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We use an exact microscopic formalism to study the implications of a stochastic model of isomerization
dynamics in liquids. In the model, a reaction coordinate moves in a multistable potential and is coupled to
a thermal bath via random collisions which occur with a specified average collision frequency. The
nonlinear dynamics for this system is solved numerically. It is found that the usual linear rate law for
isomerization is valid for any nonzero collision frequency if the activation barrier to reaction is sufficiently
high. The reasons for this behavior are discussed at length. With appropriate parameter choices, we can
draw conclusions concerning the trans—gauche isomerization of n-butane in liquids. Transition state
theory is found to overestimate the rate constant by at least a factor of 2 to 3 at any collision frequency.
The collisional contribution to the volume of activation is calculated. At 1 atm, the result is an order of
magnitude larger in size than the transition state theory activation volume. Furthermore, this collisional
contribution has a strong pressure dependence that should be observable experimentally.

l. MOTIVATION

A fundamental problem in chemical kinetics is the
connection between the microscopic dynamics in a re-
acting fluid and the phenomenological description of the
reaction by a chemical rate law. Recently, one of us
has provided a theoretical framework for the analysis
of this connection in a discussion of isomerization dy -
namics in classical liquids. !

Consider, as the simplest possible model of a two
state system, the bistable potential of Fig. 1, repre-
senting the potential V{g) corresponding to motion along
the internal coordinate g of some hypothetical molecule.
The two internal states A and B are spécified by a divid-
ing point g =7,. The usual linear rate equation for two-
state isomerization assumes that the nonequilibrium
average numbers of A and B isomers present at time ¢,
i.e., (Ny)n(t) and (Np),(t), respectively, obey

e (Nadnel®) = =k an(NDnelt) + By a(Nadelt)  (11)
for a closed system [N,(¢) + Ng(f) = N=constant]. The
fluctuation of (N, ).(t) away from its equilibrium value
(N, therefore satisfies

(% <6NA>ne(t): - T;::n< 61.\7A>ne(t) ’ (1 2)
with

(BN )ne(t) = AN et = (N4 , (1.3)
and

T =kapt+kaa. (1. 4)
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Equations (1.1) and (1. 2) are alternative statements of
the same rate law.

Two important questions are at the core of our subse-
quent discussion: (1) Under what conditions does the
rate law (1, 1) provide a valid description of the behavior
of the system? and (2) under what conditions are the
rate constants k.5 and kg, correctly given by classical
transition state theory? These questions can be formu-
lated at the molecular level with the aid of linear re-
sponse theory. In particular, from the fluctuation-dis-~
sipation theorem, it is known that for small deviations
from thermal equilibrium, (8N,),.(¢) will decay to zero
in precisely the same way that spontaneous fluctuations
ON4(t)=N,(t) - (N,) regress in an equilibrium system.
The relaxation of the spontaneous fluctuations is deter-
mined by the correlation function

where 5N, = 6N ,4(0), and the equilibrium ensemble aver-
age is over initial conditions. As emphasized in Ref. 1,
the microscopic analysis of the rate equation is most
conveniently discussed in terms of the time derivative
of C(¢) rather than the function itself. It was shown

there that
1dc()
k(t):—N = (1.6)
=(v16(gy = ¥, )Hslg:(D)]) . (1.7)

Here, g4(¢) and v4(¢)=¢,(¢) are the position and velocity
of the internal degree of freedom of a tagged particle at
time ¢, the initial conditions are ¢;(0)=g¢q4, v;(0)=v;, and
the function Hg(g) is 8(g —7.), where 8(x) is unity for
x>0 and zero otherwise. Equation (1.7) counts the frac-
tion of particles crossing into state B at time zero that
are still in state B at time £. Thus, %(¢) is the reactive
flux across the barrier.

Figure 1 shows how k() will behave for two different
situations. First, imagine that ¢(¢) is not affected by
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FIG. 1. A one-dimensional bistable model potential and the
function k(t). The dashed curve illustrates the oscillatory
behavior of k(f) when there is no dissipation. The solid curve
illustrates the behavior of 2(f) when there is coupling to a heat
bath, producing the plateau behavior discussed in the text.

any other degrees of freedom. The delta function in
k(t) places ¢,(0) at the transition state »,. Given this
initial condition, any trajectory will send ¢,(¢) back and
forth. In the absence of coupling to other degrees of
freedom, there will be no dissipation, and the reaction
coordinate ¢,(f) will sample each stable state for short
periods of time. This behavior leads to the oscillatory
behavior shown by the dashed line in Fig. 1.

The more physically relevant situation corresponds
to ¢{t) being coupled to a large number of degrees of
freedom. Let us assume that this “bath” is at (or near)
thermal equilibrium. Further, let us assume that the
potential barrier separating the two potential minima is
large compared to the thermal energy k7. Then, after
q4(t) leaves the transition state and passes over one of
the stable wells, the kinetic energy for the reaction co-
ordinate will be large compared to that of a typical de-
gree of freedom in the bath. Hence, the coupling be-
tween ¢(¢) and the other degrees of freedom will lead to
dissipation, i.e., the bath will take energy from the re-
action coordinate, and q4(f) will be rapidly trapped in one
of the wells, and it will remain trapped for a long peri-
od of time. This behavior leads to the plateau value
shown in Fig. 1. The time to trap the particle is de-
noted by Tp, (a molecular relaxation time), and the time
it takes to activate the reaction coordinate so it is no
longer trapped is roughly 7, (the average time between
reactions).

