is based on Hamiltonian dynamics in the canonical ensemble,

which is time-reversible, and thus equilibrium molecular dynamics fulfills detailed bal-

ance in state space. Consequently, for trajectories sampled from equilibrium, the corre-

lation matrix will have a symmetric form Cij(τ) = Cji(τ). In this case, we can use the

estimator

Ĉij =
τ̂

2(L̂− τ̂)
(Bij +Bji) = Ĉji (14)

and write the transition matrix estimate T̂(τ) in terms of the correlation matrix estimate

Ĉ(τ) as

T̂ij(τ) =
Ĉij(τ)∑
k

Ĉik(τ)
(15)

which will also fulfill detailed balance.

D. Transition probabilities from dynamical reweighting

We now demonstrate how transitions observed at all temperatures can be used to in-

fer transition probabilities at any temperature of interest. For a canonical ensemble at
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inverse temperature β ≡ (kBT )−1 the state-to-state correlation functions can be expressed

as Boltzmann-weighted expectation functions

Cij(τ ; β) =
1

Z(β)

∫
dq0dp0 exp (−βH(q0,p0))χi(q0)χj(qτ ) (16)

where Z(β) is the complete partition function of both kinetic and potential energies.

Suppose we have a set of Nk Hamiltonian trajectories zkn(t), n = 1, . . . , Nk, t ∈ [0, T ],

in which the initial phase space points zkn(0) are sampled from canonical (NVT) distri-

butions at corresponding inverse temperatures βk, k = 1, . . . , K. By the application of

dynamical reweighting [31] , a correlation function Cij(τ ; β) can be estimated using the en-

tire set of trajectories at all temperatures. For the procedure the association of a trajectory

with the temperature it was sampled at is no longer relevant [31], which allows for con-

venient indexing of all trajectories zn by one single index n = 1 . . . N with N ≡
∑K

k=1Nk

obtaining

Ĉij(τ ; β) ≈
N∑
n=1

wn(β) · Ĉ(n)
ij (τ) (17)

where the individual trajectory contributions to the correlation functions Ĉij(τ, β) are

given by Eq. (14)

Ĉ
(n)
ij =

τ̂

2(L̂− τ̂)

(
B

(n)
ij +B

(n)
ji

)
(18)

with B(n) being the (possibly fractional) count matrix and Ĉ(n) the correlation matrix

computed from trajectory n sampled at the respective inverse temperature βkn [22, 23].

For later analysis we keep the information of which trajectory n was sampled at which

temperature βk in a vector ewith en = k.

The row-stochastic transition matrix estimate T̂(τ ; β) is then computed from (15)

T̂ij(τ ; β) =
Ĉij(τ ; β)∑
k

Ĉik(τ ; β)
(19)

As Ĉ(τ ; β) is symmetric by construction, T̂(τ ; β) will be reversible (i.e., will satisfy de-

tailed balance).

The normalized trajectory weights wn(β) can be computed by

wn(β) = Ẑ(β)−1

[
K∑
k=1

NkẐ
−1
k exp (−(βk − β)En)

]−1
(20)
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with normalization constants Zk ≡ Z(βk), and

Ẑ(β) =
N∑
n=1

[
K∑
k=1

NkẐ
−1
k exp (−(βk − β)En)

]−1
(21)

where Ekn ≡ H(zn(0)) denotes the total energy of the trajectory, which is constant

over trajectories for Hamiltonian dynamics [32]. The normalization constants Zk are de-

termined by the solution of a set of self-consistent equations

Ẑk =
N∑
n=1

wn(βk), ∀ i ∈ {1, . . . , K} (22)

which can be obtained efficiently in a number of ways (see Appendix A), although it is

often necessary to work with logarithmic representations to avoid numerical instability.

A detailed exposition is presented in Ref. [32].

E. Estimation of uncertainties in transition probabilities

For a given temperature β, the statistical uncertainty in Ĉab ≡ Ĉab(τ ; β) can be esti-

mated in a straightforward manner [31, 32]. We start with the N × K weight matrix W

the elements of which are given by

wnk ≡ wn(βk). (23)

augmenting it by three additional columns, indexed by x, X , and Y , consisting of

wnx = wn(β)

wnX =
Ĉ

(n)
ab

Ĉab(τ ; β)
wnx ; wnY =

Ĉ
(n)
a′b′

Ĉa′b′(τ ; β)
wnx (24)

The uncertainty in the transition probabilities Tij(Ĉ) can then be estimated from the un-

certainty in Ĉ by a first-order Taylor expansion

δ2T̂ij ≡
〈

(T̂ij −
〈
T̂ij

〉
β
)2
〉
β

≈
M∑

a,a′ ,b,b′=1

[
∂T̂ij

∂Ĉab

] [
∂T̂ij

∂Ĉa′b′

]
δĈabδĈa′b′ (25)
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where the covariance of the estimates Ĉab and Ĉa′b′ can be estimated as [32]

