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An examination of precursor adsorbed states from a dynamical viewpoint reveals that two 
commonly used models of precursor kinetics are not generally applicable. For the case of 
molecular chemisorption, simple, linear rate laws may not be valid unless the adsorbate-solid 
system meets certain dynamical criteria. On the other hand, for dissociatively chemisorbed spe- 
cies, a serious error can be made in estimating the effect of temperature on the adsorbate dis- 
sociation rate if one ignores, as is usually done, the temperature dependence of the initial stick- 
ing probability of the molecule. 

1. Introduction 

Although the existence of precursor adsorbed states was hypothesized many 

years ago [I], it is only in recent years that their influences on adsorption/desorp- 
tion kinetics have been generally recognized [2]. In a previous paper [3] we noted 
that the theoretical studies to date of these systems have consisted solely of “statis- 
tical” treatments [4], thus neglecting the role played by particle dynamics in deter- 

mining the detailed rate behavior. We sought in that earlier work to provide a for- 
malism (adapted from the work of Chandler, Wolynes, and co-workers [5]), which 
would permit one to extract the dependence of adatom sticking probabilities on the 
structure of the weakly-bound precursor. The present paper represents somewhat of 
an extension of that investigation, although our particular interest here lies in ob- 
taining, if possible, some dynamical justification for the conventional models used 
in the analysis of experimental kinetic data from systems thought to involve precur- 
sor states. 

In section 2 we direct our attention to an elementary model system in which 
both chemisorbed and precursor states are qualitatively of the same nature, i.e., 
they involve either atomic or molecular adsorption, but not a dissociative process. 
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One might expect that fairly simple rate laws would be sufficient in order to 
describe the “state-to-state” (chemisorbed * precursor, precursor * free) transi- 
tions. However, by the app~cation of a multistate version of Chandler’s theory, we 
are able to identify dynamical criteria that must be satisfied in order for the 
“naive” rate laws to be valid. 

The catalytically more important case, namely a molecularly adsorbed precursor 
state coupled to a dissociated chemisorbed state, is examined in section 3. Here our 
interest resides in the nature of the temperature dependence of the adsorbate disso- 
ciation probab~ity. The quite simple analysis of these dissociative systems which we 
present suggests that the primary temperature effects arise not, as is generally 

assumed, as a consequence of the relative heights of the barriers to dissociation and 

desorption, but rather they derive from the intrinsic variation with temperature of 

the probability of becoming trapped in the precursor state. We also show that by no 
means need these dissociation rates be simple functions of the system temperature. 

2. Non-dissociative chemisorption 

2.1. Multistate generalization of Chandler’s theory 

The theoretical framework for this part of the study of precursor state kinetics 
consists of a natural extension of the formalism described by Chandler and 
co-workers [.5] that yields dynamical corrections to transition state theory. Since 
we have presented in our previous paper [3 3 (hereafter I) a simplified outline of the 
fundamental approach, the present section will indicate only the way in which that 
work is generalized so as to treat systems having an arbitrary number of states. Sup- 
pose, therefore, that one is interested in a system described by a potential which is 
comprised of a series of m wells (in I we examined the m = 2 case, i.e., a bistable 
potential). One may then define an (m - 1)dimensional column vector of time- 
dependent state populations 

N=N(t). 

(Since the total number of particles, N, is held fixed, only m - 1 individual popula- 
tions are needed in order to specify the system.) Fluctuations of these populations 
away from their equilibrium values are therefore just 

&v(t) = N(t) - m * 

If, furthermore, the system obeys a simple, linear rate law, that is 

&k(t) = 46 &v(t) 

(or equivalently NV(t) = exp(-kt) &N(O)), then one concludes that the fluctuation 
autocorrelation functions must also exhibit a simple exponential decay, 

(~~(0) &VT(t)) a exp(4t) . (2.1) 
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(The 1.h.s. of eq. (2.1) represents a matrix of autocorrelation functions; &NT(t) is 
the “vector transpose” of W(t), i.e., M(t) written as a row vector.) 