In Ref. 1, it was shown that if the phenomenological
rate law is correct, then the plateau value behavior will
be found for times ¢ = Az?, where 7., <At < T,,. Further
more, the average frequency of reaction 'r;,’m is given by

Tom= (v 4x8) " R(AL) (1. 8)
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where x, and x5 denote the equilibrium mole fractions
of species A and B, respectively. It is also a straight-
forward matter to prove that the existence of the plateau
value with 7,0 <Af < T, guarantees the correctness of
the phenomenological rate law near equilibrium. Thus,
for processes occurring in systems at or near macro-
scopic equilibrium, the plateau value behavior of k(¢) is
equivalent to the rate law, and the vate constant is de~
teymined by the value of k(t) in the plateau vegion.

One way to appreciate the importance of the separa-
tion in time scales is to note that according to the rate
law C(t) is given (in a coarse grained sense) by

C(t) = ((8N4)?) exp(—t/Tog) - (1.9)
Therefore, from Eq. (1.7)
T;xl(n: (xAxB)-ik(At) [1+0(AL/ Tog)] - (1.10)

Thus, for any nonzero value of Tpo/Tixm, EqQ. (1.8)is
an approximate expression for T;,lm rather than an exact
one, as we have neglected terms of order Af/7., in the
expausion of the exponential exp(-A¢/T,,,). It is also
important to note that this same quantity At/ 7, pro-
vides a measure of the validity of the phenomenological
rate law, as mentioned earlier. This is made clearer
physically by a consideration of the reactive flux k(t).
The quantity A¢/ 7T, is proportional to the area under
k(¢) in the transient region, which is a measure of the
transport over the barrier by the transient (non-steady
state) flux, i.e., At/7.,, measures the fraction of reac-
tions which do not obey the rate law.

A somewhat different approach has been taken by
Widom. ? Classically, Widom’s argument is as follows:
The phase space distribution function flgv;t) obeying
some (unspecified) kinetic equation is written as

Hauit) =3, anllqv) exp(=A.) (1.11)
n
in terms of the eigenfunctions ¥,(gv) and eigenvalues A,

of the kinetic equation. The number of isomers in state
A is given by

(Ngne(t) = f dq f v flgui)H a(q) (1.12)
:Zn:b,, exp(~M\t) , (1.13)

where H,(g) stands for 6(r, -g), and
ba=a, [dq [ v 4ua)HAG) - (1.14)

Note that by=(N4) and );=0 (equilibrium state). Widom
immediately makes the identification 7.1, =, (if the
eigenvalues are ordered 0=2x,<X; <A,<---), and thereby
reduces the problem to determining the spectrum of a
kinetic operator and asserts that the rate law will be
valid if A, - x> ;. We have two comments on this ap-
proach. First and most important, it is very difficult
in practice to find the spectrum of a kinetic equation
corresponding to a realistic system (Widom has done it
only for idealized models), whereas it is not difficult to
calculate k(t) for a realistic model. Indeed, it is con-
venient to analyze computer simulations in terms of
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k(t). Our second comment is that, while it is clear the
condition A; - X, > Ay is necessary for the rate law de-
scription to be valid, it is not obviously sufficient, as
Eq. {(1.13) shows. It is conceivable that even if X, -2,
>> Ay, for some system, b, and b, may be of comparable
magnitude. In that case, a considerable fraction of re-
actants would not obey the rate law (1.1). Stated another
way, the condition A; - Xy > X, guarantees that some
variable, namely, ¥;(gv), the eigenfunction with eigen-
value A, does obey a simple linear rate law. How-
ever, it is not obvious for the general case that the in-
tegral over v of this eigenfunction is exactly or approxi-
mately the concentration of the reactant or product. If
it is not, then the concentration will not obey a rate law
“even if the gap in the eigenvalue spectrum exists.

The correlation function k(¢) is especially well suited
to a consideration of our second important question, the
validity of transition state theory. 13 In the context of
our model, transition state theory says that once a par-
ticle has crossed 7, into the product region of the poten-
tial, it remains there (until another reaction occurs).
Mathematically, this means that Hglg,(¢)] is replaced by
the Heaviside function 8(p) in Eq. (1.7), giving

kost = s(7e) (v16(v)) = (1/2) (| vy ) s(r,) , (1.15)
with
st =exol-pverl/ [ dgexol-svia)],  (1.16)

where 8! is the temperature times Boltzmann’s con-
stant £z T. Equation (1. 15) does not depend on dynami-
cal behavior, only on the shape of the potential, and is
therefore constant in time. Note that the replacement
of Hylgq(2)] by 6(v,) is correct at very short times [short
enough that the particle has experienced no collisions
with other particles or rebounds from the repulsive wall
of V{g)]. Therefore, for any system, k(¢)~kqsr as ¢t

~ 0+ (see Ref. 1). We also mention that, while Eq.
(1.8) and (1, 10) are independent of the precise location
of ,, Eq. (1.15) depends crucially on it. The usual
choice is the location of the maximum of the potential
barrier.

Another way of viewing transition state theory was
also described in Ref. 1. Suppose we imagined that the
rate law was valid at all time scales. Then the expo-
nential in Eq. (1.9) would be valid not only in a coarse
grained sense but even for times shorter than 7.
Since C(0+)= —k(0+) = — krsr, the assumption of pure
exponential behavior fixes T,y at k1yr and thus yields
transition state theory for the rate constant. Of course,
no one should expect such strong adherence to phenom-
enology on short time scales.

