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Abstract: The growing adoption of generalized-ensemble algorithms for biomolecular simulation

has resulted in a resurgence in the use of the weighted histogram analysis method (WHAM) to

make use of all data generated by these simulations. Unfortunately, the original presentation of

WHAM by Kumar et al. is not directly applicable to data generated by these methods. WHAM

was originally formulated to combine data from independent samplings of the canonical ensemble,

whereas many generalized-ensemble algorithms sample from mixtures of canonical ensembles

at different temperatures. Sorting configurations generated from a parallel tempering simulation

by temperature obscures the temporal correlation in the data and results in an improper treatment

of the statistical uncertainties used in constructing the estimate of the density of states. Here

we present variants of WHAM, STWHAM and PTWHAM, derived with the same set of

assumptions, that can be directly applied to several generalized ensemble algorithms, including

simulated tempering, parallel tempering (better known as replica-exchange among temperatures),

and replica-exchange simulated tempering. We present methods that explicitly capture the

considerable temporal correlation in sequentially generated configurations using autocorrelation

analysis. This allows estimation of the statistical uncertainty in WHAM estimates of expectations

for the canonical ensemble. We test the method with a one-dimensional model system and

then apply it to the estimation of potentials of mean force from parallel tempering simulations of

the alanine dipeptide in both implicit and explicit solvent.

1. Introduction
The difficulty of computing equilibrium averages for com-
plex systems such as solvated biopolymers by Monte Carlo

or molecular dynamics simulation is well-known. Numerous
minima and large free-energy barriers tend to slow explora-
tion in phase space and trap the simulation in metastable
regions of configuration space. This hampers the ability of
the system both to equilibrate (reach the thermodynamically
relevant region of phase space) and to sample sufficiently
for estimates of ensemble averages to converge (reduce the
statistical uncertainty in the estimate to an acceptable level)
in finite computer time.

The emergence of a new class of simulation algorithms,
termed generalized-ensemblealgorithms,1 has helped to
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mitigate these problems. In a generalized-ensemble simula-
tion, the probability distribution from which conformations
are sampled is altered from a canonical distribution to one
that will induce a broader sampling of the potential energy.
Proper application should in principle allow the system to
overcome energetic barriers and sample configuration space
more thoroughly, at the expense of spending more time in
high-energy regions that may be irrelevant at the temperature
of interest. The particular method by which sampling is
enhanced depends on the algorithm. In themulticanonical
algorithm (MUCA),5-9 conformations are sampled with a
probability proportional to an approximation of the inverse
potential energy density of states in an attempt to produce a
random walk in the potential energy. Insimulated tempering
(ST),10,11,3 a random walk between canonical ensembles at
different temperatures is used to produce a random walk in
energy, but an estimate of the free energy as a function of
temperature is needed as input to ensure equal visitation of
all temperatures.Parallel tempering(PT), a special case of
the replica-exchange method (REM),12,4 eliminates the need
to know these free energies a priori by coupling temper-
ature changes between pairs of a pool of simulated tem-
pering simulations conducted in parallel. Several other
algorithms and combinations thereof have also been
proposed.3,13-15

In several of these algorithms, such as simulated tempering
and parallel tempering, each replica generates configurations
from a mixed-canonicaldistribution (a term coined in ref
16)sthat is, a number of configurations are generated from
the canonical distribution at each of several temperatures.
To compute expectations over the canonical ensemble at a
single temperature, either the configurations from all replicas
that visit the temperature of interest must be collected and
the remainder discarded (as in ref 17) or else a reweighting
scheme must be used to properly weight the data generated
at other temperatures. Fortunately, the weighted histogram
analysis method (WHAM),2 an extension of the single- and
multiple-histogram methods introduced by Ferrenberg and
Swendsen,18,19 allows configurations generated from inde-
pendent canonical simulations at different temperatures to
be reweighted to compute expectations from the canonical
ensemble at any temperature of interest. Okamoto and co-
workers have applied this method to both replica-exchange
simulated tempering (REST)3 and parallel tempering4 meth-
ods by reordering sampled configurations into pseudo-
trajectories, grouping configurations generated at a particular
temperature together regardless of which replica they came
from. Unfortunately, this permutation obscures the correlation
among the stored configurations, causing the apparent
correlation times for each pseudotrajectory to appear artifi-
cially shorter than the true correlation times within the
independent replica trajectories. The permutation also intro-
duces correlationbetweenthe pseudotrajectories, which is
problematic because WHAM as presented in ref 2 is
constructed to operate onindependentcanonical trajectories.
Additionally, it is difficult to estimate the statistical uncer-
tainty in the resulting estimate of the expectation from these
pseudotrajectories, since standard autocorrelation analysis
techniques20-23 can no longer be applied. Recently, Gallicchio

et al.24 have described a new method for computing expecta-
tions and uncertainties from canonical simulations at different
temperatures based on Bayesian inference. While Bayesian
approaches are usually superior to those based on first-order
Taylor expansion methods for the propagation of uncertain-
ties (of the sort we describe in this work), they are less
suitable for treating highly correlated measurements where
the functional form of the correlation is essentially unknown.

Here, we derive variants of WHAM that operate on replica
trajectories that are not reordered or collected by temperature.
It should be noted that even if simulation data have been
stored to disk sorted by temperature, they can be permuted
back to the original replica trajectories to perform the
proposed analyses if information about the replica-to-
temperature mapping or swapping was stored. Our presenta-
tion takes a careful approach to the correlation times
involved, and we show under which conditions the almost
universally omitted statistical inefficiency term that appears
in all formulations of WHAM-like methods can be properly
neglected. Finally, we show how the statistical uncertainty
in the estimator for the configuration space average for some
observable can be estimated by considering the effect of
temporal correlation. The method is simple and inexpensive
enough to employ in all cases where WHAM is used, and
we hope all researchers using WHAM will report these
statistical uncertainties in the future to assess both the
significance and the degree of reproducibility of results from
simulations.

This paper is organized as follows: In section 2, we
present a derivation of the Kumar et al. WHAM for
independent simulations sampling from the canonical en-
semble. Careful attention is paid to the proper treatment of
time correlation in estimating the statistical uncertainty in
the histograms and the resulting estimator for the expectation,
and a novel way of obtaining estimates for multiple observ-
ables is presented. In section 3, we derive analogues of the
method for treating simulated and parallel tempering simula-
tions, STWHAM and PTWHAM, while properly capturing
the correlations among sequential configurations. In section
4, we validate our uncertainty estimates in a one-dimensional
model system and demonstrate an application for biomo-
lecular systems by estimating the potential of mean force
and corresponding uncertainties from parallel tempering
simulations of alanine dipeptide in implicit and explicit
solvent. An illustrative efficient implementation of the
method in Fortran 95 for use in the analysis of simulated
and parallel tempering simulations can be found in the
Supporting Information.

