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In the molecular dynamics simulation method for fluids, the equations of motion for a collection of
particles in a fixed volume are solved numerically. The energy, volume, and number of particles are
constant for a particular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal to microcanonical ensemble averages of the same properties. In some situations, it is
desirable to perform simulations of a fluid for particular values of temperature and/or pressure or under
conditions in which the energy and volume of the fluid can fluctuate. This paper proposes and discusses
three methods for performing molecular dynamics simulations under conditions of constant temperature
and/or pressure, rather than constant energy and volume. For these three methods, it is shown that time
averages of properties of the simulated fluid are equal to averages over the isoenthalpic-isobaric,
canonical, and isothermal-isobaric ensembles. Each method is a way of describing the dynamics of a
certain number of particles in a volume element of a fluid while taking into account the influence of
surrounding particles in changing the energy and/or density of the simulated volume element. The
influence of the surroundings is taken into account without introducing unwanted surface effects.
Examples of situations where these methods may be useful are discussed.

I. INTRODUCTION

Molecular dynamics and Monte Carlo methods have
become important tools for the study of fluids.!'? They
have been used to study the equilibrium and transport
properties of model atomic liquids, such as the hard-
sphere fluid, ® the Lennard-Jones fluid, * and models for
molecular liquids. ®

The Monte Carlo method, as developed by Metropolis
et al.® and extended in various ways,**"® is a proce-
dure for evaluating configuration space equilibrium
averages for constant temperature ensembles, such as
the canonical ensemble and the isothermal-isobaric
ensemble. Inthe canonical ensemble, the temperature
T, volume V; and number of particles N are specified
in advance, and an algorithm is used to generate a se-
quence of configurations. The average of any property
over this sequence is an approximation to the measured
value of that property for the thermodynamic state with
the specified values of N, V, and 7. Similarly, for the
isothermal-isobaric ensemble, N, the pressure P, and
T are specified in advance, and properties are aver-
aged over a sequence of generated configurations.

In the molecular dynamics method, the Newtonian
equations of motion of a set of N particles in volume V
are solved numerically. The total energy E of the sys-
tem is conserved as the system moves along its tra-
jectory. The average of any property over the tra-
jectory is an approximation to the measured value of
that property for the thermodynamic state with the spe-
cified values of N, V, and E. Such an average is
equivalent to an average over a microcanonical ensem-
ble if the trajectory passes through all parts of phase
space that have the specified energy.

®This work was supported by the NSF-MRL Program through
the Center for Materials Research at Stanford University and
by the National Science Foundation through grant CHE78-
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In some situations it is desirable to perform simula-
tions at constant temperature and/or pressure. For
example, in studying dilute solutions, it is worthwhile
to simulate both the pure solvent and the dilute solution
at the same temperature and pressure. This corre-
sponds to the usual experimental situation in which par-
tial molar quantities of the solute are measured, and
the comparison of calculated results with experiment is
facilitated.®*® Also, in studies of the glass transition
in atomic fluids, it is helpful to be able to manipulate
the pressure and temperature of the surroundings of the
fluid being simulated. *® To achieve isothermal and/or
isobaric conditions, with the appropriate energy and/or
volume fluctuations, it has been necessary to use Monte
Carlo methods, rather than molecular dynamics. An
advantage of the molecular dynamics method, over the
Monte Carlo method, is that molecular dynamics gives
information about the time dependence and magnitude of
fluctuations of position and momentum variables away
from their equilibrium values, while Monte Carlo deals
only with position variables and gives no information
about the time dependence of fluctuations. Thus, in
order to be able to specify the temperature and/or pres-
sure of a simulation, it has been necessary to use the
Monte Carlo method and thereby forgo the possibility of
obtaining dynamical information from the same simula-
tion.

The object of this paper is to present and discuss mo-
lecular dynamics methods for simulating a fluid sub-
ject to a constant pressure, constant temperature, or
constant temperature and pressure. The trajectory
averages for these three types of simulations corre-
spond to averages over the isoenthalpic-isobaric,
canonical, and isothermal-isobaric ensembles, respec-
tively. These methods have the advantages of isother-
mal and/or isobaric simulation without sacrificing a
dynamical description of the fluid.

A molecular dynamics calculation can simulate the
motion of only a small number of particles (typically,
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between 50 and 1000). A physical system with this num-
ber of particles is more like a droplet than a bulk fluid,
and its properties would be strongly affected by its sur-
face. In order to eliminate the surface and obtain
results for a bulk liquid, periodic boundary conditions®
are ordinarily used. These conditions make all points
in the simulated fluid equivalent to all other points. It
is generally assumed that a molecular dynamics cal-
culation with periodic boundary conditions gives results
equivalent to the properties of a small volume embedded
in a bulk sample of the material, provided that the
length of the sample being simulated in several multi-
ples of the correlation length of the bulk fluid.

However, a small group of 50 to 1000 particles in a
volume element in a fluid is constantly subjected to
energy and volume fluctuations due to the surrounding
fluid. These fluctuations are responsible for equil-
ibrating the volume element to the temperature and
pressure of the surrounding fluid. The usual molecular
dynamics method in effect suppresses these fluctuations
and keeps the volume and energy for the N particles
fixed. The methods discussed in this paper allow these
fluctuations to be simulated, without introduction of an
unwanted surface, by distributing the effect of the fluc-
tuations throughout the volume of the simulated fluid.

These methods will be discussed for the special case
of an atomic fluid. In Sec. II, the fluid of interest is
discussed. Sections III-V discuss molecular dynamics
simulations at constant pressure, constant tempera-
ture, and constant temperature and pressure, respec-
tively. Section VI discusses potential applications of
these techniques.

