Statistical mechanics of isomerization dynamics in liquids
and the transition state approximation?
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In this article, time correlation function methods are used to discuss classical isomerization reactions of
small nonrigid molecules in liquid solvents. Molecular expressions are derived for a macroscopic

phenomenological rate constant. The form of several of these equations depend upon what ensemble is
used when performing averages over initial conditions. All of these formulas, however, reduce to one final
physical expression whose value is manifestly independent of ensemble. The validity of the physical

expression hinges on a separation of time scales and the plateau value problem. The approximations
needed to obtain transition state theory are described and the errors involved are estimated. The coupling
of the reaction coordinate to the liquid medium provides the dissipation necessary for the existence of a
plateau value for the rate constant, but it also leads to failures of Wigner’s fundamental assumption for
transition state theory. We predict that for many isomerization reactions, the transmission coefficient will
differ significantly from unity and that the difference will be a strong function of the thermodynamic state

of the liquid solvent.

l. INTRODUCTION

In a recent series of articles,? we have studied the
equilibrium statistical mechanics of small nonrigid
molecules. We derived microscopic expressions which
describe how condensed phase environments alter the
average conformational structures of molecules from
what is found in the gas phase.

The trans-gauche equilibrium of n-butane is perhaps
the simplest example of this phenomenon (see Fig. 1).
The dihedral angle ¢ is the only appreciable intramolec-
ular degree of freedom. The intramolecular energetics
involved when rearranging the conformation of the mole-
cule is denoted by V(¢). In the gas phase, the distribu-
tion function for the variable ¢ is

s‘m((j))=e'8"(°)/f'd¢e‘”(°’, 1.1)

where the superscripts 0 indicates a gas phase result,
and 7= ksT.

Since conformational rearrangements inliquids involve
the displacement of solvent molecules, the ability of the
solvent to literally digest a particular conformational
species must be accounted for. The distribution function
for the nonrigid solute in a liquid is similar to s‘°’(¢>) in
Eq. (1.1); but the bare intramolecular potential V(¢)
must be replaced with a free energy function. Indeed,
the exact result is™2

T
e-swo)-sw(o)/f d¢p eV 9)-Bu(o) (1.2)
-r

where w(¢) is the change in Helmholtz free energy of the
liquid solvent due to rotating the dihedral angle of a
single solute molecule from zero (our choice of the state
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of zero energy) to ¢. The quantity exp[- Bw(s)] is pro-
portional to the cavity distribution y*(¢) for the solute.®
Thus, Eq. (1.2) can also be written as

s@)=5@l*@)/ [ do sV (@) (1.2%)

From Eq. (1.2’) and the rotational isomeric model,® it
follows that the mole-fraction equilibrium constant for
trans —gauche equilibrium obeys the equation

(xg/xt)=(xg/xt)(°)(y:/y}")- (1,3)

Simple numerical calculations™* of the cavity distribu-
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FIG. 1. Trans~gauche isomerization for n-butane. ¢ is the
dihedral angle. The trans conformer is shown schematically
on the left. (¢ =0 for that state). The gauche conformers,
pictured on the right, are located at ¢ ~=2n/3. V(¢) is the
intramolecular potential energy for n-butane. The graph of
V(o) is schematic,
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FIG, 2, The two-state one-dimensional isomerization model
discussed in the text. One can imagine the hypothetical mole-
cule drawn in the figure. The potential of mean force V(g) is
compared with the bare intramolecular isomerization potential
V(g) in the graph, The points v, and v’ are two alternatives
for the point which divides state A from state B.

tions for n-butane in the gauche and trans states y¥ and
y¥, respectively, show that (y}/y¥) differs significantly
from unity (the ideal gas result), when n-butane is im-
mersed in a dense fluid such as liquid carbon tetra-
chloride. Thus, liquid phase values of (x, /x,) differ
substantially from the gas phase ratio (x, /x,)'?.

These remarks refer to static properties. It is rea-
sonable to expect the dynamics of isomerization equilib-
rium is also affected by condensed phases, Indeed,
according to classical transition state theory,’~’ the rate
constant for going from trans to gauche states, k.,
should be related to its value in the gas phase at the
same temperature by the equation

y*
B =k(0) 2t
t-g t-g y:: 3

(1.4)
where y¥ denotes the value of the cavity distribution
function for the activated (transition) state, Presumably
that state lies close to the value of ¢ at which V(¢) is a
maximum between the trans {4 =0) and gauche (¢ =z 21/
3) states.

In this article, we explore with time correlation func-
tion formalism the conditions for which transition state
equations like Eq. (1.4) are valid. There are really
three basic questions which must be resolved. The
first has to do with the existence of the rate constant.

It must be possible to write a rate law; and this can be
done only if the time scale for isomerizations is much
larger than the times which characterize the dynamics
of all the other degrees of freedom that couple with the
conformational coordinates. The second question con~
cerns the correct molecular expression for the rate con-
stant once ifs existence is accepted. The third asks
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what dynamical approximations must be made to obtain
the transition state theory formula from the molecular
expression for the rate constant.

We focus attention on the second and third questions.
We assume that a rate law for isomerization reactions
is established experimentally. With this assumption as
a starting point, there is still a lot to be done. Our
analysis touches upon ideas that have appeared in the
literature for many years. For example, the correla-
tion function expressions for rate constants which are
derived in Secs. III, V, and VII are closely related to
formulas presented by Yamamoto® and Zwanzig® and
more recently by Kutz, Oppenheim, and Ben-Reuven
and by Stillinger. ' The physical picture discussed in
Sec. VIII with which the transition state theory approxi-
mation is justified from a correlation function expres-
sion is similar to the so-called® “fundamental assump-
tion” of Wigner.® A major purpose of this article is to
summarize these old ideas in a common language. The
results presented herein that we believe are new involve
nuances associated with equilibrium statistical mechanics
of chemical equilibrium in condensed phases,'? with the
ensemble dependence of correlation function formu-
las, 1% and with the plateau value problem. ' These
subtleties are addressed in both the main text and the
Appendix.

10

Il. SIMPLE TWO STATE SYSTEM AND
PHENOMENOLOGICAL DESCRIPTION OF
ISOMERIZATION DYNAMICS

For notational convenience, consider a hypothetical
isomerization process that is even simpler than the
trans —gauche transitions in n-butane, In particular,
imagine a molecule with a single internal degree of
freedom, described by the coordinate ¢, and the intra-
molecular potential V{g) drawn in Fig. 2. V(g) con-
tains two minima. One is located at g=7»,. When ¢ is
close to that point, the molecule is in state 4. Simi-
larly, the region near rj is associated with state B,
The dividing “surface” (i.e., point) between the two
states is the position ;. This position ¥ should be
located near the maximum in V(q) which separates the
two states.