δĈabδĈa′b′ ≈ Ĉab Ĉa′b′
[
Θ̂xx − Θ̂xY − Θ̂Xx + Θ̂XY

]
(26)

with the covariance matrix estimate Θ computed as

Θ̂ ≡WT [IN −WNWT]+W, (27)

where IN is the identity matrix of rank N and N = diag(N1, . . . , NK , 0, 0, 0). The []+ here

denotes the generalized inverse. Using Eq. (4) the sensitivity of T̂ij to the correlation Ĉab

is given by
∂T̂ij

∂Ĉab
=
δajδbi + δaiδbj − δab

Ĉi
− Ĉij (−Mδab + δai + δbi)

Ĉ2
i

, (28)

with Ĉi =
∑

i Ĉij being the row sum of the correlation matrix C. The final expression for

the covariance matrix of transition probabilities δ2Tij is complex but still calculable. A

detailed description of this procedure can be found in [31, 32].

F. Modified parallel tempering protocol

We employ a modified PT protocol in which a set of Hamiltonian trajectory segments

zkn(t) of uniform length T ≥ τ is generated, with the initial phase space points zkn(0)

sampled from the canonical (NVT) ensemble at corresponding inverse temperatures

β1, . . . , βK [32]. We start by assuming that some process was used to generate the ini-

tial phase space points zk0(0) from equilibrium within the canonical ensemble at each

corresponding inverse temperature βk

P (zk0(0)) = [Z(βk)]
−1 e−βkH(zk0(0)) (29)

This initial phase space points may be obtained, for example, by a standard PT protocol,

or by running the modified protocol for a number of iterations starting from one or more

arbitrary initial configurations.

Consider iteration n of the algorithm. For each temperature index k = 1, . . . , K, Hamil-

ton’s equations of motion are propagated using a symplectic integrator with sufficiently

small timesteps to generate trajectories of zkn(t) of length T . Finally, we propose ex-

changes between the final configurations zin(T ) and zjn(T ) of neighboring temperatures
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βi and βi±1, starting from the highest temperature down to the lowest one in odd iter-

ations and in reverse order in even ones [17].1 The Metropolis-like probability [13] of

accepting or rejecting the exchange depends on the final potential energies of the config-

urations Ui and Uj with

Pexch(Ui, βi;Uj, βj) = min {1, exp[−(βi − βj)(Uj − Ui)]}

Regardless of whether the exchange is accepted or rejected, we reassign the velocities

according to the Maxwell-Boltzmann distribution [38] at the new (or old, if rejected) tem-

peratures, and denote the new phase space points from which the next iteration can be

carried out as zk(n+1)(0) (see proof in Appendix B). This satisfies the conditions defined by

Okamoto [13] in order for the kinetic energies to not appear in Pexch and is equivalent to

rescaling the velocities for accepted exchanges and then applying a massive collision for

the Andersen thermostat [38]. The reason for reassignment of velocities instead of rescal-

ing is that when using Hamiltonian trajectories minimal thermostatting would otherwise

take place.

G. Bayesian estimation of transition probabilities from a single temperature

We also consider two Bayesian methods for estimation of the transition matrices and

rate matrices using data collected from a single temperature. Both methods sample tran-

sition probabilities or rates according to the same likelihood function, but employ differ-

ent model parameterizations and, more importantly, different prior probability distribu-

tions.

1. Reversible Transition Matrices

We use the approach described in [39]. Starting with an observation represented by

the fractional count matrix B, the posterior probability of a transition matrix T(τ) given

1 Note that other exchange proposal schemes can be used, provided the resulting algorithm satisfies the

condition of “balance” (not detailed balance) [37]
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this observation is

P(T|B) ∝ P(B|T) P(T) =
∏
i,j∈S

T
Bij

ij P(T). (30)

As the prior, P(T), we choose a Dirichlet distribution for each row which adds no addi-

tional observations to the likelihood probability

P(T ) ≡
∏
i,j∈S

T−1ij . (31)

Furthermore, we restrict ourselves to transition matrices that fulfill detailed balance, i.e.,

are reversible with respect to the stationary distribution π:

πiTij = πjTji (32)

Here, the distribution in Eq. (30) was sampled using a Markov chain Monte Carlo proce-

dure described in Ref. [39].

2. Reversible Rate Matrices

To sample rate matrices K with elementsKij > 0 for i 6= j andKii = −
∑

j 6=iKij we use

the approach proposed in Ref. [25], which does not estimate the transition probabilities

directly, but uses a parametric form of a reversible rate matrix K, that uses the logarithms

of the elements in the upper-right triangular matrix Kij for j > i (without diagonal en-

tries) and the equilibrium distribution πi, i = 1 . . .M thus assuring a rate matrix with

non-positive eigenvalues and also positive off-diagonal rates. The posterior in Eq. 30,

written in terms of the rate matrix K, is given by

P(K|B) ∝ P(B|K)P(K) =
∏
i,j∈S

exp (τK)
Bij

ij P(K) (33)

where the prior is uniform in lnKij, j > i and lnπi, i = 1 . . . (N − 1) and the detailed

balance constraint

πiKij = πjKji (34)

holds. After sampling rate matrices with a Metropolis Monte Carlo scheme [25] the re-

lated set of transition matrices with the lag time τ is computed by

T(τ) = exp (τK) (35)

All methods with their abbreviations and colors used consistently in the text and figures

in this article are listed in Table I.