Il. SYSTEM OF INTEREST

We imagine that the system of interest to be simu-
lated is an atomic fluid. (All the methods and results
are easily generalized to the case of molecular fluids.)
In this section we will discuss the classical equations
of motion for a fluid and define several types of en-
semble averages.

The fluid of interest is N atoms, with coordinates
ry, Ty ..., Ty in a cubic volume V with periodic bound-
ary conditions. Each component of each coordinate is
a number between 0 and V*/3, In using periodic bound-
ary conditions, we imagine that if particle i is at T,
there is a set of image particles at positions r, +nv?!/3,
where n is a vector with integer components. The po-
tential energy of the atoms is

UM =2 ulr,,) . 2.1)
i<4

In this sum, 7, is to be interpreted as the distance be-

tween r; and either r, or the nearest image of particle

j» whichever is closer. Thus,
7y=|ry,|=ming|r, —r, +0v?/3| | (2.2)

This is the minimum image convention. In all summa-
tions over particles, the lower and upper limits are 1
and N, respectively.

The Lagrangian for the fluid is

£,(x¥, 1) = E’”-Z Foet - Douln), (2.3)
i

i<y

where m is the mass of an atom. The momenta are

defined as
8L, (r" £¥) .

p,E -—13—1.“,_—=mr" (2.4)
The Hamiltonian is

e (r, pY; V)"Z Iop-£

3
=@m) Y P+ Qoulry,) . (2.5)
i §<J

The Hamiltonian equations of motion are

dr; 93¢, p

2% a8 2.

at ~op, m’ (2. 6a)

dp; _ _ 856 _ _ -

a = o ;;) Byl , (2. 6b)

where u' denotes the derivative of « and F;, denotes a
unit vector in the direction of r; —r,, using the mini-
mum image convention.

A measurable structural or thermodynamic property
F of the system is associated with a function F(r¥, p¥; V)
of the mechanical state of the system. The usual
assumption of statistical thermodynamics is that the
measured F is equal to the ensemble average of the func-
tion F over a suitably chosen ensemble of states. In
this paper we are concerned with four ensembles: the
microcanonical (NVE) ensemble, the canonical (NVT)
ensemble, the isothermal-isobaric (NPT) ensemble,
and the isoenthalpic—isobaric (NPH) ensemble.

The microcanonical ensemble average of the function
F will be denoted Fy (N, V, E), where the subscript
denotes the nature of the ensemble and the arguments
denote the numerical values of N, V, and E. It is de-
fined as

Fyyg(N,V,E)=[NI1QWN, V, E)]™ I dr¥ Jdp”
v

x 8[3¢,(x¥,p";V) - ElF(e ¥, p¥; V), (2.7)

where
n(N,V,E)s(Nl)'lf dr”Idp”G[JCl(r”,p";V)—E] (2.8)
14

is the microcanonical ensemble partition function.
Here 5[x] denotes the Dirac & function. The r, integra-
tions extend over the volume V and the p, integrations
extend over all values from —« to +« for all compo-
nents. The canonical average is

Fyyz N, V,T) =[N1QW, V, T)] fv ar* ( ay"

X exp (_M)F(rn,p”; V) ,

kT
(2.9)
where
= - (rN’pN;V)
oW, v, D=1y | ar* [ gt exp(-FalE RV
(2.10)
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and % is Boltzmann’s constant. The isothermal-iso-
baric ensemble average is

F,,,PT(N,P,T)=[N!A(N,P,T)]'lj dVJ dr”Jdp"
Q v

[PV +3(x”,p"; V)]
kT

x exp(- )F(r”,p”; V), (2.11)

where

A(N,P,T)=(N1)? j: av L dr”Jdp”

<exp- 2V 6, p"; V])

°T (2.12)

Finally, the isoenthalpic-isobaric ensemble average is

Fypu(N, P, H) =[N\T(N, P, )] fo Cav [ [ ap
v

x &3¢, (¥, p¥; V) + PV -HIF (", p"; V), (2.13)
where
rev,p, 0 =) [ av | ar¥ [ ap”
0 14
%6 [3e,(r ¥, p¥; V)+ PV -H]. (2.14)

This ensemble is not as commonly used as the others.
It is related to the NPT ensemble in the same way as
the microcanonical ensemble is related to the canonical
ensemble. Thus A(N, P, T} is the Laplace transform of
TN, P, H) with respect to H, just as Q(N; V, T) is the
Laplace transform of Q(N, V, E) with respect to E, with
(#7)™! being the Laplace transform variable in both
cases.

These ensembles are equivalent for the calculation of
thermodynamic quantities. *® Thus, for example, if T
in the NVT ensemble is chosen so that the average val-
ue of the energy is E, then the NVE ensemble with
these same values for N, ¥V, and E will give the same
value for any thermodynamic property for large values
of N. More precisely, if F is an intensive property,
then Fyyg, Fyvr, Fypr, and Fypg are equal except for
differences of order N°!, if the parameters of each en-
semble are chosen so that all ensembles have the same
average value of N, V, and E. (I F is extensive, the
differences are of order N°.) Because of these differ-
ences, the fluctuations of thermodynamic quantities
about their average values are different. In this sense,
the various ensembles are not equivalent.

Next we define a trajectory average or time average.
Suppose r¥(2), p¥(t), and V(¢) are specified in some
way for t=0. Then the trajectory average of a function
F(”¥,p¥; V) is defined as

F =lim T fT dtF @), p¥@®); vi) ,
o

T~

(2.15)

provided the limit exists.