2. Independent Canonical Simulations

In this section, we review the derivation of WHAM for
computing expectations from multiple independent simula-
tions in the canonical ensemble. Conducting independent
simulations at the same or different temperatures can reduce
statistical uncertainty while obtaining perfect parallelism
(after the initial time to reach equilibrium has been dis-
carded). Some of these simulations might be conducted at a
higher temperature than the temperature of interest to
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promote greater sampling across barriers, for example.
Sometimes, the expectation value of one or more observables
is desired over a range of temperatures. Additionally,
simulations started from different initial conditions can be
used as a check of equilibration and convergence.25 Below,
we follow roughly the same approach as Kumar et al.2 in
deriving the WHAM equations, though our notation differs
substantially, and we include a more detailed treatment of
statistical uncertainty. Additionally, we arrive at a novel way
of computing expectations of multiple observables and avoid
the use of many-dimensional histograms. While the method
presented in ref 2 has the full generality of treating
simulations conducted with arbitrary biasing potentials, we
focus on the case of independent canonical simulations at
different temperatures, since variations on this approach will
allow us to consider simulated and parallel tempering
simulations in section 3. (For an informative treatment of
the case of a multiple biasing potentials at a single temper-
ature, as in the case of umbrella sampling, see ref 26.)

2.1. Motivation and Definitions. Suppose we have an
observableA that is only a function of the Cartesian
coordinates of the systemq, and we wish to estimate the
expectation ofA over the canonical ensemble at some
temperature of interestT. Instead of this temperatureT,
we will generally refer to its corresponding inverse tem-
peratureâ ) (kBT)-1, where kB is the Boltzmann con-
stant. We denote the expectation ofA over the canonical
ensemble at inverse temperatureâ by 〈A〉â, which can be
written as

whereU(q) is the potential energy function of the system.
Further suppose we have carried outK independent

simulations that sample from the canonical ensemble (using
such techniques as Metropolis Monte Carlo33 or thermally
controlled molecular dynamics) at corresponding inverse
temperaturesâ1, â2, ..., âK, some or all of which may be
different from the temperature of interest. We denote the
coordinates and potential energies sampled at a fixed
time interval ∆t from simulation k by the time series
{qkn, Ukn}n)1

Nk , whereUkn ) U(qkn) andNk is the number of
configurations collected from simulationk.

We first consider the probability density function from
which the configurations are generated in simulationk. For
a simulation sampling from the canonical distribution, the
probability of generating a configuration with potential
energy in the intervaldU aboutU at inverse temperatureâ
is given by

with the normalizing constantZ(â), often referred to as
theconfigurational partition function, chosen to ensure that
p(U) integrates to unity. The quantityΩ(U) is thepotential
energy density of states, andΩ(U) dU represents the volume
of configuration space with potential energy in the interval
dU aroundU.

While the Boltzmann factore-âkU and normalization
constantZ(âk) differ for each simulationk, the density of
statesΩ(U) is independent of temperature. Since the Boltz-
mann factor is a known function and the configurational
partition function is simply a normalizing constant, knowl-
edge of the density of states allows the potential energy
probability density to be computed atany temperature. If
the average of the observableA over all configurations with
potential energyU is known, these can be combined to give
the expectation at a desired inverse temperatureâ

where A(U) is defined as the average ofA over all
configurations with potential energyU

It is easily seen that substituting this expression into eq 3
recovers the configuration space average in eq 1.

Our aim is to obtain the best estimate of the density of
states and the expectation of the observable by combining
information from several simulations. Since each simulation
samples an energy range determined by its temperature, our
final estimate of the density of states will be more accurate
if we account for the different uncertainties in the estimate
obtained from each simulation. We will therefore need a
separate estimate of the density of states and its correspond-
ing uncertainty fromeachsimulation.

2.2. Obtaining an Estimate of the Density of States from
Each Simulation. To obtain an estimate of the density of
states from each simulation, we first need a way of
mathematically expressing the form of the observed prob-
ability density functionp(U). While it may be possible to
assume a particular functional form for this density, this
would generally be inexact. A better approach is to use a
nonparametric density estimator(see, for example, ref 27
for an overview) that makes no prior assumptions as to the
true functional form ofp(U). Kumar et al.,2 as Ferrenberg
and Swendsen18,19earlier, chose a histogram-based estimator,
in which the range of sampled energies is discretized into a
set of nonoverlapping bins of equal width. While there are
a number of more sophisticated smooth nonparametric
estimators,28 the histogram estimator is simpler and more
efficient to apply.

Accordingly, we construct an estimate of the probability
density functionp(U|â) on a set ofM points, labeledUm,
that span the sampled potential energy range and are spaced
∆U apart. We denote the estimate ofp(U|â) at Um by pm-
(â)and the corresponding estimate of the density of states
Ω(Um) by Ωm.

The normalization factorZ(â) can then be approximated by
a discretized integration

〈A〉â )
∫dq e-âU(q) A(q)

∫dq e-âU(q)
(1)

p(U|â) dU ) [Z(â)]-1 Ω(U) dU e-âU (2)

〈A〉â )
∫dU Ω(U) e-âU A(U)

∫dU Ω(U) e-âU
(3)

A(U′) ≡
∫dq δ(U(q) - U′) A(q)

∫dq δ(U(q) - U′)
(4)

pm(â) ≡ p(Um|â) ) [Z(â)]-1Ωme-âUm (5)
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where we have made the assumption that the integrand,
Ω(U) e-âU, does not change significantly over the bin width
∆U. As the density of statesΩ(U) increases withU and the
Boltzmann factore-âU decreases, their product is expected
to vary less rapidly than either term individually.

We defineψm(U) as the indicator or characteristic function
for the energy bin of width∆U centered aboutUm

and the time series defined by this indicator function as
{ψmkn}n)1

Nk , whereψmkn ≡ ψm(Ukn). We denote the count of
configurations from simulationk that fall in energy binms
the “histogram” from which the weighted histogram analysis
method derives its namesby Hmk, and see that it can be
computed by

We will also use the total number of configurations over all
simulations that fall in energy binm, which we termHm:

Note that throughout our discussion, pairs of variables
that only differ by the number of written subscripts, such
as Hm and Hmk, represent similar quantities related in this
way.

We can estimatepm(âk) by the number of configurations
sampled from the simulation at temperatureâk with energies
that fall in the bin centered aboutUm:

Equating this with the definition ofpm from eq 5 and
rearranging terms, we can obtain an estimate ofΩmk, the
density of states at energyUm from simulationk, which we
will denote byΩ̂mk:

In the last step, we have replaced the partition functionZ(âk)
by an exponentiated dimensionless free energyfk ≡
-ln Z(âk). Each independent simulationk contributes an
estimate of the density of statesΩ̂mk for energy binm. Each
of these estimates in turn carries a statistical uncertainty
δ2Ω̂mk, determined primarily by the number of uncorrelated
samples of the energy bin. (Expressions forδ2Ω̂mk will be
derived later in section 2.5.) We will combine these

individual estimatesΩ̂mk to produce a single optimal estima-
tor Ω̂m in a such way that the statistical uncertainty in the
resulting estimate is minimized, giving more weight to the
Ω̂mk with smaller uncertainties. To do this, we must first
briefly review the maximum-likelihood method for combin-
ing independent measurements with associated uncertainties
into an optimal estimate and also consider the uncertainty
in a mean computed from a set of correlated observations.

2.3. Optimal Estimator from Independent Observations
and Associated Uncertainties.Suppose we haveK inde-
pendent observations or measurements of some random
variableX denotedx1,...,xK, each with corresponding squared
uncertaintyδ2xk, defined by

where 〈‚〉 here denotes the expectation over repeated
measurements or experimental trials. We can then writeX̂,
the optimal estimator for〈X〉 in the sense of minimizingδ2X̂,
by a weighted sum of the individual estimates

Note that observations with smaller uncertainties get greater
weight, and if all the uncertainties are equal, the weight is
simply 1/K, as would be expected.