13



Method Abbreviation Color

Transition matrix estimation [39] [TE] RED

Rate matrix estimation [25] [RE] GREEN

Dynamical reweighting [32] [DR] BLUE

Shooting trajectories at 302 K [17] [ST] BLACK

TABLE I. Table of methods used for transition probability or rate estimation with their corre-

sponding abbreviations and colors used consistently throughout this paper

III. APPLICATION TO TERMINALLY-BLOCKED ALANINE DIPEPTIDE

A. System Setup

To illustrate the construction of temperature-dependent Markov models using dynam-

ical reweighting, we estimated the transition probabilities between conformational states

for the terminally-blocked alanine peptide (Ace-Ala-Nme) (s. Figure 2) in explicit solvent

from a PT molecular dynamics simulation. An ensemble of 501 Hamiltonian trajecto-

ries 20 ps in length at each of 40 temperatures were generated, spanning the range from

273 to 600 K, with peptide configurations stored every 0.1 ps. The temperatures were

exponentially spaced, thus providing a good overlap in the potential and total energy

distributions between neighboring temperatures and resulting in an average exchange

acceptance probability of ∼ 50% (see Figure 1). All details of the simulation were given

previously [17].

A leapfrog Verlet integrator [40–42] (with bonds involving hydrogen atoms con-

strained) was used to produce the dynamical trajectories. The fluctuation in total en-

ergy averaged over all 20 ps trajectories at each temperature was minimal and the drift

negligible (see Table II). The production run followed a 1 ns equilibration phase during

which exchanges were attempted at 1 ps intervals, ensuring that all initial configura-

tions were drawn from equilibrium at their respective temperatures. Previous work has

demonstrated that a Markov model based on a six-state decomposition, as depicted in

Figure 2, can accurately describe the dynamics of this peptide for lagtimes longer than

τ = 6 ps [17]. We employ the same state decomposition for all temperatures with the
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FIG. 1. Distribution of total trajectory energies in kcal/mol for all 40 temperatures from PT sim-

ulation. Highlighted are temperatures 302 K, 425 K, and 600 K the single-temperature Bayesian

analysis convergence properties of which are shown in Figure 8.

Temp [K] ASD [kcal/mol] Drift [kcal/(ps mol)]

302 0.214± 0.014 0.0056± 0.0006

426 0.280± 0.019 0.0073± 0.0006

600 0.376± 0.026 0.0097± 0.0011

TABLE II. Average of the standard deviation in the energies (ASD) and average drift energies of

leapfrog integrator computed over all 20 ps trajectories of given temperature

suggested minimal lagtime of τ = 6 ps.

To evaluate the accuracy of the methods for estimating transition probabilities, we

compare the separate estimates obtained using dynamical reweighting (DR), transition

matrix estimation (TE), and rate matrix estimation (RE) with a simulation of 6 × 10 000

short (10 ps) trajectories (ST) initiated from the equilibrium ensemble within each state at

302 K. The PT simulation, in comparison, furnishes a total of 501 independent trajectories

at that temperature.

The system is small enough that reasonable statistics can be obtained with moderate

CPU requirements, while complex enough that some transitions (and even some states)

are sampled only at high temperatures. In what follows, the results from the Markov

model obtained from the dynamical reweighting method are compared to the model
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Fig. 1. Potential of mean force and state boundaries. Left: The terminally blocked alanine
peptide with (φ, ψ) torsions labeled. Right: The potential of mean force in the (φ, ψ) torsions at
302 K estimated from the parallel tempering simulation, truncated at 10kBT (white regions), with
reference scale (far right) labeled in units of kBT . Boundaries defining the six manually identified
states are superimposed and the states labeled.

Swope, Pitera, and Suits in the special case that the selection cells from which sets
of simulations are initiated are coincident with the states [49].

We do not expect dynamics of a macromolecule in solution to resemble a Markov
process for all observation intervals τ , as ballistic motion dominates on very short
times, and sufficient time must be allowed for collisions with the solvent and decor-
relation of the trajectory within a metastable state. Imperfect definitions of the
metastable states may also lead to non-Markovian behavior on short times [49]. At
sufficiently long intervals τ , however, we might observe that dynamics resembles a
Markov process. While it is impractical to test the condition of complete history
independence (see (2.1)), we can simply check the (weaker) condition imposed by the
Chapman–Kolmogorov equation (see (2.3)): For transition matrices constructed for
a given τ , we check whether (2.3) holds for several lag times n = 2, 3, 4, . . . to within
statistical uncertainty. If so, the Markovian model can be assumed to be a reasonable
model of dynamics.