In the usual molecular dynamics method, N and V are
fixed, an initial choice of r¥(0) and p¥(0) is made, and
Hamilton’s equations of the form of (2. 6) or their equiv-
alent are solved numerically. Then trajectory averages
are calculated for thermodynamic properties. The
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energy J¢; is conserved along the trajectory, and the
hypothesis is made that the trajectory spends equal
times in all equal volumes with that same value of ener-
gy. It follows that

F =Fyys(N,V,E) , (2. 16)

provided F is calculated from (2. 15) using the solution
of (2.6) and the values of N, V, and E on the right are
those that correspond to the calculated trajectory. In
other words, the trajectory average is equal to the
microcanonical ensemble average, and hence the latter
can be calculated from the molecular dynamics tra-
jectory.®

In Secs. III-V, we show that there are ways of gener-
ating trajectories so that the trajectory average of any
function is equal to the ensemble average of that func-
tion over the NPH, NVT, or NPT ensembles. These
ways are modifications of the usual molecular dynamics,
and thus they permit the use of molecular dynamics for
the calculation of averages over these other ensembles.

I1l. MOLECULAR DYNAMICS AT CONSTANT
PRESSURE

At constant pressure, the volume of a system of N
particles fluctuates. To describe such fluctuations, we
devise a molecular dynamics method in which the vol-
ume is a dynamical variable rather than a fixed quantity.
The result will be a way of calculating trajectories so
that the trajectory average of any property is equal to
the NPH ensemble average of that property.

In the constant-pressure molecular dynamics method
we replace the coordinates r;, i=1, ..., N, of the
atoms by scaled coordinates, p;, i=1, ..., N, defined
in the following way

p;=r,/Vl3 =12 ...,N. (3.1)

For r; in the box of volume V, each component of p; is
a dimensionless number between zero and one. Con-
sider the following Lagrangian, in which a new variable
Q appears.

N
Lo 5" Q) =4mQ** 1 by by
=
N
3.2)

u(@" /% p;,) +E MQ? - aQ .
1

i<y
(In evaluating the potential energy term, we use the
minimum image convention for the p vectors in the cube
of unit volume.) If we interpret @ as the volume V,
then the first two terms on the right are just the La-
grangian of Eq. (2.3) expressed in terms of the new
variables. The third term is a kinetic energy for the
motion of @, and the fourth represents a potential ener-
gy, +a@, associated with @. Here a and M are con-
stants.

This Lagrangian can be given a physical interpreta-
tion. Suppose the fluid to be simulated is in a container
of variable volume. The fluid can be compressed by a
piston. Thus, @, whose value is the volume, is the
coordinate of the piston, aV is a pV potential derived
from an external pressure « acting on the piston, and
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M is the mass of the piston. The piston is not of the
usual cylindrical type that expands or contracts the
system along only one direction; instead, a change in
@ causes an isotropic expansion or contraction. This
interpretation is not entirely consistent with Eq. (3.2).
If Eq. (3.1) holds with V=@, then

k; =Q1/3bi +§Q-z/3épt s
and the kinetic energy of the atoms should contain terms

with factors of @ arising from the second term on the
right. Such terms do not appear in Eq. (3.2).

(3.3)

Despite the absence of a consistent physical interpre-
tation, Eq. (3.2) gives a well-defined Lagrangian, and
we now analyze the dynamics it generates. We will call
this system “the scaled system” to distinguish it from
“the original system” whose Lagrangian is £;,. The
momentum conjugate to p; will be denoted 7;.

ad .
ni=5—ﬁ—z=m92/3p,. (3.4)
i
The momentum conjugate to @ will be denoted II.
aL, -
In= 8_‘Q_ =MQ . (3.5)

The Hamiltonian is
N
ch(pN,”N, Q’H) =; ﬁi .‘”t +QH —xz(pN’pN’ Q, Q)

N N
=(2mQ2/3)"Z oM+ Z u(Ql/ap“) +2M)YMI% + Q.
i

i< =1
(3.6)
The Hamiltonian equations of motion are:
dp 8 ,
—_—t = =
= e @70
N
dm, _ 83, 1/3 p;,u'(Q3p,,1)
Baded S = Lk SRR\ SRR . ¥ A (3. 7o)
at 9p; ? J (*Zi;ﬂ 1oyl
aQ &G 11
dt e M (8.7¢)
N
an __9G -1 ( 2/3y-1
i = aa = (09 (- 2(2me*) ; 7
+Q/3 ;p”u'(Q”:"p“)+3aQ) . (3.7d)
<4

These equations of motion for the scaled system can be
solved numerically to give the coordinates and momenta
as a function of time. Such molecular dynamics cal-
culations give trajectory for the scaled system: p¥(t),
7(), Q(t), and (2).

The trajectory average of any function, G(?¥,r%,Q,1I),
of the coordinates and momenta of the scaled system is
defined as in Eq. (2.15).

T
Elei_ng'IL dtG" @), 7" (t), @), () . (3.8)

We assume that this time average is equal to an en-
semble average of G over an NE ensemble, i.e., an
ensemble with fixed energy and fixed number of parti-
cles. (This can be regarded as a microcanonical, NVE,
ensemble for the scaled system, in which V is unity
since the coordinates p; are constrained to lie within a
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dimensionless unit volume.) It follows that
G=Gyz(N,E) (3.9)

where
G (N, E) =[N12,(N, E)]"j1 g I ar® j: aQ j: dan

x 8[3¢,(0" , 7¥,Q,M) - E|G(p", 7", Q, 1) (3.10)

and
QZ(N,E)E(N!)"J; dp”f dn® S: dQ ji dn

x 63", 7", Q, M) - EY . (3.11)

In these two integrals, each p,; is integrated over the
unit cube. The value of E to choose on the right-hand
side of (3.9) is the constant energy of the trajectory
used to calculate the left-hand side.