The uncertainty in the resulting estimate is simply given
by

These are standard formulas that come from maximum
likelihood considerations.29

2.4. Statistical Uncertainty in the Estimator for Cor-
related Time Series Data.We briefly review the estimation
of statistical uncertainty for a time series of correlated
measurements. (See ref 20 for an early exposition of this
method as applied to the analysis of Monte Carlo simulations
of spin systems, ref 21 for the analysis of molecular dynamics
simulations, or ref 23 for a recent general illustration.)

Suppose we have a time series of correlated sequential
observations of the random variableX denoted{xn}n)1

N that
come from a stationary, time-reversible stochastic process.
Our estimate for the expectation ofX is given by the time
average

but the statistical uncertainty is more complicated than in
the independent observation case

Z(â) ) ∫ dU Ω(U) e-âU ≈ ∑
m)1

M

∆U Ωm e-âUm (6)

ψm(U) ) {1 if U∈ [Um - ∆U/2, Um + ∆U/2)
0 otherwise

(7)

Hmk ) ∑
n)1

Nk

ψmkn (8)

Hm ) ∑
k)1

K

∑
n)1

Nk

ψmkn (9)

pm(âk) ≈ 1
∆U

‚
Hmk

Nk
(10)

Ω̂mk) 1
∆U

‚
Hmk

Nk
‚

Z(âk)

e-âkUm

)
Hmk

Nk ∆U exp[fk - âkUm]
(11)

δ2xk ≡ 〈(xk - 〈xk〉)
2〉 ) 〈xk

2〉 - 〈xk〉
2 (12)

X̂ )

∑
k)1

K

[δ2xk]
-1 xk

∑
k)1

K

[δ2xk]
-1

(13)

δ2X̂ ) {∑
k)1

K

[δ2xk]
-1}-1 (14)

X̂ )
1

N
∑
n)1

N

xn (15)

δ2X̂ ≡ 〈(X̂ - 〈X̂〉)2〉 ) 〈X̂2〉 - 〈X̂〉2
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In the last step, we have split the sum into two sumssa term
capturing the variance in the observations and a remaining
term capturing the correlation between observations. Using
the properties of stationarity and time-reversibility, we can
further manipulate this to obtain

where the varianceσx
2, statistical inefficiencyg, and auto-

correlation timeτ (in units of the sampling interval) are given
by

with the discrete-time normalized fluctuation autocorrelation
function Ct defined as

The quantityg ≡ (1 + 2τ) g 1 can be thought of as a
statistical inefficiency, in thatN/g gives the effective number
of uncorrelatedconfigurations contained in the time series.
The statistical inefficiency will depend on the time interval
at which configurations are collected for analysis; longer
intervals will reduce the statistical inefficiency, which will
approach unity as the sampling interval exceeds the correla-
tion time. Practically, we use our best estimates for the
varianceσx

2 and autocorrelation functionCt to compute an
estimate of the statistical uncertaintyδ2X̂.

2.5. Optimal Estimate of the Density of States.We now
construct an optimal estimator of the density of statesΩm

from the individual estimates obtained from theK indepen-
dent canonical simulations. From the results of section 2.3,we
can write this estimator and its corresponding uncertainty
as

The results of section 2.4 show us how to write theδ2Ω̂mk,
the uncertainty in our estimate of the density of states for
energy binm from simulationk. In eq 11 above, we see that
this uncertainty comes only fromδ2Hmk, the uncertainty in
the histogram count for the energy bin, since all other terms
are known with certainty:

Hmk, the histogram count from simulationk, can be
written as a time average of the indicator functionψm

over the correlated configurations collected from the
simulation:

We can use the result of section 2.4 above to obtain
an expression forδ2Hmk, the uncertainty in the histogram
count:

where, becauseψm(U) is an indicator function (eq 7),
[ψm(U)]2 ) ψm(U). If the histograms are sparsely populated,
a reasonable assumption if there are a sufficient number of
histogram bins spanning the energy range sampled by each
simulation, then〈Hmk〉/Nk , 1, and we can further simplify
this to

The statistical inefficiencygmk here reflects the number of
configurations required for an uncorrelated sampling of the
energy bin. This will, in general, depend on the bin index,
bin width, and temperature. This dependence was omitted
in the original Kumar et al. presentation.2 At higher tem-
peratures, the correlation time, and hence the statistical
inefficiency, is expected to be smaller as the simulation can
move through configuration space more easily. The structure
of the energy landscape may cause the simulation to be stuck
in certain regions of configuration space for different times,
hence the dependence on energy bin index is also potentially
important.

The expectation〈Hmk〉 should be replaced by our best
estimate of the histogram count for energy binm at
temperatureâk, which could be obtained from our yet-to-
be-determined optimal estimate of the density of statesΩ̂m:

)
1

N2
∑

n,n′)1

N

[〈xnxn′〉 - 〈xn〉〈xn'〉]

)
1

N2
∑
n)1

N

[〈xn
2〉 - 〈xn〉

2] +
1

N2
∑

n*n′)1

N

[〈xnxn'〉 - 〈xn〉〈xn'〉]

(16)

δ2X̂ )
1

N
[〈xn

2〉 - 〈xn〉
2] +

2

N
∑
t)1

N-1(N - t

N )[〈xnxn+t〉 - 〈xn〉〈xn+t〉]

≡ σx
2

N
(1 + 2τ) )

σx
2

N/g
(17)

σx
2 ≡ 〈xn

2〉 - 〈xn〉
2 (18)

τ ≡ ∑
t)1

N-1(1 -
t

N)Ct (19)

g ≡ 1 + 2τ (20)

Ct ≡
〈xnxn+t〉 - 〈xn〉

2

〈xn
2〉 - 〈xn〉

2
(21)

Ω̂m)

∑
k)1

K

[δ2Ω̂mk]
-1 Ω̂mk

∑
k)1

K

[δ2Ω̂mk]
-1

(22)

δ2Ω̂m) {∑
k)1

K

[δ2Ω̂mk]
-1}-1 (23)

δ2Ω̂mk)
δ2Hmk

{Nk ∆U exp[fk - âkUm]}2
(24)

Hmk ) Nk ·
1

Nk
∑

n ) 1

Nk

ψmkn (25)

δ2Hmk) Nk
2 ·

σ2
mk

Nk/gmk

) gmk Nk (〈ψmk
2〉 - 〈ψmk〉

2)

) gmk Nk〈ψmk〉(1 - 〈ψmk〉)

) gmk 〈Hmk〉 (1 -
〈Hmk〉

Nk
) (26)

δ2Hmk≈ gmk 〈Hmk〉 (27)
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Substituting this expression back into eqs 27 and 24, we
obtain

Using eq 29 for the uncertainty in the density of states
associated with simulationk and eq 22 for the best estimate
of the density of states, along with eq 11, we obtain

Everything in the above expression can be easily evaluated,
except for thefk, which depends on theΩ̂m through

The fk may therefore be solved for self-consistency by
iteration of eqs 30 and 31 starting from an arbitrary choice,
such asfk ) 0.

The statistical uncertainty inΩ̂m is given by eq 14:

We note that the relative uncertainty in this estimate is given
by

which is equal toHm
-1, the inverse of the total number of

configurations from all simulations in energy binm, if all
gmk are unity. This is reasonable, since the uncertainty in
our estimate forΩm should diminish as more independent
samples are collected in energy binm.