To see what we should expect, we analyze in this ar-
ticle a simple kinetic theory for motion of a particle in
a bistable potential coupled via collisions to a heat bath.
This model is solved for various potentials and couplings
of interest and the results are interpreted in the context
of the preceding discussion.
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Il. KINETIC THEORY

A. Model kinetic equation and formal solution

We present now a simple kinetic theory for the phase
space distribution function f(gv;t) due originally to Bohm
and Gross.? Assume that f(qv;t) obeys the local kinetic
equation (classical master equation)

(—;_t +L> f(qv;t):fdv’qu'

xlwlg'v', quiflg’e’;t) ~ wiqu, ¢' v’ )f(gu;t)] (2. 1a)

and take the probability w(g'v', gv) going from the state
q'v’ to the state qv as

wig'v', gv)= () 8lg -¢'), (2. 1b)

where @ is a parameter (the mean collision frequency),
¢{v) is the Boltzmann distribution for velocities, and L
is the Liouville operator

8Vig)

I 8
L=y 6q+m F(q) o ? Flg)=- »

” (2.2)

which generates the free streaming motion of a single
particle in the potential V(g). If the initial value of
Flgu;t) is taken as

Flav;0) =s(g) ¢ (v) 8lg —¢")o(w -0"),

then Eq. (2.1) describes the time evolution of the phase
space correlation function

v, q'v" ;1) = (6lg - q:()] 6lv — v, (1)} B(g" —g1)B(v" —v4)) .

(2. 4)
Here, ¢, v, ¢', and »’ are field variables; ¢y, vy, ¢:(2),
and v4(¢) are the position and velocity of a tagged par-
ticle at time zero and time ¢, respectively. s(g) is the
spatial distribution function defined in Eq. (1. 16). The
indices ¢’ and »’ will subsequently be suppressed unless
explicitly needed.

2.3

This kinetic equation describes a model in which a
test particle streams freely in the potential V(g) between -
instantaneous collisions (of average frequency &) which
randomize the particle’s velocity without changing its
position. The stochastic nature of the dynamics will be
made more precise in subsequent discussion.

It is not difficult to obtain a fgrmal solution to Eq.
(2.1). The Laplace transform flgv;s) given by

f(qv;s):fw dt exp(—st)flqu;t) (2. 5)
0
satisfies
[s+a+L]flguis)= aqb(v)fdv';(qv’; s)

+s(@) o) 6lg -q')ow—-0"). (2. 6)
Solving for flgv;s) gives
flgv;s)=[s + a+ LT [s(@)¢@)slg - q')6(v ")

+ a¢(v)fdv'f(qv;8)] . 2.7

Integrate both sides over v and v', define é(q, q';s) by

5(q,q';s)=fdvfdv’]‘(qv, qg'v';s), (2.8)
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and Eq. (2.7) becomes

Clg,q';s)=C"(g,q' ;s +a) + otfdv[s+ a+L]!
xo(@)Cla,q';s)
=04, q ;s +a)+ aqu’;fdv
x[s+a+ LI o @)8lg -¢')Clg’

(2.9)

' q';s) (2.10)
1

4059

=C0g,q';s+ )+ aqu”é“” @,q";s+a)
xClg",q';s)sg’)" . (2. 11)

Tteration of Eq. (2.11) gives a formal expansion for the
correlation function

é(q’ql;s):é(o)(q’ql;s + Ol)+ aquué(O)(q’qu;s + a)é((l)(qu’q/;s + a)s(qu)-i

';s + C!)(-:(O)(q"',

+ a2quuf dqrné(())(q, qu

in terms of the ideal gas (collisionless) correlation
function

E0(g,q'55)= [ dols + LT s )s(@)olg -q') . (2.13)
k() and C(¢) are related to Clg, ¢";t) by
t)=Nququ’ H,(q)HAlq")Clg, q"5t) , (2.14)
and
k(t) = —Nl dgt(t) , (2.15)

and therefore can in principle be calculated from Eq.
(2. 12), but this is quite difficult, in practice. The dif-
ficulty arises because the computation of é‘o’(q,q';s)
requires the solution of a difficult nonlinear classical
mechanics problem for any interesting bistable poten-
tial. However, approximate solutions may be found
analytically in several limiting cases.

B. Limiting behavior
1. aTK1

Let T represent the average period for a particle to
traverse the entire bistable potential. Then the condi-
tion a7« 1 means physically that a particle on the aver-
age will rebound from the repulsive walls of V(g) many
times before suffering a collision,
have shown that, for symmetric potentials,

0
T'3m=2af . das@)[1-n@)]h(g)+0(?, (2.16)
-v-1(Q
where V(@) is the value of g when Vig)=Q, Q is the
value of V(g) at the top of the potential barrier, and x{g)
=erf({8[Q - V(g)]}'/?). This result was obtained by an
expansion of C(s) ! in powers of a, keeping only the low-
est order term. Further discussion of this result will

be given in connection with exact numerical solutions in
Sec. IIIL

2. /s> 1 (Diffusion limit)
Equation (2. 6) gives, for large a,
=[s+a+ L] [flgv;0)+ ao(v)Cig;s)] ,

Flav;s) (2.17)

Skinner and Wolynes®

"es+a)CO%", q s + a)slg ) s(g! )+ (2.12)
]
1 1 1 r
:[E—?(S+L)+E§(S+L) +0(a )]
x| flqu;0) + ap(v) Clg;s)] , (2.18)

where the ¢’ variable is suppressed for convenience.
Integration of both sides over v and ¢’ gives

0=C(q;0)—sC(q,s)+D C(q,S)
1 3 - 1 _(2?
E;;{ E;F(Q)C(q;s)+0(a§) s D=T , (2.19)
using the identities
fdv Lflqu;0)=0 (2.20)
and |
) 1 8
fdef(qv 0)=(v") o=~ C(q, ) - ggF(q)c(q;O).
(2.21)

Equations (2. 20) and (2. 21) are derived by noting that L
is an odd function whereas f(gv;0) is even. Neglecting
terms of order a'z, Eq. (2.19) becomes, after inverse
Laplace transformation,

%C(g;) 1

ic( t)=D
ot W= 8q am

:—qF(q)c(q;w . @.22)

which is the Smoluchowski equation. § Thus, we have
shown that our kinetic model tends to the correct Brown-
ian motion limit in the limit of high collision rate.