We find that exact relations are insensitive to the
precise choice of ».. However, to derive transition
state theory expressions—which are approximate—the
choice of 7¢ is crucial. The reader should note that the
location of the extremum in V(g) is not necessarily the
same as that for the potential of mean force for the in-
ternal variable ¢, namely, V{(g).? As we have already
mentioned, the solvent structure can significantly alter
the effective intramolecular potential from its nature in
the gas phase. Qualitative differences between V(g) and
V(g) are shown schematically in Fig, 2. In that figure,
the position . is taken as the location of the maximum
for V(q) because that choice is useful in obtaining tran-
sition state theory. This matter will be discussed in
Sec. VIII,

With #. defined as the dividing surface between states
A and B, we can define the numbers of molecules in
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states A and B as follows: Let g,(¢) denote the internal
coordinate for the 7th solute molecule at time #. There
are N solute molecules in the system. The characteris-
tic functions for states A and B are

{1, r<re,
- 2.1
HA('V) 0: 7’>7’C’ ( a)
and
0, ’V<1’c,
HB(’V)=1—HA(7’)= 1, r>7c (2.1b)

Thus, the number of molecules in state A at time ¢ is

N
NA(f)=;HA[qi(t)], (2. 2a)
and similarly
Np(t) =N ~Ny(t) =3 Hala,()]. (2.2b)
i=

For an open system, the total number of solute mole-
cules N is a function of time since particles can flow in
and out of the system. However, for a closed system
N is a constant of the motion. This simple difference
between open and closed systems suggests that differ-
ences must exist between grand canonical and canonical
ensemble analyses of isomerization reactions. Indeed,
the two ensembles yield different equations at nearly all
the intermediate steps. Only the final physical expres-
sions are the same. In the main text that follows, we
study a closed system which is characterized by the
canonical ensemble. The open system (grand canonical
ensemble) analysis is studied in the Appendix,

The average numbers of A and B isomers are (N,)
and (Ny), where the pointed brackets denote the equilib-
rium ensemble average, The equilibrium constant is

K:<NB>/(NA>:xB/xA7 (2'3)

where xp and x4 denote the average mole fractions of B
and A isomers, respectively. The application of a dis-
turbance changes the observed numbers from their
equilibrium values (N, ) and (Np) to time dependent non-
equilibrium values (N,),,(#) and (Np),.(¢). Atthe macro-
scopic level, the time dependence of these numbers can
be characterized by a rate law.

We shall assume that at low solute concentrations, the
experimentalist finds a simple linear rate law

d(Nﬂ;t“(t) = kA~B<NA >ne(t) +kp- A<NB>ne(t) .

(2.4)
Notice that there are no diffusion terms in Eq. (2.4).
Hence, Eq. (2.4) can be correct only for a closed sys-
tem where N=N,(¢)+Ng(t)=constant. The solution of
Eq. (2.4) is

(Vg 00e(2) =N ) + [N 4 )0 (0) = (N Y]e™ Trm (2.5)
where
Tim=Fa-5+Fp-4. (2.6)

The two rate constants are related by the detailed bal-
ance condition,

2961

K=kA-B/kBoA, (2-7)

so that an alternative formula for the reaction relaxation
time 7., is

(2.8)

It is probably impossible to derive a macroscopic rate
equation like Eq. (2.4) from realistic microscopic laws.
However, Eq. (2.4) is a reasonable model of what would
be found experimentally for a closed system. Some
phenomenological expression is required as a starting
point for a correlation function analysis of a rate con-
stant—or any other transport coefficient, The precise
identification of microscopic quantities with the macro-
scopic rate constants depends upon the particular form
of the phenomenological equation. If experimentalists
inform us of another rate equation, ittoocanbeanalyzed
in an identical fashion.

lIl. FIRST CORRELATION FUNCTION EXPRESSION

'r',m:kA,B/xa.

We now discuss our first microscopic equation for the
rate constants in Eq. (2.4). An equivalent memory
function expression is discussed in Sec. V., Then a
related approximate though physical expression is de-
rived in Secs. VI and VII. The approximate equation
is our “second correlation function expression,”

Consider the equilibvium time correlation function

C(t) =(O6N 6N, (2)y, 3.1)
where

6NA(t)=NA(t)_<NA>, (3.2)

ON, =8N ,(0), (3.3)

and the equilibrium ensemble average is over initial
conditions (all the coordinates and momenta of all the
particles in the system, both solute and solvent mole-
cules). The behavior of C(¢) is linked to (V,),,(f) in the
linear regime by the fluctuation-dissipation theorem. '
In particular, close to equilibrium

C(s) wstf (Nadpe(8) = (N,
oo hy 4 (o) 3.9
where C(s) denotes the Laplace transform of C(f). The

phenomenological result, Eq. (2. 5), canbeused at small

values of the Laplace transform variable s. Provided
the rate law is correct,
[C(s)/CO]~ (s +775), (3.5)
for small s, As a result,
<6NA5NA(t)>
ron= [t Sl (3.6)

which provides an exact connection between the phenom-
enological rate constant and a microscopic canonical
ensemble time correlation function. Of course, this
formula is not a new result. See, for example, Ref. 10,
An alternative formula for 7,,, has been derived by
Stillinger.!' His result (in our notation) is

® dc(z
27, (BN 1)) = = J; at 2 —-d-;%—z ,

with
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which appears different than Eq. (3.6). However, one
may integrate by parts twice to show that Stillinger’s
formula is equivalent to Eq. (3.6).

A remarkable aspect of Eq. (3.6) is that it is a ca-
nonical ensemble result, It is not valid when the grand
canonical ensemble is used to perform the average over
initial conditions. This situation is similar to that
found by Green®® when he considered the differences
between canonical and microcanonical ensemble calcu-
lations of the thermal conductivity. It has long been
appreciated that apparent discrepancies of this sort oc-
cur because the second moments of fluctuating quanti-
ties depend on the ensemble used.’® When proper al-
lowance is made for the effects of changing ensembles,
the resulting formulas should yield identical values (in
the thermodynamic limit). The grand canonical formula
that corresponds to Eq. (3.6) is discussed in the Ap-
pendix. We find that provided it is meaningful todiscuss
a rate constant, the actual values for 7., do agree in the
canonical and grand canonical ensembles even though
the fluctuation formulas appear different.