We now define a correspondence between the scaled
system and the original system. This correspondence

is given by
V=, (3.12a)
r;=Q%p, , (3.12p)
p; =m/QY3 . (3.12c)

Every state of the scaled system corresponds to a
unique value of V and a unique point in the phase space
of the original system for that volume V. (Note that
I does not appear in these equations, so each V and
phase-space point in the original system corresponds
to a manifold of states of the scaled system.)

Using this correspondence, the calculated trajectory
for the scaled system can be used to generate a tra-
jectory for the original system. Along this latter tra-
jectory, the volume varies with time.

vt)=Q() , (3.13a)
()= 3p, (1) , (3.13b)
i) =mt)/Q) /3. (3.13c)

The equations of motion for this trajectory can be de-
rived from (3.13) and (3.7).

dr; p; dlnV
odnd S -4 SEFR 3
at m +3r ar (3. 14a)
dp _ - ’ 1 dinV
dt “#Hr“u (r,))-3p; Tk (3. 14b)
Md%v 2 p-p 1 Z”
- ol P« S < S T .
i a+(3 g 2m 3 ;m (h (r“)>/V
(3. 14¢)

These equations are not the same as Hamilton’s equa-
tions for the original system. Compare Egs. (2.6). In
the limit, however, that the mass of the piston, M, be-
comes infinitely large and dV/dt =0 initially, these equa-
tions become equivalent to the dynamical equations for
the original system.

The trajectory defined by Eq. (3.14) can be used to
calculate time averages of any function F(r¥,p¥; v)
according to Eq. (2.15). The most important result of
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this section is that the time average of any F calculated
from this trajectory is equal to the ensemble average
of F for an isoenthalpic-isobaric ensemble in which the
pressure is a; i.e.,

F=Fypy(N, o, H) , (3. 15)

for some appropriate value of H, except for negligible
errors.

The proof is straightforward. For any function
F(r®, p% V), we can define a corresponding G(p*, ¥, @,11)
by
G, 7", Q, M) =F@*p",7"/Q"% Q) . (3.16)

J

F=

o dll fy dv [, de® [dp' 8[se (e, p¥; V) + av+ 20202 - E]F (Y, pY; V)

Hans C. Andersen: Molecular dynamics simulations

Then it is clear that
G=F, (3.17)

where the left-hand side is defined in Eq. (3.8) and the
right-hand side in Eq. (2.15). Combining (3.17), (3.9),
and (3.10), we find

F=[Nla,N, E)]"j1 dp”jdn” J: aQ i: dll

x 5[5, (0", 1, Q, 1) - E|F(Q'/3p", 7V /Q/%; Q). (3.18)

The variables of integration are converted to V, r”,
and p¥ to obtain

which looks very much like an ensemble average of F,
except for the II integration, which plays no role in any
ensemble for the original system. In both the numer-
ator and denominator, however, the integrand for fixed
I is closely related to the isoenthalpic-isobaric en-
semble. Using (2.13) and (2. 14), we find

dll (N, o, E -N13/2M)Fypu N, @, E - T13/2M)

F= [~ dlT(N, a,E -1%/2M)

(3.20)

The ensemble average in the numerator can be expanded
in a power series in I1%/2M,

FNPI{(N, Ol,E ‘HZ/ZM)

2

=Fypm(N, @, E) -g—M B—QL’;HQ’—P‘——@ +O(N?) . (3.21)
The correction term is proportional to 8%Fyp,/0H:. We
have assumed that F represents an intensive property
in estimating the order of magnitude of the correction
term. (If F were extensive, the correction would be of
order N'.) Thus

8F ypu(N, a, E)

F=FNPH(N:a’E)" oH

= dI TN, a, E -T1%/2M)(1%/2M)

X T IT4an TN, o, E - 12/2M)

+O(N®) . (3.22)
The ratio of the two integrals can easily be shown to be

equal to 12/2M. [To show this, use Egs. (3.9) and

(3. 10) for G=012/2M, and transform the resulting inte-

grals to integrals over r",p", and v, as we did in going
from (3. 18) to (3.19).] Therefore,

F=Fypy(N, @, E) ~TI2/2M 8 F ypy (N, a, E)/3H + O(N"%)

=Fyp(N, @, E -TI2/2M) +O(N®) . (3.23)

Q.E.D. Compare Eq. (3.15). (I F had represented an
extensive quantity, the correction term would be of order
N1.) In deriving this result, we have assumed that
T2/2M is of order N°. The variable Il is a2 momentum
conjugate to a coordinate that is coupled to 6N other
position and momentum variables. The momentum Il
appears in the Hamiltonian only in a quadratic energy

[Zdn s avf, ar¥ [ ap¥ e[, (x ¥, p¥; V) +av+ 2M)NZ - E] !

(3.19)

l

term, I13/2M. The average, N12/2M, will therefore be
kT, where T is the temperature corresponding to the
fixed N and E of the scaled system. It follows that
11%2/2M is intensive.

In other words, when the trajectory used to calculate
time averages of the original system is obtained from a
trajectory of the scaled system, the time average of
any F is the NPH ensemble average of that F. The val-
ue of P for the ensemble is the value of « in the
Lagrangian of the scaled system. The value of H for
the ensemble is the energy of the trajectory of the
scaled system minus the time average kinetic energy
associated with the motion of @.