3. Application to terminally blocked alanine peptide.

3.1. System setup and equilibration. Using the LEaP program from the
AMBER7 molecular mechanics package [6], a terminally blocked alanine peptide (se-
quence ACE-ALA-NME; see Figure 1) was generated in the extended conformation
with peptide force field parameters taken from the AMBER parm96 parameter set [23].
The system was subsequently solvated with 431 TIP3P water molecules [21] in a trun-
cated octahedral simulation box with dimensions chosen to ensure all box boundaries
were at least 7 Å from any atom of the extended peptide. All minimization and

FIG. 2. Terminally-blocked alanine peptide potential of mean force and Markov state definitions.

Left: The terminally blocked alanine peptide with (φ, ψ) torsions labeled. Right: The potential of

mean force as a function of (φ, ψ) torsions at 302 K in units of kBT , estimated from the PT sim-

ulation using WHAM [28, 43], truncated at 10 kBT (white regions). The six manually identified

states are labelled in black [17].

computed by Bayesian analyses using data from a single temperature only, as in Buchete

and Hummer [25].

B. Estimated transition probabilities as a function of temperature

A comparison of the transition probabilities between all 6× 6 pairs of states as a func-

tion of temperature is given in Figure 3. The blue solid lines give the estimates from dy-

namical reweighting (DR) [17] using all available data at all temperatures, as described in

Section II. To obtain the dimensionless free energy estimates f̂i, we solved the set of self-

consistent equations in Eq. (22) with a relative convergence tolerance in the residual of

10−7 (see Appendix A). Transition probabilities were also estimated at one intermediate

temperature between each pair of simulated temperatures.

The red lines in Figure 3 show transition probabilities for the reversible single tem-

perature estimation of transition matrices (TE) [39]. For each of the 40 temperatures the

sampler was run to collect a total of 10 000 samples. For the sampling of reversible rate

matrices (RE) the sampling as proposed in Ref. [25] was used. After an equilibration

phase of 1 ns with exchange attempts every 1 ps, a total of 10 000 samples was stored

for each temperature separately. Diagnostics of convergence for both methods appear as
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supplementary Figure 8. For reasons of clarity the performance of the rate matrix estima-

tion (RE) is only shown in the detailed comparison plots in Figure 4. The black cross-hair

in Figure 3 refers to the reference values (ST) at 302 K.

Qualitatively, all methods agree, and especially for transitions among highly popu-

lated states (1 to 4). However, the reweighting estimate, which uses the combined data

from all temperatures, has smaller uncertainties than the estimators that use only indi-

vidual temperatures. The general agreement with the reference simulation is best for

dynamical reweighting. The two Bayesian methods have almost identical predictions for

transitions among states with many observed transitions, which is as expected since they

use the same likelihood functions and the influence of the choice of the prior probabil-

ity distribution is minimal here. However, the differences in the transition probabilites

among states with few observations (states 5 and 6) arise from the influence of different

prior probability distributions. See Table III for comparison.

C. Detailed comparison of transition probability estimates at 302 K

For a detailed comparison with precisely known transition probabilites, the Bayesian

analysis method with reversibility constraint for transition matrices[39] (TE) was also

applied to a large set of shooting trajectories at 302 K, in which many trajectories are ini-

tiated from an equilibrium distribution within each state. The results of the comparison

at 302 K and a lag time of τ = 6 ps between the different estimation methods are shown

in Figure 4. All colors are the same as in Figure 3 and Table I.

For transitions that are not sampled at certain temperature ranges, the maximum-

likelihood estimates obtained with the present reweighting method are close to zero (see

Figure 3). Generally, for transition probabilities close to zero or unity, the normal distri-

bution is a poor approximation to this highly asymmetric distribution and therefore leads

to too large uncertainties in these cases (see Figure 4). Thus we suspect that reweighting

will significantly overestimate the uncertainty in these cases since this is derived from

the locally estimated Hessian of the probability distribution.

Overall the reweighting method performs very well compared to the single-temperature

estimates. Even transition probabilities that are sampled very poorly at 302 K (such as for

transitions involving states 5 and 6) have a good agreement with the reference values at
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FIG. 3. Comparison of all 6x6 inter-state transition probabilities at a lagtime of τ = 6 ps as a

function of temperature with error bars showing 95% confidence intervals. Blue lines show the

transition probabilities estimated using dynamical reweighting (DR). Red lines show the esti-

mates from transition matrix estimation (TE) computed from only single temperature data. The

black cross-hair indicates the reference using the shooting trajectory data (ST) at 302 K only.

302 K. Table III shows the standard deviation in the absolute difference of the estimation

methods compared to the reference simulation (ST) using a lag time of τ = 6 ps. The dy-

namical reweighting has a smaller deviation than both Bayesian methods for both high

and low free-energy states.