IV. PROPERTIES OF C(r)

To proceed with the correlation function analysis of
the rate constant, it is useful to understand certainprop-
erties of C(t). The behavior of C(f) near ¢=0 is par-
ticularly significant. For a closed system, the fluctua-
tions of N, are coupled to those of Ny due to the con-
straint N, + Ny =N =constant, This constraint leads to
the canonical ensemble result'®

C(O) = <(5NA)2> = <NA >(NB>/N 5

which is valid for low solute concentrations. [The open
system (grand canonical) result is {(6N,4)® =(N,). See
Appendix A. |

@.1)

The first derivative of C(#) is

dcdtt =C(2) = ON, N4(8)) = = (NA(~1)ON, )

=~ (N8N, (2)) . (4.2)
From Egs. (2.1) and (2. 2) one finds
Na(0) =—Z_erl;(t)6[1’c 0. (4.3)

Hence, at low solute concentrations, where different
isomerization molecules are uncorrelated,

C(#) = (Nindlre — g)Halqy( 9)])
= = (NH 4(g1)q:(8)8l7c - g1(£)]) .

Let us first evaluate é(t) at precisely £ =0, The result
is

4.4)

C(0) =% (Ng18(rc - q1)) =0, (4.5)

where the second equality follows from the fact that the
classical equilibrium distribution is an even function of
velocities. However, C(¢) is not continuous near ¢ =0,
At times arbitrarily close but not precisely at ¢ =0,
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Co)dC(t)/dt
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FIG, 3. The short time behavior of dC(t)/dt. € is a positive
infinitesimal time. See text,

~1
Trs

é(t) is not zero. To demonstrate this behavior, intro-
duce the infinitesimal positive time €, and consider
4:5(rc —q1)Halgi(€)]. The delta function fixes ¢, at »¢ at
£=0. The characteristic function H,|g,(€)] is nonzero
only if q,(€)<7,. Since initially ¢, is at , and since €
is arbitrarily small, g¢,(€) will be less than »¢ only if ¢,
<0. Hence,

é(ﬁ) =(N§,6(rc - CI1)HA[511(€)]>
:<Nf.116(7’c - (11)9(— 511)>
=—%<N(C'I1[5(1’c -q1)},

where 6(x) is the unit stép function which is 1 for x > 0
and zero otherwise. Similar reasoning demonstrates
that C(- €)=~ C(e)#0.

(4.86)

The right-hand side of Eq. (4.6) is closely related to
the transition state theory approximation. That theory
gives5°7

'r;}mz7,;15=(2x,4x3)'1<‘f11‘),cs(1’c), 4.7)
where
s(re) =X6(re ~q1))
= e"ﬁ"c’/ dre™ ™ (4.8)

is the probability distribution for finding a molecule
with internal coordinate ¢; at position ., and <\z;1\>,c
is the equilibrium ensemble average of |§,|given that
¢, is fixed at .. (For a truly one-dimensional problem
the specification of that configurational constraint when
averaging |g,!is unnecessary since coordinates and
their conjugate momenta are uncoupled in the classical
equilibrium phase—space distribution function.) By
comparing Eqs. (4.1), (4.6), and (4.7), it is seen that

[C(e)/C(0)] = - 175 ==~ [C(=€)/C(0)] . (4.9)

To summarize, we have shown that the derivative of
C(t) is zero at ¢ =0, while at ¢ =t €, the derivative is
¥ T}ls. This discontinuous behavior is illustrated in Fig.
3. The behavior implies that the second derivative é(t)
contains a delta function at ¢ =0. In particular
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lim i at[C(1)/C(0)) == 105 . (4.10)
If one assumed that C(#) behaved as an exponential, the
relaxation time for the exponential decay could be ob-
tained from Eq. (4.9)—the limiting slope as # -~ 0+. The
integral over C(¢) yields 7., according to Eq. (3.6).
Hence, the exponential assumption would produce 7.,

=~ T1ps. However, such an assumption does not provide

a physical interpretation of transition state theory.

V. MEMORY FUNCTION FOR C(t)

The inverse relaxation time 7;,1‘,, plays a role in iso-
merization dynamics that is analogous to that of trans-
port coeifficients in hydrodynamics. This analogy can
be pursued by seeking an expression for -r'1 that in-
volves a flux autocorrelation function. It w1ll be seen
that such an expression cannot hold exactly because there
is no experimentally controllable limit in which N ,(¢)
becomes a conserved variable. Nevertheless, confor-
mational transitions do occur slowly compared to other
molecular processes, and something like the traditional
hydrodynamics calculations for densities of conserved
variables should hold to a good approximation when con-
sidering isomerization dynamics. Indeed, much of theo-
retical chemical kinetics is based upon an expression
for T;,lm (or equivalently k,_ ) that involves an integral
of a flux autocorrelation function. To see how such an
expression can be derived, we follow the hydrodynamics
example, and study the memory function M(¢).

The standard Mori~Zwanzig relationships are®-%
Cs) =[s +M(s)](6N,)3, (65.1)
with
M(2) =((BN )y (N 1e% N, ), (5.2)

where the projection operator @ is defined by its opera-
tion on a general dynamical variable G,

QG=(1-P)G,
PG = 6NA<(5NA)2>-1<6NAG> ’

(5.3a)
(5. 3b)

and L is (w1thu1 a factor of v~1) the Liouville operator,
so that LG =G. Note that the particular form of Eqs.
(5. 1)~(5. 3) makes use of the fact that (6N,LN, )
=(6N4N,)=0. [See Eq. (4.5).] In agreement with the
notation of Sec. III, M(s) denotes the Laplace trans-
form of M(¢).

The singular behavior of C(¢) discussed in Sec. IV
implies that M(#) contains a delta function at ¢ =0. This
feature can be derived by studying the large s behavior
of Eq. (5.1). Alternatively it can be verified by studying
the time integral of M(¢). To carry out the latter pro-
cedure, we apply Eq. (5.2) to find

i [ M) ~(ONL P tim N A) = N,

_TT’é’ (5-4)

where the flrst equality follows from the fact that
exp(QLe)N, =N ,(€) +0(¢), and the second equality is ar-
rived at from the same manipulations carried out in Sec.
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IV. Since M(t) is integrable, the singularity at ¢ =0 does
not hinder the applicability of the Mori-Zwanzig formal-
ism,

The zero frequency part of the memory function is re-
lated to T;,lm. By comparing Egs. (3.6) and (5.1), one

finds

T',lm=1r/1(0)=fomdtM(t). (5. 5)
The delta function part of M(¢) contributes 773 L to M(O)
see Eq. (5.4). Thus,

Trxn"TTS"'f dr AM(¢), (5.6)

where AM(#) is the nonsingular part of M(¢).