There are many discussions of the problem of passage
over a barrier based on Eq. (2.22), the first being that
of Kramers. %7 An especially comprehensive recent
discussion is given by van Kampen, 8 and there are many
more in the literature.® Kramers' was able to show,

for a smooth potential with quadratic maxima and mini-
ma, that

ol = Y4% opn(_ 8Q)+ 0(a72)

e, (2.23)

where zmwA and 2mwc determine the curvatures of the
well and barrier, respectively.
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FIG. 2.
dynamics with the piecewise constant potential reference pa-

Sample trajectories computed from the stochastic

rameters listed in Table I. The trajectory — enters the prod-
ucts region and is trapped (a TST trajectory), whereas the
trajectories --- and —*— demonstrate different types of non-
TST behavior.

C. Stochastic dynamics

As mentioned previously, the formal solution (2. 12)
of the kinetic equation did not prove immediately useful
for numerical calculations of the correlation functions
C(t) and k(¢). It is possible to expand f(qv;t) in a series
of orthogonal functions (e. g., Hermite polynomials) and
numerically determine the expansion coefficient (as done
by Visscher!® and Blomberg11 in discussions of the Fok-
ker-Planck equation). However, the convergence of
such a solution for our problem is uncertain. We pre-
ferred to develop a method more closely related to the
physics of the Kinetic equation.

Our approach is to calculate trajectories for a particle
in a bistable potential using a stochastic dynamics cor-
responding to the collision operator in Eq. (2.1). If the
stochastic trajectories are properly computed, then any
dynamical property of the system calculated by ensem-
ble averages over a sufficient number of trajectories
should equal that calculated from the phase space dis-
tribution function satisfying the kinetic equation. The
stochastic dynamics corresponding to Eq. (2. 1) is spec-
ified by the following scheme:

(1) Sample a phase point (gv) from the canonical dis-
tribution s(g)¢ (v);

(2) advance the phase point in time using the Liouville
operator (2. 2);

(3) at random intervals, “collisions” occur, which
instantaneously randomize the velocity, leaving the
position fixed;

(4) the times between collisions are sampled from an
exponential distribution, with decay constant «;

(5) new velocities are sampled from the Boltzmann
distribution ¢(v).

By this algorithm, one may advance a trajectory in
time as far as desired. This type of stochastic dynam-
ics has been applied numerically by others to problems
involving rotational motion. 12 Previous work* ! sug-

Kinetic theory for isomerization dynamics

gested to us that the algorithm would provide the same
correlation functions as the solution to the kinetic equa-
tion. Indeed, the equivalence of the stochastic dynamics
and the kinetic Eq. (2. 1) can be established mathe-
matically. This is demonstrated in the Appendix. The
algorithm for the stochastic dynamics easily adapted
for machine computation using standard numerical tech-
niques to integrate the free motion and sample expon-
ential and normal deviates. Figure 2 shows examples
of trajectories computed by this procedure for a poten-
tial drawn in Fig. 3. The details of the calculation and
the physical interpretation of the trajectories is given
in the next section.

1. RESULTS

To make our results physically meaningful, our model
bistable potentials are chosen to roughly approximate
the barrier to internal rotation between gauche and
tvans states observed in n-butane. " We consider two
functional forms: (1) a piecewise harmonic potential

smwilg+qa)?, g<-a,
Vig)= < @-3mwiq®, -a<q<b, (3.1)
Vs + zmwilg —43)2 , b<q,

[®, Vs, g4, g5, m, and w, are specified, and w,, wp,
a, and b are chosen to ensure that V(g) and dV{g)/dq are
continuous] and (2) a piecewise constant potential

©,  g<=qa=ds/2,
—qa—ds/2<q<-a,
-a<g<a , (3.2)
a<q<qa+dy/2,

©, gatda/2<q

These potentials have the advantage that the free stream-
ing motion can be solved exactly and that a small number
of simple parameters specify their shape.

A set of reference potential parameters were chosen
so that our calculations might be relevant to an actual
physical process: the trans—gauche isomerization of
n-butane. In going from the trans to the gauche state,

Qr
Q-kgTr
©
s Ve
O —
1 L
9% 9%
q—
FIG. 3. The two model potentials described in the text. The

solid line is the piecewise harmonic potential given by Eq.
(3.1). The dashed line is the piecewise constant potential of
Eq. (3.2).
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TABLE I. Reference parameters.

Piecewise harmonic potential Piecewise constant potential

Q=2.95 kcal/mole @ =2, 95 keal/mole

qa=qp=1.57T A do=2a=1.30 A

wy=1,06%10' sec™ ga=2.50 A
Vg=0.70 keal/mole da=qa—a=1.85 A
VB:O

kT =0.60 keal/mole
@=3.0x101 gec!

m=1.85%x10"%g

a CH; group in n-butane rotates through an angle A¢
=27/3, which, for a carbon-carbon bond length of ~1.5
A, means the CH; group has moved a distance of roughly
3.14 A along a circular arc. To incorporate the essen-
tial elements of this motion in our one-dimensional mod-
el, we have performed our calculations for a particle of
mass m equal to the reduced CH; mass in n-butane mov-
ing in a bistable potential whose minima are separated
by 3. 14 A. The barrier height and well depths are ad-
justed to match those of the experimental Scott-Scheraga
potential. ¥ These considerations fix the parameters m,
@, Vg, qa, and gy of the piecewise harmonic potential
(3.1). The parameter w; is fixed by requiring the width
of the barrier at energy @ — k57 to equal that of the
Scott—Scheraga potential (see Fig. 3). The reference
parameters that we have used for the piecewise constant
potential (3. 2) are chosen as shown in Fig. 3. The col-
lision frequency a is really the frequency of collisions
which couple to the reaction degree of freedom, rather
than the actual collision frequency. Thus, imagining a
n-butane molecule dissolved in liquid CCl,, the refer-
ence value for o« was taken to be 1/3 of the collision
frequency in a rough hard sphere model of CC1,.}* A sum-
mary of the reference parametersis given in TableI. When
describing variations in parameters, a subscriptor super-
script zero is frequently used in the text to indicate ref-
erence values for particular parameters.