D. Comparison of temperature dependence of eigenvalues

Dynamical reweighting can also be applied to estimate properties derived from the

transition probabilities. For example, the eigenvalues λi of a transition matrix are related
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RMS in Estimation

(DR) (TE) (RE)

Low-energy states (1 to 4) 0.007 0.023 0.055

High-energy states (5 and 6) 0.140 0.267 0.288

All Transitions 0.079 0.151 0.167

TABLE III. RMS in the absolute difference of transition probabilities for τ = 6 ps compared to the

reference simulation (ST) at 302 K for the three methods of Markov model estimation and high-

and low-energy subsets of transitions. Dynamical reweighting (DR) shows the smallest RMS error

compared to the reference simulation (ST).
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FIG. 4. Detailed comparison of transition probabilities for τ = 6 ps and uncertainty estimations

at 302 K. Red: Single temperature estimation of transition matrix (TE); Green: Single temperature

estimation of rate matrix (RE); Blue: dynamical reweighting estimation (DR), Black: reference

using shooting trajectories (ST).
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FIG. 5. Temperature dependence of estimated eigenvalues. Red: Single temperature estimation

of transition matrix (TE), Blue: dynamical reweighting estimation (DR), Black: reference 2nd and

3rd eigenvalue at 302 K using shooting trajectories (ST). Left: Comparison of the second largest

eigenvalue vs temperature, Right: Comparison for third eigenvalue. The third reference eigen-

value is well predicted by both estimation methods at all temperatures although it matches only

the second eigenvalue in the transition matrix estimation (TE). The second reference eigenvalue

at low temperatures ( below 350 K) is only detected by dynamical reweighting (DR).

to the timescales of processes t∗i by

t∗i = −τ/ ln(λi), (36)

where we assume that the eigenvalues λi are sorted in order of descending modulus

(λ1 = 1 > |λ2| > . . . > |λM | > 0) [23]. Hence, eigenvalues close to unity imply slow

processes i.e., those we are mostly interested in.

We investigated the dependence of the eigenvalues on the temperature in the present

system. Figure 5 compares estimates for the second and third eigenvalues (λ2, λ3) of the

transition matrix at each temperature with the different methods. The variance in the

(TE) case was estimated from the set of eigenvalues of each sampled transition matrix.

To estimate the errors of (DR), we used linear error propagation of the uncertainties in

the transition matrix to the errors in the eigenvalues [20]. At low temperatures ( below

350 K), the second eigenvalue is estimated correctly by dynamical reweighting (DR), but

not by single-temperature estimations. This is due to the fact that the transition process

corresponding to this slowest timescale is not sampled at these low temperatures. Thus,

estimates using only data collected at that temperature are erroneous. The agreement of
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dynamical reweighting timescales with the reference simulation is very good, although

the error bars of the reweighted estimate are still very large compared to the good agree-

ment of the estimated values with the reference values from the shooting trajectories.

We assume that the inappropriate approximation of the asymmetric distributions with

normal distributions used for the linear error propagation lead here as well to an overes-

timation of the errors in the transition probabilities.

The third largest eigenvalue is predicted by both methods equally well (Fig. 5), al-

though it occurs as the second-largest eigenvalue in the single-temperature estimates,

which missed sampling the slowest process (described by λ2) completely. A direct com-

parison of the predicted eigenvectors (Fig. 6) reveals that the slowest process (given by

the second eigenvector of the reference transition matrix (ST)) is not detected by any of

the single temperature methods. However, dynamical reweighting successfully finds all

the processes, although the matching eigenvalues, and thus timescales, are permuted for

faster processes.

The comparison of Markov models is a nontrivial task [44], for which we use a sym-

metrized form of the transition matrix Tsym and expand it into a sum of rank one matrices

Qi spanned by an outer product of the eigenvectors of Tsym by

Tsym = diag(π1/2) T diag(π−1/2) (37)

= R diag(π1/2) RT (38)

=
M∑
i=1

λiri r
T
i ≡

M∑
i=1

Qi. (39)

Here, π = {π1, . . . , πM} is the equilibrium distribution, R = {r1, . . . , rM} the matrix of

normalized eigenvectors of Tsym and λi the corresponding eigenvalues, which are equal

to the eigenvalues of T. Each of the submatrices Qi can be considered as a part of the

full transition matrix working on a timescale given by the respective eigenvalue. These

subprocesses are similar independent of their respective eigenvalues if their eigenvectors

match, as can be determined by the scalar product between the spanning eigenvectors ri:

Sim(Qi,Q
′
j) = rTi r

′
j. (40)
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FIG. 6. Similarity matrices (scalar product) of eigenvectors (EV) from symmetrized transition

matrices estimated with different methods (ST, DR, TE, RE) at 302 K. The eigenvectors indicate the

states involved in the process, and thus high similarity (red) indicates a good approximation to the

reference process (ST). Eigenvectors are sorted as descending eigenvalues. The 2nd eigenvector is

found correctly only by dynamical reweighting, meaning that the single temperature estimations

are unable to correctly predict the slowest process at 302 K.