Using the equivalence of the various ensembles, we
can conclude from (3.23) that

F=Fyye(N, V,E-T1?/2M - aV) +O(N"?)
=FyyrN,V, T)+O(N)

=Fypr(N, o, T)+ON™) , (3.24)
where T =k'1H2/2M. Here the N errors arise from the
slight lack of equivalence of the ensembles. Note, how-
ever, that the error term in (3.23) is of order N2,

Thus, the mean-square fluctuations in the NPH are equal
to those that occur along the trajectory.

The results of this section provide a basis for a mo-
lecular dynamics simulation method for constant pres-
sure. To simulate a fluid with Lagrangian £;, we con-
struct the analogous scaled system with Lagrangian £,.
The trajectory of the scaled system is converted into a
trajectory for the fluid with volume fluctuations. Time
averages along this trajectory can then be calculated.
These time averages are equal to ensemble averages
corresponding to the thermodynamic state with the de-
sired pressure. In constructing the scaled system, we
have to decide on the values of the constants «, E, and
M.

The quantity @, which is a parameter appearing in £,
and in the equations of motion, is chosen to be the val-
ue of the pressure of the fluid thermodynamic state to
be simulated.
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The quantity F, which is the energy of the trajectory
of the scaled system, is equal to the enthalpy of the
fluid thermodynamic state to be simulated, except for a
small correction of $2T. Thus, if desired, the value of
this enthalpy can be precisely chosen in advance.

The quantity M is a parameter appearing in £, and in
the equations of motion. It can be interpreted as the
mass of a piston whose motion expands or compresses
the fluid. The trajectory averages calculated from a
simulation are independent of the value of M, as long as
M is finite and positive. [This follows from Eq. (3.23)
by the following argument. A particular value of E for
the scaled system implies a particular temperature of
the scaled system and, hence, a particular value of
I%/2M that is independent of M. Hence, despite the ap-
pearance of M on the right-hand side of Eq. (3.23), the
right-hand side is independent of M.| Hence, any finite
positive value can be chosen, if the only goal of the
simulation is to calculate equilibrium averages.

If the goal is also to simulate the dynamics of atoms
in a small volume under constant pressure conditions,
then it is important to choose an appropriate value of
M. Equation (3.14c) can be interpreted as Newton’s
third law for the coordinate of a piston on which two
forces act. The first is — a and the second is

2y pi'p; 1 o '
(gg o 5521 viu (r“))/V .
The first is the negative of the external applied pressure
and the second is the internal pressure of the fluid. An
imbalance between these two forces causes an accelera-
tion of the piston. The coordinate of the piston will fluc-
tuate as the motion of the atoms causes the internal
pressure to fluctuate. The time scale for this volume
fluctuation will be determined by the mass of the piston,
M. For a small sample of fluid imbedded in a much
larger sample of fluid, the volume of the small sample
will also fluctuate in response to an imbalance between
the internal and external pressure. The time scale for
the fluctuation of the volume of a sample of fluid is ap-
proximately equal to the length of the sample divided by
the speed of sound in the sample. Thus, it is desirable
to choose the mass M so that the time scale for the
fluctuations of @ in the scaled system is approximately
equal to @ '/* divided by the speed of sound in the fluid.

IV. MOLECULAR DYNAMICS AT CONSTANT
TEMPERATURE

At constant temperature, the energy of a system of
N particles fluctuates. In order to simulate such a
system, we need some mechanism for introducing ener-
gy fluctuations. It might be possible to do this by in-
venting one or more additional degrees of freedom, as
we did in the constant pressure case. We have not been
able to do this in a practical way. Instead, we resort
to the use of stochastic forces that act on the atoms of
the sample and change their kinetic energy. The result
will be a way of calculating trajectories so that the tra-
jectory average of any property is equal to the NVT en-
semble average of this quantity.

In the constant temperature molecular dynamics
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method, the equations of motion of the N particles in
volume V are the Hamiltonian equations, Eq. (2. 6),
supplemented by a stochastic collision term in the equa-
tion for dp,/dt. Each stochastic collision is an instan-
taneous event that affects the momentum of one particle.
The collisions suffered by a particle occur in accord
with a Poisson process, !*! and the times at which dif-
ferent particles suffer collisions are statistically un-
correlated. Between stochastic collisions, the state of
the system evolves in accordance with Eq. (2.6).

To perform the simulation we must first choose the
numerical values of two parameters: T and v. The
first, 7, is the desired temperature of the sample.
The second, v, is the mean rate at which each particle
suffers stochastic collisions. The probability that a
particular particle suffers a stochastic collision in any
small time interval At is vAf.

The times at which each particle suffers a collision
is decided before beginning the simulation. This can
be done by using random numbers to generate the values
for the time intervals between successive collisions of
a particle, such intervals being distributed according to

P(ty=ve™, (4.1)

where P(t)At is the probability that an interval between
collisions is between ¢ and ¢+ Af. (Alternatively, as
the calculation proceeds, random numbers can be used
to decide which particles are to suffer collisions in any
small time interval.)

We pick an initial set of positions and momenta r ¥ (0)
and p¥(0), and integrate the Hamiltonian equations of
motion until the time of the first stochastic collision.
Suppose the particle suffering the collision is i. The
value of the momentum of particle i after the collision
is chosen at random from a Boltzmann distribution at
temperature 7. The change in momentum takes place
instantaneously. All other particles are unaffected by
the collision. Then the Hamiltonian equations for the
entire collection of particles are integrated until the time
of the next stochastic collision. This process is then
repeated.