We find that for %(#) both the smooth and discontinuous
potentials give qualitatively similar results, as illus-
trated in Fig. 4. The small differences are in the trans-
ient behavior; the behavior of the plateau value as a func-
tion of a is nearly the same for both potentials. Most
calculations were done using the piecewise constant
potential.

As our value for the effective collision frequency was
only an estimate, calculations were performed for a
range of @. In each case, a plateau was found in k(¢),
from which 7!, was determined. Figure 5 gives 7.1, as
a function of a for the piecewise constant potential.
Also shown in Fig. 5 are the results for small o [given
by Eq. (2.16)] and Kramers’ large o formula. The
traditional Kramers’ result (2, 23)is valid for a harmon-
ic potential like Eq. (3. 1) rather than a piecewise con-
stant one. However, it is not difficult to extend Kram-
ers’ argument to the case of a discontinuous potential,
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PIECEWISE HARMONIC

a’/ag =3
0.5F

K(1)/kqgr

PIECEWISE CONSTANT

0 i 1 L

A1 | L L
0 2 4 8

6
at
FIG. 4. A comparison of results for £(¢) found using the piece-
wise constant and piecewise harmonic potentials for two dif-
ferent collision frequencies and the reference parameters
given in Table I,

and one obtains

Tria(Kramers) = exp(~ 8Q) [2{v?)/(d4d @) + O(a™D)] ,
(3.3)

where d, and d are the well and barrier width, respec-
tively. It is this Kramers’ formula which is plotted in
Fig. 5. At small a, fair agreement with the small «
result of Skinner and Wolynes® is obtained; excellent
agreement with the Kramers’ result is obtained at suf-
ficiently large values of @. Note, however, that phys-
ically reasonable values of & are far smaller than those

small a expansion

large a expansion {Kramers' limit)

-1
/ (TFXH)TST

Trxn

] 1
o] 10 20 30 40

a/ag

FIG. 5. Tk is as a function of o/ a, for the piecewise con-
stant potential, Here, «; is the reference collision frequency.
All model parameters other than a are the reference param-
eter§ listed in Table I. With those values, (T;L)pgp=5.0

X 10 Qo-
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FIG. 6. k() and C(t)/C(0) for the piecewise constant potential
at different barrier heights @. Here, @ is reference barrier
height listed in Table I. Others parameters used are those
given in Table I. From the graphs of k(¢), we estimate that
for @/Q,=1 and 3, the ratio Ty /T,y is 0.04 and 0. 05, respec-
tively. For @/ Q0=i, no plateau is apparent.

for which the asymptotic Kramers result is valid. Fig-

ure 5 clearly shows that the transition state theory (TST)
result (1. 15) is never a good approximation to the actual
rate, for any value of a.

There are enough parameters in this problem that a
systematic exploration of all possible combinations is
not feasible. We have, therefore, used our physical
ideas to guide our parameter choices. One major ob-
jective of this work was to investigate the domain of
of validity of the rate law (1.1). As discussed above,
the validity of the rate law is controlled by the quantity
Tmot/ Trxny the rate law becoming exact as 7o/ Tpg ~ 0.
The following argument shows that for our stochastic
model the Tpo/ T.q 18 a strong function only of the bar-
rier height @. Consider o small: Since the collision
operator samples the Boltzmann distribution ¢ (v), we
may estimate 771, by

T;,Imzozf"° o) d

Y2Q/m
=aerfc(vVBQ) . (3.4)

Another derivation of this result is given by Skinner and
Wolynes. % The time at which the plateau value appears
Tmo1 Will be roughly the collision time a™! (the time to
trap the particle once it has crossed the barrier).
Therefore,

Tmot/ Teen = erfc(VAQ )
~exp(-pQ) (B@>1),

and clearly 7.,/ Tex is small if 8@ > 1.

(3.5)

Consider a large: In the diffusion limit, the Kramers’

Kinetic theory for isomerization dynamics

result gives (with dp=d, =d)

-1 2<'Uz>

Trxn':gza——exp(‘ 8Q) . (3. 6)

The time T, is roughly the time required for a particle
to diffuse across the top of the barrier (as it is instantly
trapped when it reaches the edge). It is a simple con-
sequence of the diffusion Eq. (2.22) that this time sa-
tisfies

2 (v
d :DTm01: p Tmol »

adz (3- 7)
Tm01:<_1;'2_> ’

and therefore

7-mol/ Trxn ™ exp(— BQ) , (3.8)

which, again, is small if g > 1.