2.6. Estimating an Observable at the Temperature of
Interest. Using the estimate of the density of states obtained
above, we can obtain an estimate for the expectation of any
configuration functionA(q) at an arbitrary temperature by
writing analogous equations to eqs 3 and 4 where we have
discretized the energyU

where

Am, the mean of observableA over all configurations with
potential energies consistent with energy binm, can be best
approximated by pooling configurations fromall K simula-
tions that have energies in binm

whereHm (eq 9) is the total count of configurations in energy
bin m from all simulations. Substituting this expression for
Am into eq 34 above produces an estimatorÂ(â) for 〈A〉â

where we have defined the per-configuration weightswkn(â)
by

where only one term of the sum will contributesthe binm
containing the energyUknsdue to the presence of the
indicator functionψmkn. Note that we only need to compute
the weightwkn up to a constant of proportionality because
this constant drops out in the normalized sum in eq 37.

This relationship is significant in that we now have an
expression for the canonical expectation of observableA in
terms of a weighted sum overall of the data. These weights
are determined by the temperature of interest from the
WHAM equations and are simple functions of the count of

〈Hmk〉 ) Nk pm(âk) ∆U

≈ Nk ∆U Ω̂m exp[fk - âkUm] (28)

δ2Ω̂mk)
gmk Nk ∆U Ω̂m exp[fk - âkUm]

{Nk ∆U exp[fk - âkUm]}2

)
Ω̂m

gmk
-1 Nk ∆U exp[fk - âkUm]

(29)

Ω̂m)

∑
k)1

K

gmk
-1Hmk

∑
k)1

K

gmk
-1 Nk ∆U exp[fk - âkUm]

(30)

fk ) -ln∑
m)1

M

Ω̂m ∆U e-âkUm (31)

δ2Ω̂m)
Ω̂m

∑
k)1

K

gmk
-1 Nk ∆U exp[fk - âkUm]

(32)

δ2Ω̂m

Ω̂m
2

) [∑
k)1

K

gmk
-1 Hmk]

-1 (33)

〈A〉â ≈
∑
m)1

M

Ω̂m ∆U e-âUm Am

∑
m)1

M

Ω̂m ∆U e-âUm

(34)

Am)
∫dq A(q) ψm(U(q))

∫dq ψm(U(q))
(35)

Âm) Hm
-1∑

k)1

K

∑
n)1

Nk

ψmknAkn (36)

Â(â) )

∑
m)1

M

Ω̂m ∆U e-âUm Am

∑
m)1

M

Ω̂m ∆U e-âUm

)

∑
m)1

M

Ω̂m e-âUm [Hm
-1∑

k)1

K

∑
n)1

Nk

ψmknAkn]

∑
m)1

M

Ω̂m e-âUm [Hm
-1∑

k)1

K

∑
n)1

Nk

ψmkn]

)

∑
k)1

K

∑
n)1

Nk

wkn(â) Akn

∑
k)1

K

∑
n)1

Nk

wkn(â)

(37)

wkn(â) ) ∑
m)1

M

ψmknHm
-1Ω̂m e-âUm (38)
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configurations with energies falling in a particular energy
bin. The weightswkn(â) can be computed once for the
temperature of interest and then used to calculate expectations
of many observables.

It should be noted that our estimate of〈A〉â will only be
reasonable if the inverse temperature of interestâ lies near
or within the range of inverse temperatures sampled by the
canonical simulationssthe uncertainty in the estimate will
increase as the temperature of interest deviates from the
sampled range of temperatures (see refs 30 and 31 for an
examination of this issue).

2.7. Statistical Uncertainty of the Estimator for the
Expectation. If the observable of interest has a long
correlation time compared to fluctuations in the potential
energy (e.g., if the observable is a function of the large scale
molecular conformation), then it is possible that the density
of statesΩm and dimensionless free energies{fk} may be
sufficiently well-converged that they are not dominant
contributors to the uncertainty in the estimate of the
observable of interest. Instead, the long time-correlation in
the observable means that there are many fewer effectively
independent observations of the observable than stored
configurations. We may then use the following procedure.

We can rewrite the estimatorÂâ as a ratio of two random
quantitiesX andY

where

Applying standard error propagation techniques for a function
of random variables (see, e.g. ref 32), which amounts to a
first-order Taylor series expansion ofÂ about 〈X̂〉/〈Ŷ〉,
we can estimate the uncertainty inÂ as

Here, the cross-termδX̂δŶ ≡ 〈(X̂ - 〈X̂〉)(Ŷ - 〈Ŷ〉)〉 is non-
zero only if the random variablesX and Y are correlated,
in which case the term involving it in the equation above
serves to reduce the uncertainty in the estimate of the
ratio Â.

Recognizing thatX and Y include contributions fromK
statistically independent simulations, we can collect these
terms and write (dropping the hats)

where the argumentâ has been omitted for notational
convenience. Because theK individual simulations are
independent, the uncertainties required in eq 41 are given
by

These uncertainties involve the correlated data of simulation
k and can be estimated by standard correlation analysis
methods21,23 or by block transformation methods,22 though
the latter method requires some modification to estimate the
uncertainty cross-termδXkδYk.

To compute the uncertainties by correlation analysis
methods as in section 2.4, we first define new observables
xkn ) wknAkn andykn ) wkn and compute the uncertainties

These uncertainties involve (co)variances of the typeσ2
k,x;y,

estimated for each replica by

The statistical inefficiencies of the formgk,x;y are computed
by

with the correlation function for simulationk computed by
taking advantage of stationarity and time-reversibility:

Ââ )
X̂

Ŷ
(39)

X̂ ≡ ∑
k)1

K

∑
n)1

Nk

wkn(â)Akn

Ŷ≡ ∑
k)1

K

∑
n)1

Nk

wkn(â) (40)

δ2Â ) [X̂Ŷ]2 [δ2X̂

X̂2
+ δ2Ŷ

Ŷ2
- 2

δX̂δŶ
X̂ Ŷ ] (41)
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K

Nk Xk
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K

Nk Yk

Xk ≡ 1

Nk
∑
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Nk

wkn Akn
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Nk
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δ2X ) ∑
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K

Nk
2δ2Xk

δ2Y ) ∑
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K

Nk
2δ2Yk

δXδY ) ∑
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K

Nk
2 δXkδYk (43)

δ2Xk )
σ2

k,x;x

Nk /gk,x;x

δ2Yk )
σ2

k,y;y

Nk /gk,y;y

δXkδYk )
σ2

k,x;y

Nk/gk,x;y
(44)

σ̂k,x;y
2 )

1

Nk - 1
∑
n)1

Nk

(xkn - X̂k)(ykn - Ŷk) (45)

gk,x;y ≡ 1 + 2τk,x;y (46)

τk,x;y ≡ ∑
t)1

Nk - 1(1 -
t

Nk
)Ckt,x;y (47)
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See section 5.2 for a discussion on efficiently computing
the integrated correlation timeτ from Ĉkt;x,y.