The result of this constant temperature molecular
dynamics procedure is a trajectory, specified by r ¥ (¢)
and p* {£), for N particles in a volume V with periodic
boundary conditions. This trajectory can be used to
calculate time averages of any function F(r”,p"; v)
according to Eq. (2.15). The central result of this
section is that under certain conditions (see below) the
time average of any F calculated from this trajectory
is equal to the ensembdle average of F for the canonical
ensemble in which the temperature is T, i.e.,

F=Fyy (N, V,T) . (4.2)
The proof of this theorem is very similar to the proof
of the theorem that is basic to the use of Monte Carlo
simulations to perform canonical ensemble averages. !
First we note that the constant temperature molecular
dynamics procedure generates a Markov chain in phase
space.’® The states in phase space for a finite number
of particles are not countable. However, in practice
the calculations will be performed using a finite number

J. Chem. Phys., Vol. 72, No. 4, 15 February 1980

Downloaded 30 Aug 2009 to 130.133.53.58. Redistribution subject to AIP license or copyright; see http:/jcp.aip.org/jcp/copyright.jsp



2390

of significant figures, and so we assume that the num-
ber of states is countable. Thus we can apply the many
powerful theorems about Markov chains with a countable
number of states.

For certain Markov chains, the probability that the
simulated system is in each state at time ¢ approaches
a limit as #—, and this limiting probability distribu-
tion is independent of the initial state of the system.
Then the time average of F along the trajectory is equal
to an ensemble average calculated with the unique limit-
ing distribution. Sufficient conditions for this to be true
are that the chain must have stationary transition prob-
abilities, must be irreducible and aperiodic, and must
have an invariant probability distribution.!® The in-
variant probability distribution is the unique limiting
distribution.

Let a,"’ be the probability that the state of the system
is j at the nth time. Then for a Markov chain with sta-
tionary transition probabilities,

a"=3,adp,, , (4.3)

where p,,, the probability of making a transition from
state 2 to state j is one time step, is independent of n.
For the constant-temperature molecular dynamics pro-
cedure, the transitions are caused by Hamiltonian mo-
tion and stochastic collisions. This procedure is con-
sistent with these equations and satisfies the definition
of a Markov chain. !*

An invariant probability distribution #; is defined as
one that satisfies the equations

Uy =ZpthyPry (4. 4)

Zyu;=1. (4.5)
If

aM=u,, (4.6)
it follows that

a;"V=u, , (4.7
and

a,("')=u! (4-8)

for all m=n. An invariant distribution, hence, is one
that, if it were the actual distribution at one time,
would remain the distribution for all times. For the
constant-temperature molecular dynamics procedure,
the canonical distribution, which is

(N1QWN, v, 1) exp[ -3¢, (c ™, p"; V)/kT]

is an invariant probability distribution if T' in this for-
mula is the same as the T that governs the stochastic
collisions. This follows because, as a consequence of
Liouville’s theorem, the Hamiltonian motion leaves this
distribution unchanged!® and because stochastic colli-
sions of the type discussed above obviously leave the
distribution unchanged.

To prove that an irreducible chain is aperiodic, 16 it is
sufficient!? to prove that there is at least one state i
with p,;;> 0. Consider a state in which the potential en-
ergy of the particles is a local or global minimum and

Hans C. Andersen: Molecular dynamics simulations

in which all the momenta are zero. (Such a state must
exist if the energy of the system has a lower bound. )
This state has a nonzero value of p;;.

The remaining condition is that the chain be irre-
ducible, i.e., that every state can be reached from
every other state in a finite amount of time. Since this
is probably not true under all circumstances, we pre-
fer to keep this as a condition in the statement of the
theorem. Hence the theorem should be restated as: if
the Mavkov chain genevated by the constant tempevature
moleculay dynamics procedure is ivveducible in phase
space, the time average of any F calculated from a tra-
jectory is equal to the ensemble average of F for the
canonical ensemble in which the temperatuve is T, i.e.,

F=Fyyr(N,V,T) . (4.2)
Q.E.D.

Next we must consider the conditions under which the
Markov chain is irreducible. First let us consider the
Markov chain that is generated by Hamiltonian motion
without stochastic collisions. This is obviously not ir-
reducible in phase space because Hamiltonian motion
conserves energy and momentum. If the system is
started in one state, only states on the same manifold
of constant energy and momentum can be reached. Each
stochastic collision in the modified molecular dynamics
procedure can change both the energy and momentum of
the system. One can easily devise a sequence of pairs
of stochastic collisions that will change both the energy
and momentum of the system in any desired way. Thus
by stochastic collisions it is possible to make transi-
tions from any energy-momentum manifold to any other
such manifold. Suppose that the chain generated by
Hamiltonian motion is irreducible on the manifold of
states of constant energy and momentum; that is, sup-
pose that a Hamiltonian trajectory starting on any state
eventually passes through every state of the same ener-
gy and momentum. It follows that the chain for the
modified molecular dynamics procedure is irreducible
in all of phase space, and the theorem applies.

One of the ways of justifying the use of molecular dy-
namics trajectories to calculate microcanonical ensem-
ble averages is to assume that the Hamiltonian motion
is irreducible on a manifold of constant energy and mo-
mentum. The paragraph above shows that this same
assumption for all energies and momenta justifies the
use of the constant-temperature molecular dynamics
method to calculate canonical ensemble averages.

Irreducibility of Hamiltonian motion on the constant
energy—momentum manifolds is a sufficient but not
necessary condition for irreducibility of the constant-
temperature molecular dynamics motion in all phase
space. It is easy to imagine that the stochastic colli-
sions increase the freedom of motion in phase space
to such an extent that the latter motion is irreducible,
even though the former is not.