From the limiting behaviors as @ becomes large and
small, we expect that, provided ¢ is nonzero, the rate
law will be valid if @ is large compared to k7. We
have numerically studied the effect of changing the bar-
rier height for a value of o between the limiting cases
discussed above (corresponding to ad/(v?)'/*=1). Fig-
ure 6 shows the numerical results for k(¢) and C(¢) cor-
responding to different values of the barrier height @.
Also given is an estimate of T4/ 7.y, Which shows
quantitatively the errors in the rate law description as
BQ becomes small. In Fig. 7, the barrier height @ is
that given in Table I for the frans ~gauche isomerization
of n-butane (~5 25T at 300°K), and C(¢) is shown for
different values of @. The estimates of 7,4/ 7,py demon-~
strate that the rate law description is valid over a wide

’;) a/ao =2

-

; 0.5~ a/a°=|\ ) n

=

ok a/ay =172
n | L 1 i 1 ) 1

1.000
20995
o
x>
G 0.990

0.985

a’a, =1/2

{ L

6

—_

o] 2

an
®-

at

FIG. 7. k(f) and C(¢)/C(0) for the piecewise constant potential
at different collision frequencies a. Here, ¢ is the reference
collision frequency. Other parameters used are given in
Table I.
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»
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0 t 2 3 4 ) 6 7 8
aot

FIG. 8. k() for piecewise constant potentials with parameters
chosen to demonstrate the factors influencing the deviation from
transition state theory. Curve (d) corresponds to do/d&Y
=d,/d{® =1. Curve (a) corresponds to dc/di" =:—n and d,/dj
=10. Curve (c) corresponds to dg/dé® =L. Curve (b) corre-
sponds tod ,/d{? =10. Here, d‘Q and 4§’ are the reference
values given in Table I. Parameter values not specified above
are taken from Table 1.

(0)

range of &, as expected (only in the trivial limit =0
would serious deviations be expected).

Numerical calculations have also been used to explore
the validity of transition state theory (TST). As men-
tioned earlier, TST assumes that once a particle has
crossed the potential barrier, it is trapped (until the
next reaction occurs. ) In the context of our model, we
expect this to be a good approximation if (1) adg/(v?)!/?
<« 1 (essentially no collisions occur while the particle
is crossing the barrier) and (2) adA/(ZQ/m)”2>> 1 (many
collisions occur while the particle is crossing the well
of the potential, ensuring that it is trapped). Figure 8
illustrates the behavior of k(f) for a potential satisfying
both conditions above. Note that the transient period is
very brief, and that k(¢) remains within 10% or so of
kygr in the plateau region. Figure 8 also shows the be-
havior obtained when condition (1) and (2) respectively
are relaxed. Replacing condition (1) shows the devia-
tions from TST that are due to collisions suffered on
top of the barrier. Relaxing condjtion (2) shows devia-
tions from TST that are due to rebounding from the
walls of the potential before being trapped in one of the
wells. To illustrate the kind of events that may occur,
some sample trajectories (briefly mentioned earlier)
are displayed in Fig. 2. Three trajectories are shown,
one which crosses the barrier and is trapped (a TST
trajectory), and two others demonstrating different types
of non-TST behavior. Note that all trajectories begin at
the midpoint of the barrier, as required by the delta
function in Eq. (1.7).

While it is clear from our calculations that TST does
not provide an accurate measure of the precise value of
the rate constant, it is also important to assess whether
TST provides a reliable estimate of the thermodynamic
state dependence of the rate constants determined from
our model. For this discussion, it is convenient to in-

troduce the transmission coefficient « defined by
k(A1) =RperK - (3.9)

The transmission coefficient is a dynamical quantity

4063

(as opposed to the equilibrium kgp) which measures
the fraction of non-TST trajectories. A common ap-
proximation is to assume that « is independent of ther-
modynamic state. If that approximation is accurate,
then the activation energy and volume defined by

kyT01nk(AL)/8T],= AE" , (3.10)

and

- kT 8 1nk(A2)/ 0pl =0V, (3.11)

respectively, can be replaced by the TST estimates

ksT2(81nkggr/8T), = AEsy (3.12)

and
—kpT(81nkagr/8p)p=AVisy .

To see if these replacements are justified, we have ap-
plied our stochastic model to estimate the dependence of
k on the temperature T and the pressure p for the trans—
gauche isomerization of n-butane in dissolved liquid
CCl, and we have compared the dependence with that of
kTST-

For our choice of reference parameters, the thermo-
dynamic state dependence of gy is contained primarily
in the Boltzmann factor exp|-AV(r;)]. When an isomer-
ization process occurs in a condensed phase, V(r() is
actually a free energy! and thus the Boltzmann factor
depends on density (or pressure) as well as on tempera-
ture. By applying the theory for this density dependence
due to Pratt ef al. '® and using the equation of state data
of McCool and Woolf, I" we estimate that for n-butane
in liguid CCl,

AVisr= -1.3 em®/mole . (3.13)

The temperature dependence is estimated more directly

and one finds at room temperature
AEYsr=Q~5k,T . (3.14)

In our stochastic model (and presumably in nature as
well), « depends on thermodynamic state primarily

through its dependence on the collision rate a. Conse-
quently,
dlnk {da
(81nk/8T),= Ja (5?)’ (3. 15)
and
dlnk [da
(81““/6P)T:7a_(35), . (3. 16)

Notice from Fig. 5 that dink/da is not a constant; it
even changes sign. As described earlier, we estimate
that the value of o appropriate for n-butane in liquid
CCl, is roughly 1/3 the hard sphere collision frequency
obtained from the Carnahan-Starling formula'®

a=4/0)(kaT/Mm)! 202 - n)/(1 -n)®, (3.17)

where M and o denote the mass and hard sphere diam-
eter for CCl,,. respectively, and 7 is the packing frac-
tion for the liquid [i. e., (70%/6) times the molecular
density]. The value of o is taken from the rough hard
sphere theory for CCl,, '8 and 7 is determined from the
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FIG. 9. The collisional contribution to the activation volume

—AVY,) for the trans—gauche isomerization of n-butane as a
function of solvent (CCl,) pressure. The transition state theory
estimate of — AVt is shown for comparison.