From this point it is a fairly simple matter to perform the few algebraic mani- 
pulations that yield the explicit expression for the rate matrix in terms of the indi- 

vidual state populations, 

kT = [WV(O) W(t)>] -l CSlir(O) MvT(t), . 

If indeed the assumed linear rate law is valid for the system of interest, then one 
will find that plots of the elements of k versus time exhibit the same plateau behav- 
ior noted in the studies of the two-state case. That is, the matrix elements will 
attain constant values on a time scale which is longer than some initial fast relaxa- 
tion time, but much shorter than the time required for complete equilibration to be 
reached. Insofar as this paper is concerned, the crucial point will be that confirma- 
tion of the validity of the rate law and the observation of plateau behavior are 

totally equivalent. 

2.2. Three-state case 

Since the particular precursor state kinetic model of interest to us here is 
described by m = 3, we shall elaborate at this point on some of the details of that 
specific case. If the three distinct states are separated spatially such that 

state 1: O<x(t)Gql , 
state 2: 41 <x(t) Gq2 , 
state 3 : q2 <x(t) 

(see fig. l), then the (normalized) reduced population vector may be written in 

terms of standard step functions as 

Ez- 
0 - 

E3- 

El - 

0 Xl 

Fig. 1, Square-well model potential which includes a precursor state. 
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Using this form for N(t) one can easily construct the elements of 2 X 2 rate con- 
stant matrix ~assu~ng that the correlations of the form (~~j(0) ~~~(f~} are slowly 
decaying), 

(!%,I = -x;‘(II- (0) Nq, - 40)) fJl@P - x;‘cJ;(O) w2 - xm @lCf), I 

(kh = -<x;' t x;')(i(o)qq2 - x(o))eI(t)) 

+x;'(a) W(O) - 41) @l(f)> I 

(k)2,1 =-x;"(d) WI - x@O) S,(t)> 

-x;'M4wJ2 - ~(0))~2(~)}, 

Wz,z =-(x9 +x;"Ydw(42 -.eN~*(O) 

+x;'(~~~)~(x(~)-4,)~*l~)~ > 

where x1, x2, and x3 are the equ~ib~um mole fractions of particles in states 1, 2, 
and 3, respectively. Note that in the limit t -+O, the above result reduces to the 
corresponding transition state theory expression, 

(kTST)r,r = (2x1)-’ (k(O)1 6(x(O) - (18 1) = k;$; , 

WTSTh,z = -(2xz)” (1X(0)1 6(x(O) - 41)) = --k;:; > 

(kTST‘)z,x = -~2x~)-‘~l~(O)l ~{~(o~ - 41)) 

+ (2xa)-1 &(0)1 s(x (0) - q2)) = --k;:; + k::; , 

(kTST)2,2 = [(2x2)-’ + (2x3)-’ 1 ~IifO)l~tx@) - q2)) 

t (2x,)-l (lx(O)IS(x(O)-q,))=k~~~ +k;:; +k;:: . 

In comparing k to kTST, one is struck by the curious fact that two of the terms 
appearing in k seem incorrect. Specifically, terms of the form 

(k(O) S(G - 40)) 0 1w t 

which are zero in the short-time limit, intuitively should be expected to vanish at all 
t if the correct rate constants are to be extracted from k. But just what does the 
vanishing of this correlation function mean in terms of the dynamics of particles 
moving in the tristable potential described abave? Quite simply, in order for the 
rate law to be valid, i.e., for plateau behavior of the elements ofk to be observed, 
particles located at x = qa at t = 0 must not pass directly into state 1 on a time scale 
shorter than the system equilibration time. This condition implies either that 
energy dissipation must be suf~ciently rapid within state 2 that particles will be im- 
mediately trapped or that the barrier separating states 1 and 2 must be high enough 
that particles are only reflected back into state 2 (or, of course, a combination of 
these factors). 