A major cause for concern about lack of irreducibility
of the motion generated by the constant-temperature
molecular dynamics procedure arises from the possi-
bility that at high density the system may be trapped in
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certain regions of configuration space from which it
cannot depart either in an infinitely long time or in the
finite time of an actual simulation. Stochastic colli-
sions may be of little help in eliminating this possibility
because they do not directly affect the coordinates of

the particles. If this situation actually exists for a
particular fluid of interest and if the region of configura-
tion space in which the system is trapped is atypical of
most of the available configuration space, then trajec-
tory averages calculated by the constant-temperature
molecular dynamics will not be accurate approximations
to canonical ensemble averages. These are conditions
under which the usual molecular dynamics method and
Monte Carlo method should also be expected to fail.

To perform a constant-temperature molecular dy-
namics calculation, it is necessary to choose a value of
v, the stochastic collision frequency for a particle.
Equation (4. 2) assures us, however, that the calculated
trajectory averages are independent of the choice of v
if the irreducibility condition holds. In particular, the
mean-square fluctuation of the total energy from its
average value is independent of v. The time depen-
dence of the fluctuations will be very sensitive to v,
however. It is reasonable to choose v so that the time
for the decay of energy fluctuations along the trajec-
tory will be the same as the time for decay of energy
fluctuations of a small volume of real liquid surrounded
by a much larger volume. This optimum value of v can
be estimated by the following procedure.

Consider a small sample of matter with volume V sur-
rounded by a much larger heat bath of similar matter at
temperature T'. Suppose there is a temperature fluctua-
tion in the small sample so that its average temperature
is T+AT. The small sample will gain or lose energy at
a rate proportional to the temperature difference AT
and to the thermal conductivity x. By dimensional anal-
ysis, the rate of heat gain (in energy per unit time) is
easily shown to be ~ akATV!/ %, where a is a dimension-
less constant that depends on the shape of the sample
and upon the temperature distribution within the small
sample. The dynamics of this sample can be simulated
by the constant-temperature molecular dynamics tech-
nique. Each stochastic collision changes the energy of
the system by —%kAT, since the average kinetic energy
of a particle before collision is 3%(T + AT) and after
collision is $%T. The total rate of occurrence of sto-
chastic collisions is Nv. Hence the rate of energy gain
is —3NvkAT. If we equate these two expressions for the
rate of energy gain, we find

v=3axkV3/kN =2ak/kp* 3N2/3 (4.9)
where

is the number density of particles. If the stochastic col-
lisions are to simulate the effects of the surroundings

of a collection of N atoms in a fluid, the collision fre-
quency should be that given in this formula. Note that

v is of order N?/ 8, and the total collision rate for a
sample is of order N*/?. If some estimate of  is avail-
able, then the proper choice of v can be estimated using
(4. 10).
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A crude but instructive estimate of v can be obtained
by imagining that N is unity, i.e., that the small sys-
tem being simulated contains only one particle. Then
all the other molecules comprise the heat bath, and it
is reasonable to suppose that the required stochastic
collision frequency should be the actual collision fre-
quency v, for a particle. Applying Eq. (4.9) then, we
find

v.=(2a/3)k/kp"* . (4.11)
Hence (4.9) can be rewritten as
v=v,/N¥/3% (4. 12)

For large enough N, the stochastic collision frequen-
cy will be much smaller than the intermolecular colli-
sion frequency. Therefore, for most of the time, most
of the molecules will be moving according to the con-
servative equations of motion for a closed system. The
stochastic interruptions will be infrequent, but they will
cause the energy of the system to relax to a value ap-
propriate to the temperature T at a rate appropriate
for a system of N particles and will cause the energy
to fluctuate about its equilibrium value with the magni-
tude appropriate to a canonical ensemble.

V. MOLECULAR DYNAMICS AT CONSTANT
TEMPERATURE AND PRESSURE

At constant temperature and pressure, the energy,
pressure, and enthalpy of a system of N particles flue-
tuate. In order to simulate such a system, we need
some method for simulating these fluctuations. This
can be done by introducing stochastic collisions into the
constant-pressure molecular dynamics method. The
result is a way to calculate trajectories so that the time
average of any function F is equal to the NPT ensemble
average of this quantity.

In the constant-temperature constant pressure mo-
lecular dynamics method we start with the Hamiltonian
equations (3.7) for the scaled system. In addition, we
imagine instantaneous stochastic collisions that
affect the momentum of one particle at a time. As in
Sec. IV, the collisions suffered by a particle occur in
accord with a Poisson process, and the times at which
the different particles suffer collisions are statistically
uncorrelated. The mean frequency for these collisions
is chosen according to the considerations discussed at
the end of Sec. IV. (We could also have stochastic
collisions that change the momentum II of the piston.)
Between stochastic collisions, the state of the system
evolves in accordance with Egs. (3.7).

Each stochastic collision is instantaneous, and so it
occurs at a particular value of @, the volume coordi-
nate. The Boltzmann distribution for particle momen-
tum 7, for a particular value of @ is proportional to

exp{—m - m,/2mQ%*3pT] .

The effect of each stochastic collision is to replace the
momentum of the affected particle by a new value chosen
at random from this distribution. (Note that the mean-
square value of 7; depends on the value of Q.)