E. Contributions from different temperatures to the estimates of expectation values

The contribution of each trajectory segment to the estimation of any expectation value

at any given temperature is illustrated in Fig. 7. The left plot shows the average normal-

ized weights from trajectories sampled from the distribution at βk reweighted to βl:

w̄(βl|βk) =
1∑

n∈Q(k) 1

∑
n∈Q(k)

wn(βl) (41)

with Q(k) = {n ∈ 1 . . . N | en = k} being the set of trajectories sampled from the distribu-

tion at βk and the unnormalized trajectory weightswn(β) given in (20), where, on average,

seven temperatures contribute more than 1% to the expectation. The right hand plot il-

lustrates the contribution from the sampled data at βk to the transition counts Bij(βl) for

the transition 6→ 5 given by

Bij(βl | βk) =
1∑

n∈Q(k) 1

∑
n∈Q(k)

w̃n(βl)Ĉ
(n)
ij , (42)

with k indicating the temperature contributed from, l the temperature estimated at, and

i, j representing the transition i → j. As expected, most information contributing to a

specific temperature estimate is always contained in the simulations performed at the

nearest temperatures.
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FIG. 7. Upper: Relative contribution w̄kl in Eq. 41 to the estimates at inverse temperature βk from

simulations at inverse temperature βl averaged over all trajectories at the same temperature. On

average, seven temperatures contribute more than 1% each to the estimation. Lower: Contribu-

tions to the estimation of transition counts for the transition 6→ 5. The sum of one row equals to

the total counts estimated by the method at the desired temperature.

IV. DISCUSSION

The present method provides a means of generating an estimate of transition probabil-

ities from PT molecular dynamics simulations of biomolecules as a continuous function

of temperature. Even at intermediate temperatures not included in the simulation the es-

timate is much more precise than that obtained with either single-temperature methods

examined here. At low temperatures, at which some transitions are not observed at all,

low transition probabilities can still be estimated by incorporating the high-temperature

data.

Additionally, the estimates of transition probabilities can be differentiated with respect

to the inverse temperature β, because the trajectory weights wn(β) are differentiable func-

tions of temperature (20). This allows, in principle, thermodynamic properties to be com-

puted (e.g., heat capacities), provided caution is taken in dealing with numerical issues

since the trajectory weights wn(β) can easily span hundreds of orders of magnitude.

Although the method can be applied to several dynamical models [32], we chose a

set of PT simulations with a modified protocol to produce a series of NVE trajectories
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with initial configurations drawn from the NVT ensemble. For very large systems, the

PT simulation might not be long enough to globally converge. In this case we cannot

use reversible counting as in Eq. (18) to enhance the statistics, but the method can still

be applied without the detailed balance constraint as long as we draw from equilibrium

inside each set Γi. The PT requirement of good exchange rates also ensures good over-

lap in the contribution to the dynamical reweighting for neighboring temperatures. The

approach itself is not limited to Hamiltonian trajectories but can be extended to other dy-

namics (e.g. Brownian and Langevin dynamics) as long as an analytical connection exists

between the weighting factors and the temperature [32].

The degree to which the use of PT can enhance the thermodynamic sampling effi-

ciency is limited. Activated processes will be sampled more often at higher temperatures

while it becomes less and less probable to overcome entropic barriers. Lower tempera-

tures, on the other hand, lead to an increased sampling of entropic barriers, while at the

same time decreasing probabilities for enthalpic barriers. This effectively limits the pos-

sible improvement in sampling and the range of contributing temperatures. However,

information about activated processes is transferred from higher to lower temperatures

and, for entropic barriers, from lower to higher temperatures. Transitions in the alanine

peptide test system are dominated by activated processes (i.e., enthalpic barriers).

Both single-temperature methods give similar results for transitions with good statis-

tics, differing mostly for transitions that were only rarely sampled, due presumably to the

influence of different prior probability distributions. Surprisingly, the Bayesian estimates

provide a reasonable bound on transition probabilities to and from a state even when the

state is not sampled at all. This is most likely due to the reversibility constraint, which

seems to provide information even in cases where there are few transitions to or from a

state. There is, however, a dependence on the Bayesian prior, which leads to different

predictions in cases where the state is not sampled or only rarely sampled. The rate ma-

trix estimation (RE) assumes, in addition to the detailed balance constraint, positivity of

all eigenvalues and non-negative off-diagonal entries. The uniform distribution of pa-

rameters in logarithmic space leads most likely to favoring of low transition probabilities

in states with poor transition statistics.

The way in which the transition probabilities are estimated in terms of equilibrium cor-

relation functions requires that the trajectory segments sampled during the PT simulation
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be drawn from the equilibrium distribution and that the trajectories to be reweighted be

uncorrelated so as to permit an estimation of the statistical error.