Equations (5.5) and (5.6) are equivalent to Eq. (3.6).
They are all exact provided the phenomenological rate
law is correct. Notice that the transition state theory
apprpximation is obtained if the integral over AM(¢) is
negligible compared to T}ls At this stage of our analysis,
a physical assessment of this approximation is difficult
tq. obtain because M(¢) is not directly related to real dy-
namical processes, The memory function evolves with
a projected propagator exp(QLt). In the standard hydro-
dynamics applications of the Mori~Zwanzig formalism,
the projected dynamics and real physical processes are
connected in the hydrodynamic (long wavelength) limit,
A similar connection is approximately valid when con-
sidering chemical isomerization. To investigate the
approximation, it is useful to be aware of the principal
time scales involved in isomerization dynamics.

VI. TIME SCALES

The autocorrelation function for 8N,(¢), C(¢), varies
on a time scale that is long compared to typical molec-
ular times. Provided N,(¢) is not coupled to another
slowly varying variable, M(¢) should relax on a short
molecular time scale. The projector in Eq, (5.2)
guarantees that this will be the case. However, the
two preconditions—that N,(¢) is a slow variable, and
that N ,(¢) does not couple to another slow variable—~de-
serve some comments.

The reason why N,(¢) can be a slow variable is that a
potential barrier (or more generally, a free energy
barrier) divides state A from state B, Transitions be-
tween states A and B are the source for the time de-
pendence of N,(¢#). Obviously, as the barrier becomes
infinitely high, the transitions become impossible, and
N,(t) becomes a conserved variable, To estimate the
time scale over which N,(¢) changes, note that a transi-
tion between states A and B implies that at some mo-
ment, g; was at the transition point v,. Hence the tran-
sition frequency will be proportional to the probability
that the molecule is at ¢, s(r¢), times the average flux
across the point. Within factors of the order of unity,
that frequency is 77s; see Eq. (4.7). Thus, 7qg char-
acterizes the time scale over which C(#) varies.

The correlation functions describing the behavior of
other variables which might couple to N,(¢) seem to
decay in a time much shorter than 715. For example,
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consider q,(¢) or the coordinates and momenta of neigh-
boring solvent molecules. The characteristic frequency
for these variables is (14,1 )(rc =74)"", where (3¢ —7,)
is chosen as a typical length for the system. (For n-
butane, the difference between end-to-end lengths in the
trans and gauche states is about 1 A. The velocity
autocorrelation functions for liquids with self-diffusion
coefficients in the neighborhood of 10~ ¢cm?/sec have
relaxation times of about {141)"' 1 A.) Thus, we intro-
duce the “fast” characteristic molecular time

(6.1)

If our idea that the slow variable N,(¢) couples only to
fast variables is correct, then the memory function
formalism will lead to a natural perturbation expansion
which orders M(t) in powers of the parameter

Tmo1 = (Yc ‘7A)<|Zhl>-l.

A:Tmol/TTS' (6.2)

The value of ) is roughly exp(- BA"), where A" is the
activation free energy, V{rc) - V(r,). To understand
this estimate, note that

[ are® 2o —r (e T4+ T), (6.3)

and

X4 e-BVA(e-BVA +e-BVB)-1 ,

(6.4)

where V, and Vp stand for V(r,) and V(rz), respectively.

Thus, by combining Egs. (6.1), (6.2), (4.7), and (4.8)
we obtain

A=(rc —ra)(2xaxp)  slre)

L, 8(VA-V -B(V -V
= (e PVATE) 1 1) TV )

~ g 84" (6.5)
Since A" is typically much larger than kT, A < 1.

The reader may question whether N,(¢) is not coupled
to another slow variable since Ngz(#) must also vary with
the characteristic time 7rg. But in a closed (canonical
ensemble) system, the coupling between N,(¢) and Ng(¢)
is trivial. The two quantities actually refer to only one
dynamical variable since N,(¢)+Ng(¢)=N is a constant.
The question is not trivial, however, when considering
an open (grand canonical ensemble) system. Then dif-
fusion processes make N(t) a dynamical quantity, and
N4(t) and Ng(f) are two truly different variables. Since
they are both slow variables, a grand canonical ensem-~
ble treatment of isomerization dynamics must treat
both variables explicitly if the memory function formal~
ism is fo yield a perturbation series ordered with the
parameter . (See the Appendix for the grand canonical
ensemble analysis.)

A proof that N,(#) does not, for a closed system,
couple to another slow variable is equivalent to a micro-
scopic derivation of the phenomenological rate law. If
other slow variables were involved, then the small s
behavior of C(s) would be characterized by more than
one relaxation time, We assume that the rate law is
empirically correct. This assumptionleads totwoim-
portant results. First, since the projected propagator
exp(QL¢) involves dynamics orthogonal toN 4, the memory

David Chandler: Isomerization dynamics in liquids

function must relax in a short time, i.e., a time of the
order of 7,,,. Since A=T,,/Tre® Tmor/Toxn < 1, the re-
laxation time for M(¢) is very small compared to 7,,,.
Hence, there exists a time Af that satisfies

Tmol CAf << Trxn = A-leol H (6- 6)
which can be used with Eq. (5.5) to yield
At i
k= [ dei o] 6.7)
0

The second ramification of the assumption uses the
identity
eQ“=e“—jtdt’e“t't')PLeQ“'. (6.8)
0
The effect on — PL on a general dynamical variable G
can be studied by applying Eqs. (5.3). This gives

=~ PLG == 6N ,{(6N,)*)™M8N ,LG)
= BN (BN )5 N 4G)

== BN (BN )Y Ni1blre ~ 41)G) . (6.9)

The second equality follows from time reversal sym-
metry, and the third equality is obtained from Egq.(4.3).
Inspection of Eq. (6.9) shows that PLG is of the order
of Ty =M‘,’n101. Thus, provided the projected propagator
exp(@Lt) does lead to relaxation in times of the order
of 7., the integral in Eq. (6.8) is a factor of X smaller
than the unprojected propagator exp(L¢). Hence, pro-
vided N, is not coupled to another slow variable (which
is equivalent to assuming that the experimental rate
law is correct), Eqs. (5.2) and (6. 8) can be used to
write

M(t)=9m()[1+0N)], (6.10)
where
IM(E) = (6N 1) KN e ZEN,) . 6.11)

The connection between M(¢) and 9M(¢) plays a central
role in the derivation of a second microscopic formula
for 7., and in the analysis of transition state theory.