The calculated trajectory of the scaled system can
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then be converted into a trajectory of the original system
using the correspondence in Eq. (3.13). This latter
trajectory can be used to calculate time averages of any
tunction F(r ¥, p¥; V) according to Eq. (2.15). The

most important result of this section is that the time
average of any F calculated from this trajectory is

equal to the ensemble average of F for an isothermal-
isobaric ensemble in which the pressure is a and the

temperature is T, i.e.,
FzFNPT(N’ a, T) ’ (5- 1)

where « is the parameter in the scaled Lagrangian and
T is the temperature governing the effect of the sto-
chastic collisions.

The proof of this theorem will merely be outlined,

since it is similar to those in Secs. III and IV. For the
function F(r”,p¥; V), we define the function
G{p",7",Q,1) by Eq. (3.16). It follows that

F=G, (5.2)

where the left-hand side is defined in Eq. (2. 15) and the
right-hand side in (3.8). Then we assume that the Hamil-
tonian motion of the scaled system is irreducible on a
manifold of constant energy and constant total particle
momentum in the phase space of the scaled system.
Stochastic collisions will change the energy and mo-
mentum. It follows, as in Sec. IV, that the Markov
chain generated by the combination of Hamiltonian mo-
tion and stochastic collisions is irreducible in the entire
phase space of the scaled system. If a>0, an aperiodic
state can be found by minimizing the ¥C;. The stationary
distribution for this Markov chain is a Boltzmann dis-
tribution at temperature T. It follows that

G=Gyr(N,T) = [N!'Q,(N, )] L dp" fdn” f: deQ E din

N N
cexp(- 2L ILQM) 6or o) 6.9
where
= I -1 N N ° =
Q,(N, T)=(N!) Jl dp jd‘n L daQ L a1
« exp<_ &(p’;,;r”,Q,H)) . (5.4)

Because Il appears in JC, only in a quadratic term that
contains no other coordinates or momenta and because
G is independent of I [see Eq. (3.16)], the Il integrals
in the numerator and denominator of Eq. (5. 3) cancel.
When the integrations over p”, 7", and @ are converted
to integrations over r”,p¥, and V using Eq. (3.12),
the result is

6=FN.PT (N, a, T) .
Eq. (5.1) follows from (5.2) and (5. 5).

(5.5)

Q.E.D.

VI. COMMENTS AND POTENTIAL APPLICATIONS

The methods discussed in this paper allow the dy-
namics of a system of a small number of particles at
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constant temperature and/or pressure to be simulated
by calculation of trajectories in various ways. They
simulate the effect of surrounding particles without
creating undesirable surfaces. Moreover, the methods
simulate not only the forces that drive the system to
equilibrium at a given value of the temperature and/or
pressure, but also the forces that cause the energy and/
or volume of the system to fluctuate about their equi-
librium values. The main conclusions of this paper are
a set of theorems relating time averages along the cal-
culated trajectory to ensemble averages in various en-
sembles.

The emphasis of the discussion has been on the cal-
culation of ensemble averages of functions F(r¥, p¥; v).
An interesting, but still open, question is whether time
correlation functions calculated along these trajectories
are related to transport coefficients. For example,
consider the momentum autocorrelation function, C,,(t).
As a time integral along a trajectory it would be defined
as

T
C ) =N"3, lim T"I drp;(t+7) ()
=0

As an ensemble average, it would be defined as
C(»i)(t) =(N'z;p - Pi(t; ¢, 0%, V)

where P,(t; r¥,p", V) is the momentum at time ¢ of
particle i, given that the state of the system at time 0
is (¥, p%¥) in volume V, and the angular brackets de-
note an average over the ensemble of interest. In the
calculation of P,(¢; r",p", V), the volume V is fixed and
the motion should follow purely Hamiltonian dynamics.
C'e)(t) is related to the self-diffusion coefficient. Is it
true that C &) (f)=C (), when the trajectory used on the
right corresponds to the ensemble on the left in the
sense of Secs. II[-V of this paper?

More generally, it is true that the time evolution of
any property of an N particle system simulated using
the methods of Secs. III-V is the same as that of a real
system of N particles surrounded by a much larger
amount of similar matter at constant temperature and/
or pressure? It is plausible that this is true for the
constant-temperature-constant-pressure simulation if
the parameters M and v are chosen to make the time
scales for the decay of volume and energy fluctuations
in the simulation equal to values appropriate to the real
system. It is even more plausible that properties cal-
culated in simulations at constant pressure and tem-
perature for small N are more similar to real proper-
ties than the usual constant energy constant volume
simulations for the same small N. However, we have
not been able to prove these conjectures.

These simulation methods are likely to be useful in a
number of situations. (1) When a system is to be sim-
ulated for only a small number of thermodynamic states,
these methods can be used to insure that desired values
of temperature and/or pressure are achieved in each
simulation. (2) The methods allow energy and density
fluctuations to take place, thus perhaps facilitating the
study of such processes as nucleation and phase sep-
aration which involve large fluctuations. (3) The meth-
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ods allow the investigation of how a system responds to
finite rates of heating, cooling, compression, and ex-
pansion. This may be useful for the study of the glass
transition that takes place when a liquid is cooled and
for the study of bubble formation that takes place when
a liquid is heated and decompressed. (4) The methods
allow the simulation of nonequilibrium processes such
as chemical reactions and phase changes that release a
large amount of energy. If such a process is simulated
with the usual molecular dynamics method using a small
system that has a small heat capacity, the temperature
will rise to an unrealistic extent. In the case of chem-
ical reactions, the rise in temperature may increase
the rate of the reverse reaction in an unrealistic way.
In the case of a phase transition to a phase of lower
energy, the rise in temperature may destroy the newly
formed nuclei of the emerging phase. The constant
temperature simulations would eliminate these prob-
lems by allowing the extra energy to be released to the
surroundings at a physically reasonable rate.
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