3. Simulated and Parallel Tempering
3.1. WHAM for Simulated Tempering (STWHAM). In a
simulated tempering simulation,10,3 a single simulation is
conducted in which configurations are sampled from amixed-
canonicalensemble.16 In practice, a simulation algorithm that
samples from the canonical ensemble is used to generate
configurations, and at regular intervals attempts are made
to change the temperature among a discrete set of choices
â1,...,âL. The probability of accepting a proposed temperature
change is given by the Metropolis-like criterion

where the constants{al}l)1
L are specified beforehand and

chosen, often by tedious exploratory simulations, to attempt
to achieve near-equal visitation of each temperature and,
hopefully, potential energy. The optimal choice of{al} is
given by the dimensionless free energies{fk} in the equation
above, and proposed temperature changes are usually be-
tween neighboring temperatures because the exchange prob-
ability diminishes with increased temperature separation. Use
of the above criterion for accepting or rejecting proposed
temperature changes ensures that, if the configurations were
originally distributed from the equilibrium distribution at the
old temperature, they are also distributed from the canonical
distribution at the new temperature.

As a result of this procedure, the system spends a fraction
of time in each of a number of different temperatures. Since
we know the number of times each temperature was visited,
we can write the probability density for energy binm as a
weighted sum of the canonical probability density functions
at these different temperatures

where Nl/N is the fraction of configurations generated at
inverse temperatureâl over the course of the simulation. As
above, we introduce the Helmholtz free energyfl ≡
- ln Z(âl), which allows us to write

We can approximatepm as before using our histogram count,
Hm, the number of configurations with potential energy in
the bin centered aboutUm:

Rearranging and including our definition offl, we obtain the
coupled set of equations for estimating the density of states

These equations are similar to eqs 30 and 31 for the canonical
ensemble WHAM if the configurations are grouped by the
temperature at which they were generated but lacking
statistical inefficiency terms since we are not combining data
from multiple simulations.

The uncertainty inΩ̂m is then given by

where, as in eq 27, we assume the histograms are sparsely
populated and introduce the statistical inefficiencygm to
estimate the histogram uncertainty.

The estimate for the expectation of the total histogram
count in energy binm is given by the sampling probability

which gives the final estimate for the uncertainty as

Following the approach in section 2.6, we can again write
the estimator in the form of a weighted sum over configura-
tions

Ckt,x;y ≈ 1

2σ̂k,x;y
2

1

(Nk - t)
× ∑

n)1

Nk - t

[(xkn - X̂k)(ykn+t - Ŷk) +

(ykn - Ŷk)(xkn+t - X̂k)] (48)

P(âl f âl') ) min{1, exp[- (âl' - âl)U + (al' - al)]} (49)
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where again, only one term contributes to the sum in the
expression for the weightwn. The statistical uncertainty in
this estimate, as in section 2.7, can be computed by eq 41,
whereX andY are now given by

These uncertainties are simply computed as in eqs
44-48, without the subscriptk as there is only one simu-
lation instead of many. The quantitiesX̂ and Ŷ no longer
correspond to canonical averages, since they are the ex-
pectations over the simulated tempering trajectory which
spends a different amount of time at each of theL
temperaturessit is a mixed canonical average. The sample
mean over the trajectory provides the best estimator for these
quantities.

Here, the statistical inefficiencygm appearing in eq 57 and
the inefficiencies required in applying eqs 44-48 are
computed from the correlation functions computed over the
simulated tempering trajectory, which includes unphysical
jumps in temperature. It is worth noting that expressions for
〈A〉â given in formulations by Okamoto and co-workers (e.g.
eq 24 of ref 14) instead contain a statistical inefficiency for
each temperature. In principle, one could account for a
temperature-dependent statistical inefficiency, since one
might expect correlation times to be different at each
temperature, but, in practice, the limited number of con-
figurations sampled between temperature changes is likely
too short to allow temperature-dependent correlation times
to be computed. Additionally, a temperature-dependent
treatment does not account for the correlation between
configurations sampled before and after a temperature swap.
The derivation presented here assumes the statistical inef-
ficiencygm depends only on the energy binm, which causes
these factors to cancel out of our estimator for〈A〉â in eqs
58 and 59.

3.2. WHAM for Parallel Tempering or Independent
Simulated Tempering Simulations (PTWHAM). In a
parallel tempering (or replica-exchange among temperatures)
simulation,12,4 it was recognized that the constantsak needed
in the simulated tempering simulation to ensure equal
sampling of temperatures could be eliminated if multiple
simulated tempering simulations were conducted in parallel
and the temperature changes of two simulations were coupled
together into a temperature swap between the replicas. In
practice, a numberK of replicasare simulated independently
at inverse temperaturesâ1,...,âK using some simulation
method that samples from the canonical distribution. At given
intervals, an attempt is made to exchange the temperatures
of two replicasi and j, with the exchange accepted with
probability

whereâi is the current inverse temperature of replicai, and
Ui is the corresponding potential energy.

Because of this exchange procedure, each replica executes
a more or less random walk in temperature, eliminating the
need to perform exploratory simulations to determine the
parameters{ai}i)1

K required for simulated tempering. Each
replica simulation is nearly independent, as the correlation
between configurations of different replicas introduced by
the exchange of temperatures is minimal. The dominant
contribution to statistical uncertainties will almost certainly
be due to the variance and temporal correlation in the value
of the observable of interest within each replica, which
reduces the effective number of independent samples. We
can therefore analyze a parallel tempering simulation as a
set of independentsimulated tempering simulations, each
with a numberL of accessible temperatures, withL equal to
the number of replicasK. Below, we derive an analogue of
the Kumar et al. WHAM procedure for the treatment ofK
independent simulated tempering simulations (replicas) each
capable of visitingL temperatures, allowing this method to
also treat simulations generated by procedures such as
REST.3 We make use of the sampling distribution for
simulated tempering described above and properly account
for the correlation within each replica, eliminating the need
to artificially reorder configurations from parallel tempering
simulations by temperature.

We can use the simulated tempering eqs 53 and 57 above
to write the estimator and uncertainty for the density of states
obtained from each replicak as

where we have added the indexk to denote thereplica from
which the data are generated.Hmk therefore denotes the
number of configurations sampled with potential energy in
energy binm from replicak, andNkl denotes the number at
temperatureâl from replicak. gmk is the statistical inefficiency
computed from replicak for energy binm.

Again using the optimal combination rule of eq 13, we
obtain the optimal estimate for the density of states

and the statistical uncertainty from eq 14:
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We can rewrite eq 64 as

where Hm
eff ≡ ∑k)1

K gmk
-1Hmk is the effective number of

independent samples in energy binm from all replicas, and
Nml

eff ≡ ∑k)1
K gmk

-1Nkl is an effective number of independent
samples at temperatureâl from all replicas.

To compute the estimator of the expectation for an
observableA, we apply the same technique in section 2.6
above and write the expectation as a weighted sum over
configurations

where the weights are given by

As in eqs 38 and 59, the sum overm reduces to a single
term, the one with energy bin index appropriate for config-
urationn of replicak. Akn is the value of the observableA
for configurationn of replica k and Hm ) ∑k)1

K ∑n)1
N ψmkn,

the total number of configurations from all replicas with
potential energy in binm.