VH. PLATEAU VALUE PROBLEM AND A SECOND
CORRELATION FUNCTION EXPRESSION

The function J(¢) looks like the memory function M(¢)
except that 9M(¢) contains the true propagator exp(Lt)

rather than the projected one. In fact,
M(¢t) =~d?C(t)/dt?, (7.1
from which it can be shown that
f dM(2)=0. (7.2)
0

The Laplace transform of Eq. (7.1) together with Eq.
(5.1) yields

IM(s) = sM(s)[ s+ M(s)]?,

or

(7.3a)
M(s) =9(s)[ 1 -Mm(s)/s] . (7.3b)

Equations (7. 3) were first discussed by Mori®' and by
Berne et al. % They can be used to investigate the nature
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of a plateau in M(¢) at long times and how appropriate
limits can be performed to remove the plateau and ob-
tain the standard flux autocorrelation function expres-
sions for transport coefficients. Recenttextbook discus-
sions are given by Forster® and by Berne and Pecora. 1

It turns out that the plateau value is relevant to iso-
merization dynamics too. The heart of the problem is
found in a comparison of Eqgs. (5.5), (6.10), and (7.2).
According to Eq. (6.10), M(¢) and 9M(#) are pointwise
identical to within an error of the order of . Yet, ac-
cording to Egs. (5.5) and (7. 2), the integrals over the
two functionsare completely different, 37(0) is 77y,
while 91(0) is zero. Of course, there is no paradox.
This behavior is a consequence of the separation of
time scales studied in Sec. VI. In particular, Egs.
(6.7) and (6.10) can be combined to yield

At
= [, drMO1+00)]. (7.4)

In the traditional hydrodynamics applications of Mori-
Zwanzig formalism, the dynamical variable under con-
sideration would be a Fourier component of the density
of a conserved variable. Then A would be proportional
to k%, where % is the Fourier wave vector. For a
macroscopic system it is possible to take 2= 0 and thus
A=0, In that limit, the density becomes the total vari-
able, which is a constant of the motion, The memory
function (and the relaxation time) for a constant of the
motion is zero. Thus, in the hydrodynamics applica~
tion one obtains transport coefficients from limits like

l;.%q %foudtim(t)[l +0(>\)]=j:dtm(t), (7.5a)
where
m(f)=lim *9m(s) . (7. 5b)
A0 A

The upper limit At is replaced by « in the integral due
to a scaling relation like Eq. (6.6). [In writing Eq.
(7.5b), it is assumed that X is defined so that M(s) is
proportional to A to the first power as A tends to zero,
Recall, M(#) and 9(¢) must vanish as A~0.] While a
limit like the one in Eq. (7.5) is meaningful for the hy-
drodynamic variables, A is not a controllable parameter
in the isomerization dynamics problem. Thus, the A¢
in Eq. (7.4) cannot be replaced by . Equation (7.4)

is applicable only when A' is large compared to 257,

s0 that X is small. The value of A7 must obey the in~
equalities in Eq. (6.6).

The importance of the separation of time scales can
be appreciated quantitatively by adopting a simple model
which contains both 7., and 7,,,. Suppose

)=l L =l (- - -1 y-
M($)=T7g + T (Trm = Tre)(s +Tob )™t

The leading frequency independent term insures that the
short time behavior of C(#) is properly described. The
second term imagines that N ,(¢) is coupled to molecular
processes which relax exponentially on a time scale of
Tmo1- This second term is zero when transition state
theory is exact. The computation of C(¢) from this mod-
el memory function is straightforward, When x is
small, C(¢) is a sum of two exponentials. One relaxes
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with the time 7., and guarantees that C(0+) is

- {(6N,)®»75. The second and dominant exponential has
the relaxation time 7..,. [If 7, is taken to be exactly
Trs, then the short time exponential disappears and the
long time one becomes ((6N,)® exp(~#/71s).] The area
under JM(¢) = - d°C(¢)/dt? can also be computed for the
model. The result is

At
At () =(r75 = Trmde /o114 0(0))
8 (7.6)
+T;)1m [1 - At/Trm +0()\2)] ’

where -we have exhibited the leading correction terms to
Eq. (7.4).

Equation (7.4) can be manipulated to yield a physical
microscopic formula for the rate constant. By applying
Eq. (6.11), Eq. (7.4) becomes

=Ny [ SN (014 00)]

=((6N B UN [N (A 2) =N D1 +00)]. (7.7)

In view of Eqs. (4.1)=(4.5), Eq. (7.7) can be expressed
as

Trm == (x4%8) X316 (rc = qHalq2 (A )])[1 +0(1)]
=(xax5) N q10(rc — q)Hg[@ (A )] 1+0(N)], (7.8)

where the second equality follows from the first because
H,(q)=1-Hg(gq), and the equilibrium ensemble distribu-
tion is an even function of §,. Recall that 175 =k, 5/
xg, Eq. (2.8). This relationship together with (7. 8)
yields

Ea- 5 =xiXq:10(rc = q)Helg:i(A )] [1+0(V)], (7.9)

which is our second correlation function expression for
the rate constant,

Equation (7.9) is a principal result of this article.
It is also very nearly a standard result. Indeed, the
reader should compare Eq. (7.9) with Eq. (17) of Ref.
7 or Eq. (1) of Ref, 6. The most common idea about
the approximate nature of Eq. (7.9) is that this equation
rests on the correctness of the Boltzmann distribution
of the momenta and coordinates for the reactants. The
derivation given herein helps clarify this idea, Note
that the equilibrium ensemble average appears in our
development as a direct consequence of the fluctuation-
dissipation theorem. It does not arise from an assump-
tion. However, the separation in time scales 7, <<A¢
<« Tpxn draws a picture of the isomerization reaction in
which the reactions occur so infrequently (roughly once
every T,. for each molecule) that the surrounding sol-
vent molecules have sufficient time to conform to and
equilibrate with the solute before it reacts again. This
equilibrium time is 7,,. The significance of the sepa-
ration in time scales is surely appreciated in Refs. 8
and 10. However, neither article proceeds far enough
to identify the expansion parameter X =1_,,/7.,, with the
Boltzmann factor for the free energy of activation,

Notice that the ensemble average in Eq. (7.9) can be
correctly viewed as the calculation of the average flux
across the surface at ¢, =7, given that a reaction is
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completed successfully at a long time At later. The
more conventional formula for £, _, is®’
ka-p=x3q100rc - qxa-slq(a )] [1+00)], (7.9")
where
Xa.5lai(at)]=Hglg:(AOH , [q1(~ A1)] (7.10)

is the characteristic function for the A — B reaction.
According to Eq. (7.9'), one averages the flux across
the surface at ¢, =v7¢ given that q,(¢£)> »c at a later time
t=At and that q,(f) <7c at an earlier time f=~A¢. It
may appear that Eqs. (7.9) and (7.9’) are different. But
actually, they are identical. The reason is found by
noting that