A somewhat more rigorous argument of why these dynamical restrictions must 
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be present in a system obeying the simple, linear rate law follows closely along the 
lines of Chandler’s original argument for the existence of plateau values. If these 
values are to be attained in a bistable system, it is necessary that the one indepen- 
dent state population not be coupled to other “slow” system variables. In an exten- 
sion of this requirement to a multistate system, however, one must demand in addi- 
tion that there be no coupling along the m - 1 independent populations them- 
selves. Thus, in our three state case N,(t) and N,(t) must necessarily be uncoupled 
if plateau values are to be observed. But the dynamical conditions which would pre- 

vent such a coupling from appearing are just those indicated above, namely rapid 
energy dissipation and/or a high activation barrier. One is led, therefore, to identify 
the vanishing of the above correlation function with the establishment of plateau 

behavior and hence with the confirmation of the rate law as written. 

2.3. Examples 

As a demonstration of the importance of the considerations indicated above, we 
have determined state-to-state rate constants for an ensemble of particles moving in 
the one-dimensional potential shown in fig. 1. This particular potential function is 
intended to model the adsorption/desorption either of atomic species or of molec- 
ular species which are not dissociatively chemisorbed. Although the parameters 
describing the potential (see table 1) have been chosen somewhat arbitrarily, they 
reflect reasonable guesses for the interactions involved in adsorption which pro- 
ceeds via a precursor state. As in I, we have accounted for the motion of the surface 
(and thus for energy transfer with the surface) by using a Brownian dynamics 
description of the adatom motion parameterized by a characteristic energy relaxa- 
tion time. 

Representative results of these calculations are displayed in table 2. The variable 
parameters are the height and width of the (activation) barrier separating the inner 
and precursor wells and energy relaxation times for particles moving in these wells. 
One may readily see that the criteria suggested in section 2.2 for the existence of 

Table 1 

Parameters for the sample calculations of section 2.3 

Inner well depth = -10 000 K (-20 kcal moF1) 

Precursor well depth = -2500 K (-5 kcal mol-‘) 

Inner well width = 3a. a) (- 1.5 A) 

Precursor well width = 4ao (-2.0 A) 

Outer system bound b) = 2OOao 

Particle mass = 28 amu 

System temperature = 300 K 

a) a 0 = Bohr radius. 
b) Particles do not reflect and return within the time over which plateau values are established. 
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Table 2 

Activation Activation Relaxation Relaxation Plateau values 
barrier barrier time, inner time, precursor established? 

kz+, Ik:?T 

width height well well 

(x2 - Xl) (E2) (PSI (PSI 
(A) (k&/mole) 

0.26 3.5 0.15 0.60 No _ 

0.26 4.0 0.15 0.60 Yes 0.80 
0.26 4.5 0.15 0.60 Yes 0.79 
0.26 3.5 0.15 1.5 No _ 

0.26 4.0 0.15 1.5 Yes 0.80 

0.53 3.0 0.15 0.60 No - 

0.53 3.5 0.15 0.60 Yes 0.12 
0.53 3.0 0.15 1.5 No _ 
0.53 3.5 0.15 1.5 No - 

0.53 4.0 0.15 1.5 Yes 0.72 

0.53 3.0 0.060 0.60 No - 

0.53 3.5 0.060 0.60 Yes 0.57 
0.53 4.0 0.060 0.60 Yes 0.56 

0.53 0.0 0.025 0.25 No - 

0.53 0.0 0.025 0.10 Yes 0.36 

Fig. 2. Example of a rate constant which exhibits plateau behavior. This result was obtained 
using the parameters given in the twelfth line of table 2. 