The predictions of mean values are very good, while the quality of the error estimation

is limited to a Gaussian approximation, which is problematic in cases where transition

probabilities are close to the extremes (0 or 1) and the probability distributions are thus

very asymmetric. Some combination of Bayesian and reweighting methods (such as T-

WHAM[29]) may provide the best of both types of estimators by yielding more accurate

uncertainties at the expense of introducing some bias from the introduction of energy

histograms or some other parametric distributions for describing the energy density of

states. Finally, the enhanced estimates of mean values and their respective statistical un-

certainties may be used to guide subsequent (potentially adaptive) sampling strategies,

as described in Ref. [21].

V. ACKNOWLEDGMENTS

The authors would like to thank Jed W. Pitera (IBM Almaden), Nicolae-Viorel Buchete

(UCD Dublin), and Gerhard Hummer (NIH) for stimulating conversations during the

execution of this work. JHP gratefully acknowledges funding from the German Re-

search Foundation (DFG) through the award of a doctoral scholarship in the Interna-

tional Graduiertenkolleg IGK 710: “Complex processes: Modeling, Simulation and Opti-

mization”. JDC gratefully acknowledges support from HHMI and IBM predoctoral fel-

lowship programs, NIH grant GM34993 through Ken A. Dill (UCSF), and NSF grant for

Cyberinfrastructure (NSF CHE-0535616), and a California Institute for Quantitative Bio-

sciences (QB3) Distinguished Postdoctoral Fellowship at various points throughout this

work. VSP acknowledges support from NIH RO1 GM062868. JHP and FN acknowledge

support from DFG Research Center Matheon and DFG grant No. 725/2. JCS acknowl-

edges funding from the U.S. Department of Energy “Multiscale Mathematics” SciDAC

and Genomes-to life program under grant No. ERKJE84/ERKPE84.

[1] E. Z. Eisenmesser, D. A. Bosco, M. Akke, and D. Kern, Science 295, 1520 (2002).

25



[2] E. Z. Eisenmesser, O. Millet, W. Labeikovsky, D. M. Korzhnev, M. Wolf-Watz, D. A. Bosco,

J. J. Skalicky, L. E. Kay, and D. Kern, Nature 438, 117 (2005).

[3] H. Feng, Z. Zhou, and Y. Bai, Proc. Nat. Acad. Sci. USA 102, 5026 (2005).

[4] W. Min, G. Luo, B. Cherayil, S. Kou, and X. Xie, Phys. Rev. Lett 94, 1 (2005).

[5] G. Smith, K. Lee, X. Qu, Z. Xie, J. Pesic, T. Sosnick, T. Pan, and N. Scherer, J. Mol. Biol. 378,

941 (2008).

[6] X. Zhuang and M. Rief, Curr. Opin. Struct. Biol. 13, 88 (2003).

[7] A. Matagne, S. Radford, and C. Dobson, J. Mol. Biol. 267, 1068 (1997).

[8] H. Neuweiler, S. Doose, and M. Sauer, Proc. Nat. Acad. Sci. USA 102, 16650 (2005).

[9] R. Goldbeck, Y. Thomas, E. Chen, R. Esquerra, and D. Kliger, Proc. Nat. Acad. Sci. USA 96,

2782 (1999).

[10] C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc. 90, 909 (1995).

[11] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

[12] U. H. E. Hansmann, Chem. Phys. Lett. 281, 140 (1997).

[13] Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).
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Appendix A: Efficient solution of the self-consistent equations for canonical distribution of

Hamiltonian trajectories

For the case of a canonical distribution of Hamiltonian trajectories, the normalilazion

constants Zk or alternatively the dimensionless free energies f̂i ≡ − ln Ẑi are defined

through a set of K coupled nonlinear equations involving the trajectory energies Ekn ≡
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H(zkn(0)):

f̂i = − ln
K∑
j=1

Nk∑
n=1

[
K∑
k=1

Nk exp[f̂k − (βk − βi)Ekn]

]−1
(A1)

Any numerically stable method for solving a set of coupled nonlinear equations can, in

principle, be used to obtain the f̂i. A scheme for solving a more general form of these

equations by self-consistent iteration or Newton-Raphson is described in Appendix C

of [45].

Because of the structure of this specific case, we can rapidly obtain a close initial

guess for the f̂i by using a form inspired by the weighted histogram analysis method

(WHAM) [46]. By instead constructing M bins in the total energy E spanning a range

(Emin, Emax), we can approximate Eq. A1) with a sum over histograms (as in Eqs. 19–20

of [46]):

f̂
(n+1)
i = − ln

M∑
m=1

Hm

[
K∑
k=1

Nk exp[f̂
(n)
k − (βk − βi)Em

]−1
(A2)

where Hm denotes the number of samples Ekn falling in histogram bin m, and Em repre-

sents the energy at the midpoint of that bin. Typically, a value of M ≈ 100 can be used.

One value, say f1, is generally fixed to 0 by subtracting off the computed value of f (n+1)
1

after each iteration in order to avoid numerical drift.