Hylgi(=8¢8)]=1~Hg[gi(~¢)]. (7.11)

From this equation it is seen that the difference between
Egs. (7.9) and (7.9’) is (within trivial factors) the quan-
tity

(@:10rc —q)Hp g (6 )| Hplgi(- A1),

which is the average flux across the surface ¢; =7, given
that g1(A #) > 7¢ and q4(—=A¢t) > vc. According to Liou-
ville’s theorem, that averaged flux is zero. Hence, the
ensemble averages in Eqs. (7.9) and (7.9’) yield the
same numbers,

The interpretation of Eq. (7.9) as an average flux
across q; =v¢ together with Liouville’s theorem leads
to an important and well-known® result: The value of
k- 5 computed from the ensemble average in Eq. (7.9)
is independent of the location of the surface which di-
vides the reactant, state A, from the product, state B.
We have emphasized the necessity of a free energy bot-
tleneck. Its existence leads to the separation in time
scales exploited in the analysis of the plateau value and
the derivation of Eq. (7.9). But once Eq. (7.9)is estab-
lished, there is no need to locate . at the position of
the bottleneck provided the computation of the ensemble
average is computed exactly., Of course, an approxi-
mate evaluation, such as the one performed in transi-
tion state theory, can lead to results for &, .5 that de-
pend crucially upon the choice of »¢.

As a final remark we note that in most discussions
of Eq. (7.9) the characteristic function Hy[q,(a ¢)] is
usually described as if A¢ is actually ., The replace-
ment of A¢ with « yields &, .5 =0 for the mathematical
reasons stated above. But there is also an important
physical reason why the replacement cannot be made.
The rate constant k4. p describes the average frequency
for one A to B transition per molecule. The right-hand
side of Eq. (7.9) clearly fits that physical interpretation
provided A¢ is larger than T, (so that the transition is
completed and the degrees of freedom coupled to the re-
action coordinate have time to equilibrate) and A¢ is
smaller than 7., (so that back reactions do not clutter
our considerations). If A/ gets so large that A¢> 7,
the molecule will have encountered so many transitions
that the characteristic function Hy[g,(A¢#)] will be un-
correlated with the initial conditions that placed ¢, at
the dividing point »o. This loss of correlation makes
the right-hand side of Eq. (7.9) approach zero since

David Chandler: Isomerization dynamics in liquids

lim (§.8(vc —q)Hplq:1(A 1)])
at== (7.12)
={q10(rc — q))\Hp{g1)) =0,

VIIl. TRANSITION STATE THEORY

We are now in a position to discuss the validity of
classical transition state theory. The characteristic
function Hp[q,(A¢)] involves a dynamical calculation,
In principle one must compute the time dependence of
¢1(¢t) given the initial condition that ¢; =7 and all other
coordinates and momenta (of solute and solvenis) are
distributed according to the equilibrium canonical dis-
tribution law. If g1(&#) >, the characteristic func-
tion is unity. Otherwise it contributes zero to %,. 5.
To obtain transition state theory we assume

8(qy—vc)Hglg (8 £)]=8(q1 ~7c)0 (@),

where 8(x) is unity for x > 0 and zero otherwise. With
Eq. (8.1), Eq. (7.9) becomes

8.1)

kA'Bz(kA-B)TS:xBT:I‘ls- (8.2)

According to Eq. (8. 1), transition state theory is a con-
sequence of assuming that all trajectories passing the
transition point . in the reactive direction will indeed
be reactive. There will be no recrossings in a time of
the order of 7,,,. This idea is Wigner’s® “fundamental
assumption.”® It clearly differs from Eyring’s popu-
larized notion that a transition state complex must exist
in some sort of quasi-equilibrium with the reactant.?

With Eq. (8.1), the rate constant can be calculated
from equilibrium statistical mechanics. There is no
need to do dynamics. But Eq. (8.1) is clearly a state-
ment about dynamics, and the justification of that ap-
proximation requires some dynamical considerations,

Equation (7.9) is independent of the precise location
of the transition point .. However, Eq. (8.1) and thus
transition state theory is sensitive to the choice of »..
To see why, consider the alternative point »¢ in Fig. 2.
With this location for the transition point, X <1 so that
Eq. (7.9) is still correct, However, due to the negative
slopes of both V(r%) and V(ry), it is unlikely that the re-
quirement of g, > 0 will be sufficient to guarantee that
q:1(at) > £ given the initial condition ¢, =7;. Hence, Eq.
(8. 1) will not be a good approximation if the transition
point is located at rf.

To decide upon a good choice for », it is useful to
consider the kinetic equation which describes theaverage
motion of ¢, and ¢,. Let

F(g,v;t) =6l{g ~ q:1()3[v = 41()] o, (8.3)
where (-« +), denotes the equilibrium ensemble average
over initial conditions for the system with ¢,(0) and 4,(0)
fixed at go and vy. The equation of motionfor the deriva-
tion of F(g,v; ¢) from its infinite time value 6F(q, v; t)
=F(q,v,t) - F(g,v;*), can be obtained by applying the
Mori-Zwanzig formalism, See Chap. 6 of Ref, 15 for
a recent textbook discussion. Assume for simplicity
that the isomerization process is truly one dimensional.
Then, the Mori-Zwanzig theory gives
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) 8 48V(g) »
oy — -5 .
(Bt Vg tH Y F(g,v; t)

t
:_f dt’f dq’fdv’m(q,v;q',v’;t—t’)
o

X6F(q',v'5t'), (8.4)
where u denotes the (reduced) mass for the coordinate
q1, and wm{q,v;q’,v';t) is the memory operator in the
kinetic equation. Notice that the potential in the left-
hand side, Vl{g), is the potential of mean force for the

internal coordinate; that is,

aV(r) 3 Ins(r)
___87' == kT —_37 . (8.5)

Hence, the left-hand side of Eq. (8.4) describes the dy-
namics of the internal coordinates as if the motion is on
a free enevgy surface. As a result, a decision about
where to place a transition state should be based upon
considerations of the Helmholiz free energy changes
associated with the internal coordinate. For classical
isomerization dynamics, it seems that the transition
state should be the point »o—the point of the free energy
maximum in Fig. 2.

Another way to decide upon a choice for v does not

involve any consideration of the dynamics. Rather, one
can make use of the inequality
[#a-5lrs>Fka-5. (8.6)

This bound for the rate constant is well known and often
exploited in statistical approximations for rate con-
stants.” It is readily established from Eqgs. (8.1), (8.2),
and (7.9). Since the transition state theory gives a value
for k2, .p that is always greater than the exact value, an
optimum choice for »¢ is the one which minimizes
[ka.plrs. From Egs. (8.2) and (4.7), it is seen that
this “optimum” choice corresponds to finding the 7,
which minimizes s(#c). This value of v, is the location
of the maximum to the Helmholtz free energy.