498 J.E. Adams, J.D. Doll/Dynamical aspects of precursor state kinetics 

plateau values and consequently of a simple, linear rate law are indeed supported by 
these examples. By raising or widening the activation barrier or by increasing the 
rate at which energy is dissipated in the adsorbed states, we are, in general, able to 
produce conditions under which the linear rate laws apply. It should be noted in 
particular that, except for the case of unrealistically fast energy transfer, there must 

exist an actual barrier of a few kcal mol-r in height separating the inner and precur- 
sor states in order for plateau behavior of the rate constants to be observed. (An 
example of such behavior is illustrated in fig. 2, a plot of the time evolution of the 
rate constant for transfer from the precursor state into the inner chemisorptive 
well.) If instead the separating barrier does not describe a truly activated kinetic 
process, then one should not view the precursor well described here as representing 
a discrete, identifiable state of the system. Again, however, we remind the reader 
that such a result applies only to the case of an undissociated chemisorbed species. 

3. Dissociative chemisorption 

A very large class of catalytically important adsorption processes cannot be 
described in terms of the above model inasmuch as they involve dissociation upon 
passage from the precursor state into the more tightly bound chemisorbed state. 
Since such an event characteristically involves the elongation and subsequent rup- 
ture of a bond oriented more or less in the plane of the surface, the actual dissocia- 
tion may be viewed as being “orthogonal” to the concurrent adsorption/desorption. 
The potential function depicted in fig. 1 does not, of course, really reflect this sort 
of dynamical behavior, so a somewhat different approach must be adopted. 

Part of the rationale for choosing to make a closer examination of such sys- 

tems arises as a result of the widespread use of a rather questionable model [6], 
namely that the temperature dependence of the dissociation rate may be predicted 
solely on the basis of an estimate of the height of the barrier separating the chemi- 
sorbed and precursor states. If such a description is indeed valid, then the dissocia- 
tion probability may be written as a branching ratio, 

PddT) = ps kdk 

kdis + kdesorb 

‘P, 
adis exp [-@dis 1 

wdis exp [-@disl + Wdesorb exp [-i-=desorb 1 ’ 

‘P, [l + ~~)exp[-pAE]Jr , (3.1) 

where 1-3 = (k&)-l, AE = E deorb - I!?&~, and ps is the probability of sticking in the 
precursor well. But since empirically we expect the ratio of the frequencies for 
desorption and dissociation to be on the order of 0.1 or less, eq. (3.1) predicts that 
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Pdis should exhibit only a fairly weak temperature dependence. How, therefore, can 
this prediction be explained in light of the fact that often a quite strong depen 
dence on the system temperature is observed [7,8]? It appears unlikely that an 
explanation can be given which retains the notion that the sticking coefficient is a 
constant over an appreciable range of temperatures. Therefore, we seek to show 
that sticking probabilities in the precursor state may themselves afford the bulk of 

the observed temperature effects. 
Some insight into the significance of temperature-dependent sticking is suggested 

by results reported recently by White and co-workers [8] concerning the dissocia- 
tive chemisorption of nitrous oxide on a ruthenium single crystal. In that paper 
they indicated that once the molecular species becomes trapped in the weakly- 
bound precursor state, dissociation proceeds rapidly yielding chemisorbed 02. One 

might suspect, therefore, that the measured initial dissociation rate of NzO would 
be given, to a reasonable approximation, simply by the rate of adsorption of the 
molecule. This hypothesis may be easily tested through an examination of the over- 
all sticking probability for a potential function having a single shallow well, a situ- 
ation which can be described by the potential shown in fig. 1 if E2 is taken to be 
large and positive. (The two-state version of Chandler’s theory described in I is 
quite sufficient for this particular calculation.) 

In fig. 3 we have displayed the results of a sample calculation of the sticking 
coefficient as a function of temperature for a system in which only precursor 

trapping is possible. Note first that the characteristic concave structure of the 
curves reflects essentially the same temperature dependence seen by White in the 
dissociation rates. (A very similar result has also been reported by Grimmelmann et 
al. [9] for xenon sticking on platinum, although in that case the single potential 
well is not a precursor state, but rather a simple physisorbed one.) Second, a com- 
parison of the curves calculated for differing well depths and rates of energy dissipa- 
tion suggests that while the depth of the potential well influences most strongly the 
magnitude of the sticking probability, the curve shapes display a definite depen- 
dence upon the characteristic energy relaxation times. These observations imply 
that from a measurement of sticking probabilities over a range of temperatures, one 
may extract’useful information about precursor state structure which might other- 
wise remain hidden in gross kinetic data. 