After an initial guess has been reached, self-consistent iteration can rapidly refine the

free energies to the desired tolerance while eliminating the bias arising from the use of

histograms:

f̂
(n+1)
i = − ln

K∑
k=1

N∑
n=1

[
K∑
k=1

Nk exp[f̂
(n)
k − (βk − βi)Ekn]

]−1
(A3)

Again, we fix f̂1 = 0 and terminate iterations when a relative tolerance maxi=2,...,K |f (n+1)
i −

f
(n)
i |/|f

(n+1)
i + f

(n)
i | is less than some given tolerance that ensures the computed expecta-

tions of properties of interest are no longer changing. We find that 10−7 is often a safe

choice.

Cautions observed in Appendix C of [45] regarding sums of logarithms and numerical

over/underflow in the evaluation of exponentials should be observed in implementation

of this, or any, algorithm for obtaining the f̂i.
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Appendix B: Proof that modified PT protocol generates canonical distribution

Here, we prove that the modified PT protocol described in Section II F samples from

the canonical stationary distribution at all temperatures.

Define stationary distributions for momenta p and coordinates q in Cartesian space

<3N at inverse temperature β:

πp(p|β) = [P (β)]−1 e−βT (p);P (β) =

∫
dp e−βT (p)

πq(q|β) = [Q(β)]−1 e−βU(q);Q(β) =

∫
dq e−βU(q) (B1)

where T (p) denotes the kinetic energy and U(q) the potential energy function. Suppose

we have two replicas whose current phase space points are denoted by z1 = (q1,p1) and

z2 = (q2,p2), initially at equilibrium at their respective inverse temperatures β1 and β2,

such that

p1 ∼ πp(p1|β1); q1 ∼ πq(q1|β1)

p2 ∼ πp(p2|β2); q2 ∼ πq(q2|β2). (B2)

We now consider what happens to the distributions of z1 and z2 after an exchange at-

tempt. Define “post-exchange attempt” coordinates and momenta for inverse tempera-

ture β1:

q′1 ←

q1 with prob. 1− θ(q1, q2|β1, β2) (rejected)

q2 with prob. θ(q1, q2|β1, β2) (accepted)

p′1 ∼ πp(p
′
1|β1) (velocity randomization)

where the exchange acceptance probability θ(q1, q2|β1, β2) is given by

θ(q1, q2|β1, β2) = min{1, exp[−β1U(q2)− β2U(q1) + β1U(q1) + β2U(q2)} (B3)

We now compute the distribution of q′1, the configuration supposedly at temperature β1
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after the exchange attempt:

ρ1(q
′
1) =

∫
dq2 [1− θ(q′1, q2|β1, β2)] πq(q′1|β1) πq(q2|β2) +

∫
dq2 θ(q2, q

′
1|β1, β2) πq(q2|β1) πq(q′1|β2)

=

∫
dq2 [1−min{1, e−β1U(q2) e−β2U(q′

1) e+β1U(q′
1) e+β2U(q2)}] e

−β1U(q′
1)

Q(β1)

e−β2U(q2)

Q(β2)

+

∫
dq2 min{1, e−β1U(q′

1) e−β2U(q2) e+β1U(q2) e+β2U(q′
1)} e

−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)

=
e−β1U(q′

1)

Q(β1)
−
∫
dq2 min

{
e−β1U(q′

1)

Q(β1)

e−β2U(q2)

Q(β2)
,
e−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)

}
+

∫
dq2 min

{
e−β1U(q2)

Q(β1)

e−β2U(q′
1)

Q(β2)
,
e−β1U(q′

1)

Q(β1)

e−β2U(q2)

Q(β2)

}
= πq(q

′
1|β1) (B4)

Therefore, after the exchange attempt, the new configuration q′1 is still at equilibrium at

inverse temperature β1. (A similar series of steps can be applied for the temperature β2.)

Redrawing the momentum from the Maxwell-Boltzmann distribution at inverse tem-

perature β1 will, of course, not change the equilibrium distribution, and can be shown to

only support the canonical distribution at inverse temperature β1, and no other station-

ary distribution [47]. Evolution by Hamiltonian dynamics for any length of time does not

alter the stationary canonical distribution [48]. Therefore, the proposed protocol samples

from the canonical distribution at the desired temperatures, provided sufficient time is

allowed for equilibration.

Appendix C: Convergence of transition probabilities in Bayesian Methods

The convergence of transition probabilities from the Bayesian sampling methods is

presented in Supplementary Figure 8 for various temperatures. Therefore, the proposed

protocol generates the canonical distribution at the desired temperature.
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FIG. 8. 95% confidence intervals of Transition Probabilities sampled by the transition matrix

estimation (upper Plot) (TE) and rate matrix estimation (lower plot) (RE) versus number of drawn

samples. Color indicates performance by temperature. Blue: 273 K, Yellow: 426 K, Red: 600 K.

After about 5 000 samples the confidence intervals stabilize suggesting reasonably well sampled

transition probabilities.
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