Again, if the observable of interest has a correlation time
that is long compared to fluctuations in the potential energy,
we may compute the dominant contribution to the statistical
uncertainty δ2A(â) by eqs 41-48, with the important
distinction thatk now indexes thereplicas, rather than the
temperatures. The correlation times are, as in the simulated
tempering case, computed over the nonphysical replica
trajectories; because the replicas perform random walks in
temperature, these times are likely to be shorter than the
correlation time for this observable computed from a
canonical simulation at the lowest temperature. These replica
correlation times properly capture the correlation between
successive snapshots generated by a sampling method like
Metropolis Monte Carlo or molecular dynamics, and their
use in estimating the uncertainty is the primary novel result
of this paper. Collecting configurations from all replicas into
pseudotrajectories of constant temperature, as suggested in

previous attempts to apply the method to parallel tempering
simulations,4 would give correlation times that are errone-
ously short and make the incorrect assumption that these
pseudotrajectories are statistically independent.

4. Applications
4.1. One-Dimensional Model Potential.To validate the
STWHAM and PTWHAM methods described above for
estimating expectations and corresponding uncertainties, we
consider a one-dimensional model potential where canonical
expectations can be computed directly and a large quantity
of simulation data can be obtained in order to verify our
uncertainty formulas. We use an asymmetric double well
potential, given by

All simulations utilize the Metropolis Monte Carlo method33

with the trial displacement∆q uniformly distributed on the
interval [-0.2, +0.2] to generate a series of configurations
which are sampled every 10 move attempts, resulting in
highly correlated data. In the following simulations, we
estimate the expectation〈q〉â* atâ* ) 4, where the integrated
correlation time ofq is rather longsapproximately 130
samples. The initial conformation was chosen uniformly on
the interval [-1.8,+1.8] and the first 105 steps discarded to
equilibration.

Four types of simulations were performed: a standard
canonical Metropolis Monte Carlo (MMC) simulation atâ
) â* ) 4, as described above; a set of four independent
canonical (4MMC) simulations with inverse temperaturesâ
exponentially spaced in the range 1-4 (â ≈ {4, 2.52, 1.59,
1}); a simulated tempering simulation (ST) with the same
four possible temperatures and analytically computed optimal
weights; and a parallel tempering (PT) simulation with
replicas at the same four temperatures.

All simulations were conducted for 5× 107 steps each
(per replica, if multiple replicas are used), generating 5×
106 samples (per replica). The data were then divided into
500 sequential blocks of 104 configurations (per replica) each,
whose expectations were verified to be statistically indepen-
dent by computing the correlation between expectations in
neighboring blocks. The standard deviation of the set of
expectations computed from each block is indicative of the
statistical uncertainty in simulations of a single block lengths
104 samples (per replica)sand the difference between the
mean of these estimates and the expectation computed from
the potential directly is indicative of the bias. Expectations
and uncertainties for each block were computed using the
code appearing in listing 1 of the Supporting Information.

To assess the performance of the uncertainty estimate for
each block, we compute the fraction of blocks for which
the true magnitude of the deviation from the mean of the
block expectations is smaller than a multiplicative constant
σ times the estimated uncertainties, forσ∈[0.1, 3]. This
fraction is related to a confidence interval if compared to
the error function Gaussian integral (Figure 1). For example,
for our uncertainty estimates to be meaningful, we expect
the difference between the true mean and our estimate to be
within one standard deviationσ approximately 66% of the
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time. It is readily apparent from the figure that the computed
uncertainty estimate computed for each block is in fact quite
good. Additionally, the bias is smallsless than 10% of the
magnitude of the statistical uncertainty in the cases studied
(data not shown).

4.2. Alanine Dipeptide in Implicit and Explicit Solvent.
To illustrate the utility and verify the correctness of the
PTWHAM procedure described above for simulations of
biological interest, we demonstrate their use in the analysis
of parallel tempering simulations of alanine dipeptide in
implicit and explicit solvent. A similar strategy to the 1D
model system described above was adopted, with a long
simulation partitioned into short blocks (here, 2 ns/replica
per block) whose expectations were verified to be statistically
independent by the same procedure described above.

Using the LEaP program from the AMBER7 molecular
mechanics package,34 a terminally blocked alanine peptide
(sequence ACE-ALA-NME, see Figure 2) was generated in
the extended conformation. For the explicit solvent system,
the peptide was solvated with 431 TIP3P water molecules35

in a truncated octahedral simulation box whose dimensions
were chosen to ensure a minimum distance to the box
boundaries from the initial extended peptide configuration
of 7 Å. Peptide force field parameters were taken from the
parm96 parameter set.36 For the implicit solvent simulation,
the Generalized Born method of Tsui and Case37 (corre-

sponding to the flag igb)1) was employed with radii from
AMBER6, along with a surface area penalty term of the
default 5 cal mol-1 Å-2. Covalent bonds to hydrogen were
constrained with SHAKE using a tolerance of 10-8 Å.38

Long-range electrostatics for the explicit solvent simulation
were treated by the particle-mesh Ewald (PME) method39

with default settings.
Each system was first subjected to 50 steps of steepest

descent energy minimization, followed by 1000 steps of
conjugate gradient optimization. To equilibrate the explicit
solvent system to the appropriate volume, a 100 ps molecular
dynamics simulation was performed with the temperature
adjusted to 300 K and the pressure to 1 atm by the Berendsen
weak-coupling algorithm40 with temperature and pressure
relaxation time constants of 1 and 0.2 ps, respectively. The
simulation box was fixed at the final size obtained from this
equilibration step, with a volume of 13 232 Å3, in all
subsequent simulations.

A parallel tempering (or replica-exchange among temper-
atures) molecular dynamics simulation4 was conducted using
a parallel Perl wrapper for the sander program. [A copy of
this Perl wrapper to perform replica-exchange simulations
using AMBER7 and AMBER8 can be obtained from URL
http://www.dillgroup.ucsf.edu/∼jchodera/code/rex.] Replica
temperatures were exponentially distributed over the range
273-600 K, with 10 replicas required for the implicit solvent
simulation (yielding an exchange acceptance probability
between neighboring temperatures of approximately 75%)
and 40 replicas for the explicit solvent simulation (yielding
an acceptance probability of approximately 50%). All
momenta were reassigned from the Maxwell-Boltzmann
distribution at the appropriate replica temperature after each
exchange attempt. Between exchanges, constant-energy,
constant-volume molecular dynamics was carried out for the
explicit solvent simulation, while the implicit solvent simula-
tion utilized Langevin dynamics with a friction coefficient
of 95 ps-1 to mimic the viscosity of water. All dynamics
utilized a 2 fstime step. The algorithm used to select pairs
of replicas for temperature exchange attempts starts from
the highest-temperature replica and attempts to swap the
configuration for the next-lowest temperature replica using
a Metropolis-like criteria and proceeds down the temperatures
in this manner. On the next iteration, swapping attempts start
from the lowest temperature and proceed upward, and this
alternation in direction is continued in subsequent pairs of
iterations.

Starting all replicas from the minimized or volume-
equilibrated configuration described above, 100 iterations
were conducted with 1 ps between exchange attempts to
equilibrate the replicas to their respective temperatures. This
equilibration run was followed by a production run with 20

Figure 1. Confidence curves for Metropolis Monte Carlo
simulations on the 1D model potential. The fraction of
statistically independent blocks for which the true uncertainty
(the deviation of the estimated expectation over the block from
the mean of the block estimates) is less than a multiplier of
the predicted 1σ uncertainty (here plotted as the independent
variable is shown). The solid curve shows the fraction
expected to fall within the interval for the normal distribution.
Ideally, the curves would coincide. The results are shown for
(MMC) a single Metropolis Monte Carlo simulation at â ) 4;
(4MMC) a set of four independent canonical simulations
spanning the range â ) 1-4; (ST) a simulated tempering
simulation spanning â ) 1-4; (PT) a parallel tempering
simulation with four replicas spanning â ) 1-4. Uncertainties,
with 95% confidence intervals shown here as vertical bars,
were computed as described in Appendix B.