equation of state. 17 By combining this information with
Egs. (3.15)~(3.17) and our calculated results for
dlnk/da (see Fig. 5), we have estimated the collisional
contributions to AV*!and AE? for n-butane dissolved in
liquid CCl,. These quantities are defined as

AV = —kpT(81nk/8p), (3.18)

and

AEL =ksTH(81nk/8T), , (3.19)
respectively. At 1 atm pressure and room temperature,
we find

AE} ~0.4ksT (3.20)

and

AVE = -8.8 cm®/mole . (3.21)

The collisional contribution to the activation energy is
small compared to the TST value (3. 14). However,
AV,,‘Oll is an order of magnitude larger in size than
AV‘TST. Thus, the pressure dependence of « is far from
negligible. Our results for AV2,, at higher pressures
are graphed in Fig. 9. The principal effect of increasing
pressure is to increase o, which (see Fig. 5) leads to
a sharp decrease in dInk/da and hence the large de-
crease in AV}, shown in Fig. 9. Indeed, at even higher
pressures, AV}, can change sign, as dlnk/dao changes
sign at large @. Thus, there are qualitative features
that are missed if one assumes that « is a constant and
applies the simple transition state theory approximation.
These effects should be observable in high pressure ex-
periments and we hope such experiments will be per-
formed in the near future.
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IV. DISCUSSION

We have shown that trajectory studies of the reactive
flux k(¢) provide a convenient means of analyzing both
the validity of phenomenological rate laws and the be-
havior of rate constants. For the particular stochastic
trajectories we have performed, we have drawn several
important conclusions. First, the phenomenologjcal
description of an isomerization reaction seems correct
provided the collision frequency (i. e., coupling to the
bath) is nonzero, and exp(-p@)<<1. Indeed, fora>0,
the activation energy Boltzmann factor exp(- 8®) is es-
sentially the fraction of reactions that occur which do
not obey the rate law.

Second, we have found that for physical processes like
the {rans -gauche isomerization of n-butane, transition
state theory (TST) is not a good approximation to the
rate constant. The equilibrium TST overestimates the
value of the rate constant by a factor of 2 to 3. Further,
the transmission coefficient is a sensitive function of the
thermodynamic state. This dependence gives rise to a
dynamical contribution to the activation volume which
is far larger in size than that of TST. Perhaps this
phenomenon is responsible for the experimental obser-
vation that, for many organic reactions occurring in
solution, AV' is larger in size than the partial molar
volume change for the completed reaction. 19

Third, we find that inertial effects play as significant
a role in producing non-TST trajectorties as do colli-
sional effects. Indeed, Fig. 8 shows that, for one par-
ticular physical model, roughly half of the non-TST tra-
jectories (or roughly 1/3 of all trajectories) are due to
recrossings produced by rebounding off of the wall
which confines the stable product. This result implies
that studies of isomerization dynamics based on the
Smoluchowski limit (which neglects inertial terms in the
Fokker ~Planck equation) may overlook important physi-
cal processes.

Previous to this paper, most studies of stochastic
motion in multistable potentials were based on the Smol-
uchowski or related limits and approximations. 8~ Two
investigations which do not employ this limit are those
of Skinner and Wolynes,® and of Visscher.® As we have
noted earlier, Skinner and Wolynes® study the same
Bohm-Gross kinetic equation in the limit of small «.
However, for larger collision frequencies, they adopt
a different kinetic equation in which collisions ran-
domize positions as well as velocities. While the rate
constant for this strong collision model can be easily
reduced to simple quadrature, it does not appear to be
a physical model for isomerization reactions. In fact,
in the limit of large «, the strong collision model yields
transition state theory.

Visscher!® studied escape from a monostable potential
using the Fokker-Planck equation (including inertial
terms). The particular potential he studied prohibits
the study of the effects of the rebounding for trajec-
tories with positive initial velocities. Neverthelessde-
spite the differences in potential models, Visscher’s
calculations illustrate the type of nonmonatonic behavior
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we have also found for the rate constant as a function of
the coupling to a bath. Unlike our calculations, Viss-
cher did not analyze stochastic trajectories. Rather,
he assumed a rate constant existed and he searched for
a steady state solution of the Fokker—-Planck equation
employing basis set expansions.

The work we have presented differs from Visscher’s
and others in that we have investigated a wide range of
potentials and numerous coupling constants. Further,
by performing trajectory calculations for the reactive
flux, we have illustrated how it is possible to analyze
the validity of phenomenological rate equations as well
as determine the value of rate constants (if they are well
defined). This procedure is applicable to many body
Hamiltonian systems, and it is not limited to stochastic
trajectories. Thus, our methodology can play a useful
role in the simulation of chemical reactions or other
infrequent events? occurring in condensed phases.
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APPENDIX

We wish to derive a kinetic equation for the phase
space density of a tagged particle which is coupled to a
heat bath by the following dynamical scheme. Between
collision events, the particle streams freely with its
motion generated by the operator exp[L{gv)t]. At ran-
dom intervals, instantaneous collisions occur, during
which the velocity of the particle is thermalized, i.e.,
its velocity is discontinuously changed to a new value
sampled randomly from a Boltzmann distribution. The
times between collisions are assumed to be Poisson
distributed.