Having fixed 7., there is still more to be required
for transition state theory to be accurate. Indeed, if
there is no dissipation, Eq. (8.1) can never work. Sup-
pose the equation of motion for the internal coordinate
is conservative., Given the initial conditions g, =7 and
g >0, a short time later (roughly 7,,,), the coordinate
will again be at g, =7, but this time with §, <0.
However, the memory operator of the kinetic equa-
tion describes dissipation due to the coupling of the re-
action coordinate with the bath—the surrounding solvent
molecules, and perhaps other degrees of freedom within
the molecule itself, If the dissipative effects are large
enough, it is unlikely that ¢, will return to . in a short
time with enough energy to surmount the free energy
barrier, Thus, provided dissipation is present and its
effects are large enough, transition state theory should
be a good approximation. Of course, the bath may also
donate energy to the isomerizing solute molecule as well
as remove it. However, the barrier separating the
states is supposed to be high compared to 2;7. Asa
result, the energy associated with the reaction coordi-
nate immediately after it has passed over the barrier
will be very high compared to that of a typical degree
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of freedom in the bath. Hence, the overwhelming cir-
cumstance is that after crossing the barrier, the iso-
mer will give energy to the bath rather than accepting
it.

It appears that Eq, (8.1) and transition state theory
for isomerization dynamics hinges on two conditions:
(a) the free energy activation barrier must be high, and
(b) the coupling of the bath to the reaction coordinate
must be strong enough to dissipate roughly 23T energy
from the isomer in times of the order of 7.,

To get a quantitative idea for the role of dissipation
in isomerization dynamics, imagine that the average
bistable potential in Fig. 2 is composed of two square
wells separated by a square barrier. Let A' denote the
height of the barrier relative to the minimum of the well
at the right. We assume that 47> 7. Imagine that the
“particle” with coordinate ¢ and reduced mass u has
just been passed to the right of the barrier. Its kinetic
energy is then very large compared to 25T so that a
simple friction law,

. 3Vig)

ng=-=—

correctly estimates the average dissipation of energy
from the reaction coordinate. In Eq. (8.7), v is the
velocity, ¢, and y is the friction constant. Let v, denote
the velocity of the particle just before it crosses over
the edge of the barrier., If vy is smaller than some veloc-
ity »,, the frictional dissipation will remove enough
energy that the particle will not mount the barrier on

its return trajectory (at the far right side of the right
square well is an infinite potential wall), That is, tra-
jectories with v <v,, will be trapped in the right square
well. However, if vy>v,, the particle will recross the
edge of the barrier, and Eq. (8.1) will probably be vio-
lated. The equation for v, is

0% = Quy)? + dwy (24T /u)/?,

where w is the width of the right square well. In view of
Eq. (8.1) and (7.9) and definition of v,,, we are led to
estimate the fractional error due to Eq. (8.1) as the ra-
tio

R=f voexp(-Bvﬁu/Z)dvo/fo v exp(= Bviu/2)dv,

-Hyv, (8.7)

(8.8)

=exp{-28umwy [(wy) + 24T/1)'/?]}. (8.9)
For a liquid solvent wy=w7;L,~(I¢!). The typical size
of a barrier to rotation about a single bond is 3 kcal/
mole or more. By using these estimates, one finds
R<50.01. It would appear that Eq. (8. 1) and thus transi-
tion state theory is a good approximation for isomeriza-
tion dynamics in liquids. However, the dissipation
which makes R so small gives rise to another mechanism
which can make Eq. (8.1) a poor approximation.

The calculation outlined by the previous paragraph is
applicable after the particle has reached the edge of
the barrier. But is must first travel there from the
midpoint of the barrier without recrossing that mid-
point. (We assume the transition state is located at the
midpoint.) During this trajectory, the velocity of the
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particle is not necessarily large, and as a result the
medium can alter the velocity in ways that are more
complicated than those resulting from frictional dissi-
pation. If the barrier is wide enough, the medium will
have an excellent opportunity to reverse the trajectory
of the particle. This picture of diffusional motion at the
top of a barrier is at the heart of Kramers’? theory
which employs the Fokker-Planck equation to describe
the effects of fluctuating forces due to the medium. We
present now a simple collision theory treatment of this
phenomenon.

Picture the motion on top of the barrier as a random
walk with step length v7 ,,, where v denotes the initial
step velocity of the particle and T;f,u is the average fre-
quency at which the medium strikes the particle. Take
a simplified random walk model in which the particle
has a 50-50 chance of getting to either edge of the bar-
rier independent of the initial step direction unless the
initial step is larger than half the barrier width. If the
step length is larger than the half width, there is unit
probability that the particle will reach the right edge if
the initial velocity (i.e., step) is to the right, and unit
probability to reach the left edge if the initial velocity
is to the left, We have seen that once the particle is at
the edge, it is (to an excellent approximation) always
trapped in the adjacent well by dissipation. Hence, ac-
cording to this random walk model and Eqgs. (7.9) and
(8.1), the transmission coefficient, k4. plk4.5)7s, is the
ratio

o -1 0
R'= U v exp(- Buvz/z)dv) (lj v exp(- Bpv®/2)dv
0 2 “I/Teona

/7ot w
L * vexp(—BMvz/Z)dv+f

v exp(— Buvz/z)dv)
2 0 /Tcoll

=exp(—BuL?/27%,)) =exp(~ L¥/27% 1, (1@}, (8.10)

where L is the half width of the barrier.

According to Eq. (8.10), transition state theory (R’
=1) will incur a significant error if the average velocity
of the reaction coordinate is not larger than L/T 4.
Since the collision frequency ‘rgu can be very large in
a liquid it is quite likely that for a large number of iso-
merization reactions

L/Tcollzqél) *

Furthermore, since 7., is a strong function of the
liquid density, it is not correct to interpret the trans-
mission coefficient R’ as a simple multiplicative con-
stant. Thus, our estimates indicate that it is worth-
while to pursue the development of systematic molecular
theory for isomerization dynamics.
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APPENDIX A: ENSEMBLE DEPENDENCE OF {8V, )*)

For an open system containing interconverting A and
B solute isomers at low dilution, the average number
fluctuations obey the equations

(BN )% =(N )
and

(BN )%y =(N). (A1)

However, if the system is closed, the correct result is
the one described in Hill’s textbook,™

<(5NA)2> = ((5N3)2> = <NA><NB>/N .