Figure 2. Terminally blocked alanine peptide with (φ,ψ)
torsions labeled.
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ps between exchange attempts, giving a total of 100
ns/replica for the implicit solvent production run and 20 ns/
replica for the explicit solvent run. Solute configurations and
potential energies were saved from the production run every
1 ps. Expectations and uncertainties were again estimated
using listing 1 appearing in the Supporting Information.

Over 2 ns blocks of simulation time (containing 2000
configurations/replica in each block), we computed the
probability of the peptide occupying theRR conformation at
300 K, withRR here defined as-105e φ < 0 and-124e
ψ < 28. This corresponds to configurations that would be
classified as right-handed alpha-helical. To validate the
uncertainty estimates, confidence curves of the type descrip-
tion in section 4.1 were computed and are shown in Figure
4. Though the confidence intervals are larger because the
data contain fewer independent blocks, the uncertainty
estimates are still good indicators of the expected deviation
from the true expectation.

The potential of mean force (PMF) for theψ torsion angle
at 300 K was also computed and is shown in Figure 3. The

computed PMF and uncertainty for a representative block is
depicted in the top panel, along with the PMF computed
using the entire trajectory. The deviations of the block PMFs
from the whole-simulation estimate fall within the 1σ
uncertainty bars to the expected degree. In the lower panel,
the uncertainties computed from the representative block are
compared to the standard deviation of the PMF computed
from all blocks, which should be indicative (to within an
order of magnitude) of the uncertainty expected from a
simulation of the block length. These too compare favorably.

It is important to note that our neglect of the uncertainty
in the dimensionless free energies,{fl}, is only reasonable
if the correlation time of the observable of interest is much
longer than that of the potential energy. When this condition
is satisfied, the dominant contribution to the uncertainty in
the computed expectation of the observable is due to the
small number of effectively independent samples of this
observable present in the simulation data. To demonstrate
that this is the case for systems of interest, we have assessed
the relative contribution of the neglected uncertainty in the
{fl} to the uncertainty of the estimated probability of theRR

conformation of the alanine dipeptide system considered here.
The resulting contribution is 10 times smaller than the
uncertainty due to the time correlation treated above for the
explicit solvent system and 100 times smaller for the implicit
solvent system. [The impact of the uncertainty in the{fl} on
the uncertainty in the estimated observable was computed
in the following manner: We first computed estimates of
the{fl} over all uncorrelated 2 ns/replica blocks of simulation
data to form a pool of dimensionless free energies that
represent the typical uncertainty in a simulation of this length.
Next, for each 2 ns/replica block, we computed the standard
deviation in the estimatedRR probability when all{fl} in
this pool were substituted into the WHAM equations. The
mean of this standard deviation over all blocks then provides
an estimate of the magnitude of the impact of typical

Figure 3. Potential of mean force in ψ for implicit and explicit solvent parallel tempering simulations. Left: implicit solvent; right:
explicit solvent. Upper panels: The potential of mean force in the ψ torsion angle at 300 K. The solid line shows the PMF
estimated from the entire simulation, while the filled circles show the estimated PMF uncertainty using the method described in
the text for a single 2 ns/replica block. Lower panels: The computed uncertainties for the same 2 ns block (filled bars) along
with the average uncertainty expected for a simulation 2 ns/replica in length, estimated from the standard deviation of the PMFs
computed from all nonoverlapping blocks of length 2 ns in the full simulation (open bars). All uncertainties are shown as one
standard deviation.

Figure 4. Confidence curves for implicit and explicit solvent
parallel tempering simulations. As in Figure 1, the fraction of
statistically independent 2 ns blocks for which the true
uncertainty is less than a multiplier of the predicted 1σ
uncertainty is shown. The observable used is an indicator
function for the RR configuration. Left: implicit solvent (sta-
tistics over 50 blocks); right: explicit solvent (statistics over
10 blocks).
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uncertainties in the{fl} on the observable of interest.]
However, if the observable has a correlation time comparable
to that of the potential energy (e.g., if the expectation of the
potential energy itself is of interest), then the uncertainty
due to imperfect knowledge of the{fl} can be comparable
to the uncertainty due to the correlation in the observable.
In these cases where correlation times are comparable, an
algorithm that combines our approach with the T-WHAM
method of Gallicchio et al.,24 which explicitly treats the
uncertainty in the{fl} when the potential energy samples
are uncorrelated, may provide a superior estimate of the
uncertainty in the estimate of the observable.

We further note that pathological cases may arise where
simulations at neighboring temperatures may have poor
energy overlap, resulting in large uncertainties in some of
the {fl}. Fortunately, these cases are easily detected by
examination of the exchange acceptance rates between
neighboring temperatures, where they will be conspicuously
low, and detectable early in the simulation. Such cases are
easily remedied by adjusting the temperature spacing or by
the addition of more replicas at intermediate temperatures.

5. Practical Considerations

Several issues of great importance to successful implementa-
tion of the algorithm have received little discussion in the
literature.

5.1. Choice of Bin Width and Number of Bins.There
is a bias-variance tradeoff in the choice of energy histogram
width. As the energy bin width increases, the uncertainty in
our histogram estimator forpm(â), the probability density
for energy binm, decreases. At the same time, one expects
the resulting estimate of the density of statesΩm to become
increasingly biased, especially considering the dependence
of p(U) on the rapidly varying exponential Boltzmann factor
e-âU. Because of this, a reasonable assumption might be that
the bin width∆U should be chosen such that∆U , kBT.
However, if the bin size is too small, the uncertainty in the
estimate for thepm(â) will be large. One possibility might
be to use a data based choice of histogram bin width, as in
Wand,41 which uses concepts from nonparametric density
estimation in attempting to minimize the mean integrated
square error (MISE) to the true probability density.

For the alanine dipeptide simulations described in section
4.2 above, we find that the estimated probability of occupying
theRR region of conformation space is largely insensitive to
the number of bins used to discretize the sampled potential
energy range. In fact, the variation in the computed expecta-
tion is well within the statistical uncertainty over the range
of 50-5000 bins (corresponding to a range of bin widths of
0.5-50 kBT).

5.2. Computing Integrated Correlation Times.Estimat-
ing the correlation timeτ, defined above in eqs 19 and 21,
can be difficult when one is confronted with noisy correlation
functions. While ensuring trajectories are many times longer
than the longest correlation times is necessary for an accurate
estimate, even if this is achieved, performing the straight-
forward sum over the entirety of the correlation functionCt

as in eq 19 is almost always a poor choice, as the uncertainty

in the computed correlation function grows approximately
linearly with the lag timet.42 Even for trajectories many times
longer than the correlation length, this sum will be dominated
by contributions from the noisy tail, likely resulting in large
errors or even negative values for the computed correlation
time τ. Janke proposes a self-consistent approach where the
summation is performed only out to lag times of 6τ, after
which the correlation function is assumed to be negligible.23

Evertz contends that this approach produces incorrect
results,43 instead proposing an exponential fit to the tail of
the correlation function and use of this fit to evalute the
summand when the correlation function is dominated by
noise. Neither solution is both stable and straightforward to
apply, so we instead truncate the sum when the normalized
fluctuation correlation functionCt first crosses zero, since it
is likely unphysical for the correlation function to be negative
for most observables. [Velocity autocorrelation functions,
where there is often a clear negative peak at short times, are
an obvious exception.] The zero crossing is an indication
that the statistical uncertainty dominates the signal and that
the remainder of the correlation function should be consid-
ered indistinguishable from zero.