We define the Liouville operator L(qv) by

Ligr)=p > _L V@) 8

9% m 8q ov (a1)

and note that, if A(gv,) is any function of the dynamical
variables ¢, and v,

Algywy;t) =exp[L(gwy)t) Algwy) = Algs(t)v,(#)]  (A2)

describes the time evolution of A(g,v;) when we are con-
sidering the uninterrupted free motion of a single par-
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ticle |possibly in some external field V{(g)]. The time
evolution of A(qv,) according to the stochastic dynamics
described above is given by

explL{gv)t] Algwy) ,
(A3)

A(qlvl;t) = eXp[L(CImlUnq)(t - tn)] e

where t,=time at which kth collision occurs, g;=q(0),
v1=01(0), qz=4q1(ty), va=v1{t1), ..., Gn1=0qi(t,), and
Vne1=01(t,). Equation (A3) corresponds to a particular
trajectory, where n collisions have occurred at times
t{- - t, (sampled according to the Poisson distribution)
and the particles velocities after collision are vy. .- v,
(sampled from a Boltzmann distribution). To obtain

the ensemble averaged quantity (A(gvy;¢)), we must
average the velocities v+ - - v,,; over the Boltzmann
distribution ¢(v), sum over all possible numbers of col-
lisions, weighted by the Poisson distribution P,(¢)

= [(at)"/n!]exp(- at) (a = collision frequency), and aver-
age over the times of collision, i.e.,

had t
Alaws)=3 Pt i [ty [ ar A,
n=0 0 0

(A4)
where

(Algywy;t)), =J-dv1¢(v1)' . Jdvn+1¢(vn+1)de1s(qi)A(‘hUl;t)

(A5)
Now consider the phase space correlation function f(gv,
q'v';t), defined by

flgv,g"v';t) = (6lg - q1()]6lv = v(D)8(g" - g )60 —vy))
(A6)

©

¢ t2 .
=exp(- at) Z a"J; dt,- - jo dtifa.qu, q'v';t) , (A7)

n=0

Hlav,a'v't) = [ dgssta) [ dvio@n - [ dvpvna)

Xé(q’ —q1)6(v' —'vl) exp[L(qmlvml)(t - tn)] et

xexplLgw)t;)8(g-q,)6(v ~vy) (A8)

from Egs. (A3)-(A5). Since velocities are randomly
sampled on collision, the time evolution of any function
B(vy) of velocity only is given by

falgv, q'v'5t) = f dqs(q1) f dvip(vy) - - - f A0ns19 (0201)8(q" ~q1)

X6(v" = 1) eXplL(gns1vnst)(t ~2,)]- + - exp[Ligw )t1]6(g —q)6(v ~v,.,) .

Note that

exp[L(qruivn-d)(t —tn)]' vt

and write Eq. (A10) as

eXP[L (q1v1)t1] 6(‘] - ql)é(v - vn&l) = eXP[L(qnnvml)(t - tn)] 6((] - qn*i)é(v - vn-vl) >

B(vl;t) = exp[L(qndvm»l)(f - tn)] B(Urni) . (Ag)
Therefore, Eg. (A8) may be rewritten as

(A10)

(A11)

=expl~Llgo)t - t,)]6(g ~ qna1) 6(v ~vnyy) (A12)
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f"(qz}Y q'v';t):exp[—L(qv)(t —tn)]fdlI1S(Q1)fd'U1¢(U1) e fdvnol(b(vml)é(q’ -ql)é(vl _vl)

X exp[L(qnvn)(tn - tn-i)] ot
Integrate Eq. (A13) over dv,,, giving

exp|L{gv)t1]6(g ~q1) 80 = v,y) .

(A13)

Salguv, ¢'v";t) = exp| - L{gu)(¢ - tn)]¢(v)quis(q1)fdv1¢(v1)' : -fdvm(v,.)é(q' —q)6(0" —v))

x exp{L(gnv)(t, = tnoi)]- - -

exp|L{qv)t]8(q - q1)

(Al14)

=exp[- Lgv)(t -¢,)] ¢(v)fdvquis(m)fdv@(w)- . fdv,.cﬁ(v,,)

Xé(ql ‘ql)é(v’ -—vi)exp[L(q,,v,,)(l,, ‘tn-l)J' st

=exp| - L(gu)(t —tn)]¢(v)Jdvfn-1(qv, gv'it), n=l.

We may now substitute Eq. (A16) into (A7) to get

hd t t
flgv, q'v";t) = exp(- at) {fo(qv, q'v't) + Za"f dty - f 2dt1e><p[—L(qv)(t -tn)]¢(v)fdvfn-1(qv,q'v';ta)},
n=1 0 0 K

where

folgo, q'v';t):quis(ql)fde(vl)é(q' ~q)8(v" ~vy) exp|Ligwt]6lg -6 -vy) ,

explL(g )] 6lg —q)6(v -v,) , (A15)

(Al16)

(A17)

(A18)

:eXp[-L(qv)t]quﬁ(m)jqub(vl)ﬁ(q’ ~q)6(v" —v1)8(g —q1)6(v —vy)

=exp[— Ligv)t]s(g)p@)6(g —¢') 6 (v —v') =exp[- L(qv)tlf(qv,q'v’; 0) .

(A19)

Substitution of Eq. (A19) into (A17) and Laplace transformation (LT) gives

© ty ¢
Flgv,q'v';s)=[s +a+ L(qv)]"{f(qv, q'v';0)+ a¢>(v)Jdv Z; a™! LT[exp(-— atn)f Ay f 2dz‘lf,,_1(qv, q’v’;t,,)] } , (A20)
n= 0 0

=[s+a+ L(qv)]'l{f(qv, q'v';0)+ aq&(v)fdv LT [exp(— atyolgv, ¢'v'; 1)

=, tnet ty
+Z a"exp(_ atml)f dtn' vt f dt1f,,(qv, qlv,;tn-ol)] ’
n=1 0 0

=[s+a+ L(qv)]'lif(qv, q'v';0)+ ad)(v)fdv}.‘(qv, q'v';s)} .

Inverse Laplace transformation gives

[a% + L(qv)] Hqv,q'v';t) = aqb(v)fdvf(qv, q'v';t) - aflqu, q'v';t),

which is the desired result.
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