But does one recover the complete temperature variation of the dissociation 
probability by equating it to the sticking coefficient’s temperature dependence? A 
fairly simple argument indicates that the answer may be no. We begin with a some- 
what more general expression for 
eq. (3 .l), namely 

m 

P& = J dt k,, exp(-k&) h(t) , 
0 

where exp(-kdist) represents the fraction of undissociated species and h(t) is a 

the dissociation probability than that given in 

(3.2) 
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Fig. 3. Plot of precursor sticking probability versus temperature. The three curves correspond to 
precursor well depths and characteristic energy relaxation times of 2 kcal mol-1 and 1.5 ps 
(solid curve), 2 kcal mol-’ and 0.75 ps (lower dashed curve), and 4 kcal mol-’ and 1.5 ps 
(upper dashed curve). 

function which describes the probability of being located in the molecularly 
adsorbed precursor well. Eq. (3 .I) is easily derived from the above expression if one 
assumes h(t) to be of the form 

WI = p, eXP(-kdesorb0 . 

Again we note that if such a description is valid, then the temperature dependence 
of Pdis should be nearly identical with the corresponding temperature dependence 
of the precursor sticking probability. However, what if there exists some critical 
time t, during which desorption does not occur (e.g., a mean-first-passage time 
through the precursor well)? In this case h(t) is better represented by 

h(t) = Ps exp(-kdesorbt) * (1 - ps) 6(fc - f) , 

where @(t, - t) is, as before, just the standard step function. Substitution of this 
expression into eq. (3.2) and subsequent integration then yields a more complicated 
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dissociation probability, 

which would be expected to exhibit a correspondingly more intricate temperature 
dependence. Although we certainly do not claim that this result necessarily repre- 
sents the best description of dissociation in the presence of concurrent desorption, 
it does point to the fact that conventional analyses of such events may prove to be 
even less satisfactory in that they omit what is quite likely the major source of tem- 
perature effects, the temperature variation of the sticking probability. 

4. Summary 

In this study we have attempted to elucidate some additional features of adsorp- 
tion/desorption via a weary-bound precursor state. Particular emphasis has been 
placed on identifying those assumptions commonly adopted in order to explain 
experimental data that appear to be of questionable validity when viewed within 
the context of adsorbate dynamics. First, it was shown that although arbitrary non- 
dissociative adsorption processes need not obey simple, linear rate laws, chemi- 
sorbed =+ precursor and precursor *free kinetics may be well defined if the gas- 
solid system meets certain requirements. Since, of course, in the three-Dimensions 
case energy dissipation can occur through motion lateral to the surface, the simple 
rate laws may be more generally applicable than the one-dimensional calculations 
would indicate. Still, one must be aware that rate expressions do contain hidden 
dynamical assumptions which unless recognized can invalidate an entire kinetic 

analysis. 
Second, in section 3 we identified a fairly serious flaw in the commonly used 

model of dissociative chemisorption, that the probability of sticking in the molec- 

ularly adsorbed precursor state is assumed to be independent of temperature. Even 
the quite elementary calculation presented herein reveals a non-negligible variation 
of the sticking coefficient as the system temperature is changed. In fact, it appears 

that the temperature dependence of the sticking may actually provide the princip~ 
temperature effect seen in adsorbate dissociation rates. Our simple example also 
suggests that one might be able to probe at least the gross structural features of pre- 
cursor states by examining these changes in the sticking probabilities. But again, the 
most significant finding of this work is that purely statistical models may not yield 
reasonable descriptions of these particular types of adsorption/desorption pro- 

cesses. 
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