In the canonical ensemble, N, and Nz are coupled due

to the constraint N =constant=N, +N,. Hence, 0N,
=~08Ng. In this Appendix we find that this coupling
leads to a long range tail in molecular pair correla-
tions which is absent in the grand canonical ensemble.
This difference in the long range correlations is respon-
sible for the difference between Eq. (A2) (the canonical
ensemble result) and Eq. (Al) (the grand canonical en-
semble result).

(A2)

We adopt the general notation used in the Chandler—
Pratt theory of chemical equillibria.? For simplicity,
consider only the solute correlations so that we can omit
subscripts which identify the molecular species, Ac-
cording to Eq. (4.33) of Ref. 2,

x(1,2) ={6p(1)6p (2))

=ps(1)5(1 -2) +0(p%) . (A3)

Note that 1 and 2 are abbreviations for all the coordi-
nates necessary to specify the locations and conforma-
tions of solute molecules 1 and 2, respectively. From
Eq. (A3), we find at low solute concentrations

(ON0D= [ a1 [ 2HWEEXA,2)
=fd1 deHA(l)HA(z)ps(l)au-z)

= f d1H,()H,1)ps(1)

- j d1H,(1)ps(1)

= <NA) ’ (A4)

which is a derivation of Eq. (Al). It is a grand canoni-
cal ensemble result because Eq. (A3) is correct for that
ensemble only.

To obtain the canonical ensemble result, a scheme
similar to that of Lebowitz and Percus'? can be used.
Let p,‘,,a’(l, 2) denote the pair distribution for isomers 1
and 2 in a closed system with N isomers. The grand
canonical p®(1, 2) is obtained from p’(1, 2) by averag-
ing N. Since the distribution for N will be sharply
peaked (for a macroscopic system) near (N), we can
expand p}? (1, 2) about p¢¥y(1,2), and then average the
Taylor expanded function. By retaining terms through
quadratic order, one finds

32

P (1,2)=p{(1,2)+ 34BN griz ()1, 2). (AD)
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For a macroscopic system, the second term on the
right-hand side is vanishingly small at each pair of
configurations 1 and 2. However, we are interested in
an integral of p(z)(l, 2) over all space. For this pur-
pose, it is necessary to retain asymptotic terms. At
low solute concentrations, Eq. (A5) gives

p'?(1,2) =p{8\(1, 2) + WY lp2s(1)s(2) . (A8)

Hence, the grand canonical and canonieal x(1,2)'s are
related by

Xwr(1,2)=x(1,2) ~ p?s(1)s(2)/{N). (A7)
To obtain the canonical {(6N,)%), multiply X y,(1, 2) by
H,(1) and H,(2) and integrate. This gives
2
(BN %)y =((ON 1)) <N>-1( [arost) HAm)

=(N ) = (N YN )? (A8)
=<NA>[1 - <NA>/«NA> +<Na>)}

=<NA><NB>/<N> ’
which is a derivation of Eq. (A2),

APPENDIX B: DERIVATION OF CORRELATION
FUNCTION FORMULAS FOR &, FOR AN OPEN
SYSTEM

The analysis for an open system must begin with a
rate law that is more complicated than Eq. (2.4). The
time dependence of N,(¢) and Ng(f) now depends upon
diffusion in and out of the system as well as upon inter-

conversion. To account for this additional mechanism,
we write
fialle,t) == D gnyg,t) = b gnalk,t) + by . ang(k,t),
(B1a)
and
ng(k, t) =~ kzDBnB(k, 1) =~ kp.ang(l,t)+ky gngsll,t),
(B1b)

where n,(%,t) denotes the nonequilibrium average of

Ny

pally )= Hylq (1)) * R0, (B2)
7=1

and ng(k, ) has a similar definition, The vector R,(¢)
is the position of the center of the jth solute molecule
at time ¢. There are N(¢) such molecules in the sys-
tem at that time. The diffusion constants describing

the rate of flow of the A and B solute isomers are D,
and Dg, respectively,

The phenomenological equations (B1) can be used in
conjunction with the fluctuation~dissipation theorem to
describe the small % and s behavior of

Coslh, 5)= [~ at e™K(Bpt (k, 0)2p,(k, 1) (B3)
That procedure yields

Cifk, 8) ~ {[s1+L®) ]}, (N, (B4)

for small k£ and s, where 1 is the identity matrix, [ ]
denotes the inverse of the matrix, and L(k) has elements

Laa®)=4Dy+ky-p,

Lap(k)==Fp.4, (B5)
Lpalky=—=Fy.5,

Lpp(k)=k*Dy+kp. 4.

To obtain Eq. (B4), one must note that for an open sys-
tem
(N3N =6, (Np, (B6)

which follows from the analysis sketched in Appendix A,
After some matrix algebra, Eq. (B4) yields

lki‘g)[c-AA(k, s)=Caplk, 8)]~ W) [s+ T;,lm ]'1, (B7)
for small s. Hence, in the grand canonical ensemble

tim [ T dt e ONLON (1) = SN5(1)]) = (N ) Term,  (BS)

where we have noted that
Lim 8p,(k, 1) =6N,(2). (B9)

The reader should compare Eq. (B8) with the canonical
ensemble formula Eq. (3.6). The two equations look
different,

The memory function equation for 7. analogous to
Eq. (56.5) is obtained by applying the Mori—-Zwanzig
formalism to the pai» of dynamical variables, p,(%,t)
and pp(k,t). [See the remarks following Eq. (6. 5)].
This procedure introduces a memory function matrix
given by the usual formulas. % For example, with
Eq. (B6) one finds

Mya(ly 8) =N 5 (R, 1) €97 D 4R, 1)),

where @ —1=P, and P projects onto the vector [5p,(k),
d?P)y(k)]. The memory function matrix formula for
Cyik, s) is

Cii(k, 8) ={[s1 +M(k, )]}, N},
which can be compared with Eqs. (B4) and (B5) to yield
(B12)

(B10)

(B11)

.p =lim lim M .
Ba-n =Lim L1 Mok, )
Notice that this formula looks different than the canoni-
cal result, Eq. (5.5),

The arguments about time scales discussed in Secs,
VI and VII can now be applied to M,,(k, s). Those argu-
ments combined with Eqs. (B11) and (B12) yield

X @@Lt ﬁ_ <§; HA[q!(t)]>>

M) 486re = aHalg(aD])[1+ 0]

)
(Na)
=238 (rc - q)H[q(a )] [1+0(N)] . (B13)

This final physical equation is identical to the rate con-

stant formula, Eq. (7.9), derived in the main text by
employing the canonical ensemble,
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