For most systems and observables, the correlation function
will decay rapidly at first and then slowly, approximately
exponentially for larget. To avoid the expense of computing
Ct at each value oft while still obtaining reasonably accurate
integrated correlation times for observables with very dif-
ferent decay time scales, we use an adaptive integration
scheme in which the correlation functionCt is computed only
at timesti ) 1 + i(i - 1)/2, wherei ) 1, 2, 3,.... In computing
the correlation timeτ, the sum in eq 19 is now performed
only over theti terms, with each term weighted byti+1 - ti,
with t1 ) 1. This approach ensures high time resolution at
small t whenCt is likely to be rapidly changing but avoids
the expense of computingCt at everyt in the slowly decaying
tails. We find the accuracy of this approach to be acceptables
differences typically amount to at most 10%.

5.3. Neglect of Bin Statistical Inefficienciesgkn. It is often
assumed or stated without justification that the energy bin
statistical inefficienciesgmk appearing in eqs 30 and 64,
representing the number of snapshots required for a statisti-
cally independent sampling of the energy bin, are all equal
or equal to unity.2,4,1 All gmk will be equal to unity only if
the {ψmkn}n)1

Nk are uncorrelated. To test this assumption, we
have computed the statistical inefficiencies for the systems
mentioned in section 4 above. To our knowledge, this is the
first time a test of this claim has been reported in the
literature. Indeed, for the explicit solvent system studied in
section 4.2 above, we find large differences in the statistical
inefficiencies for the same replica but different energy bins,
sometimes differing up to two orders of magnitude. Similarly,
for the same energy bin, the statistical inefficiencies from
different replicas can differ by up to 2 orders of magnitude.

In the limit that our parallel tempering simulation is very
longslong enough for each replica to execute an unrestricted
random walk through all temperatures and explore all
relevant regions of configuration spaceseach replica can be
considered to be equivalent. In this case, the statistical
inefficiencies should be independent of replica indexk, and
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we can writegm as the statistical inefficiency for energy bin
m. Applied to eqs 64 and 65, this yields a new set of
expressions:

The quantity∑k)1
K Nkl, simply represents the total number of

configurations stored from any replica at temperatureâl. For
a parallel tempering simulation, where each temperature must
be populated by exactly one replica at all times, this is simply
N, the total number of configurations stored per replica.
Additionally, Hm ≡ ∑k)1

K Hmk is the total number of con-
figurations over all replicas (and hence temperatures) with
energy in binm. This gives

which is identical to the WHAM result for independent
canonical simulations for the case where allgmk are identical
or unity. If there is no correlation in the datasthat is, all
configurations are independentsit does not matter whether
we apply this analysis to the original data or collect the
configurations by temperature and apply WHAM equations
for independent canonical simulations. This expression is in
fact identical to the one used in many published works that
have previously attempted to use the weighted histogram
analysis method for the analysis of parallel tempering
simulations, such as refs 4 and 1.

Under these same assumptions, the correlation functions
for any observableA should also be identical for each replica.
One can therefore average estimates of the unnormalized
correlation functions〈AnAn+t〉 over the replicas and use
optimal estimates of the mean and variance computed over
all of the replicas to obtain an optimal estimate of the
statistical inefficiencies and uncertainties. An implementation
illustrating this procedure is provided in the Supporting
Information as listing 2.

Note, however, that the above assumptions of equivalence
cannot be made in cases where the replicas are clearly
inequiValent, such as in a simulated tempering replica-
exchange (STREM) simulation.3,14 In that case, the expres-
sion above will only be recovered if the time between
samples is so long that all thegmk are unity.

5.4. The Statistical Inefficiency for the Cross-Correla-
tion Term, gk,wA;w. In computing the statistical inefficiency
for the cross-correlation term, uncertainties in the computed
integrated autocorrelation times due to insufficient data or
approximations may cause the cross-correlation term to

dominate and the estimate of the square uncertainty ofÂ
(eq 41) to be negative. Clearly, this should not be allowed
to occur, as the squared-uncertainty should be a strictly
positive quantity.

The statistical inefficienciesg should obey the following
relation (derived in Appendix A):

This is often violated when the correlation function is noisy
and can lead to negative estimates of the squared uncertainty
when the cross-correlation term dominates. In these cases,
we find it best to simply limitgx;y to its maximum allowed
value computed from the right-hand side of eq 73. Since
the autocorrelation times are usually shorter than the cross-
correlation time, it is believed that these estimates will be
better than the integrated cross-correlation time.

6. Conclusion
We have presented extensions of the weighted histogram
analysis method, STWHAM and PTWHAM, for the analysis
of one or more independent simulated tempering or parallel
tempering simulations. The method provides not only
estimators of canonical expectations but also estimators for
the statistical uncertainties in the resulting estimates. We hope
that, with the availability of the provided example code,
workers using these simulation techniques will provide
uncertainty estimates so that the statistical significance of
results obtained from them can be assessed. We have shown
that the estimator for the expectation has small bias and
produces excellent uncertainty estimates for both a 1D model
system and a solvated biomolecular system in implicit and
explicit solvent.

While other workers had attempted to apply WHAM to
simulated or parallel tempering data in the past,3,4 the key
advance here is the consideration of the correlated nature of
the configurations sampled by each replica as it performs a
pseudorandom walk in temperature, allowing a proper
assessment of the true number of independent samples
present in the data. This produces correct optimal estimators
and makes possible the estimation of statistical uncertainties.
This method can be extended to the analysis of other
generalized-ensemble simulations, such as the multicanonical
method (MUCA),5-9 by consideration of replica correlation
times as the system samples various energy levels biased
by the estimate of the density of states. Still, it is important
to point out that, while we consider the contribution from
time-correlation of the observable to the uncertainty estimate,
we currently neglect the contribution of the uncertainty in
the per-configuration weights (which originates from the
uncertainty in the density of states) to the estimate of the
expectationswe assume it is negligible and await a more
complete treatment of the uncertainty in cases where it is
not.

Appendix A: Relation for Statistical
Inefficiencies
Consider a random process where we make a series ofN
time-correlated measurements of two (possibly correlated)

Ω̂m )

∑
k)1

K

Hmk

∑
k)1

K

∑
l)1

L

Nkl ∆U exp[fl - âlUm]

(70)

δ2Ω̂m)
Ω̂m

gm
-1∑

k)1

K

∑
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L

Nkl ∆U exp[fl - âlUm]

(71)
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observables X and Y, resulting in the time series
{xn, yn}n)1

N . We estimate the quantityZ ) 〈X〉/〈Y〉 from our
sample means and wish to compute the uncertainty in our
estimate, defined as

To first order about〈X〉/〈Y〉, this uncertainty is given by

whereσX;Y
2 denotes the (not necessarily positive) covariance

of the expectations ofX and Y. The Schwartz inequality
requires that this covariance obey the relation

(see, for example, ref 44). Given this, we note

Correlation analysis gives estimators for these quantities as

whereσx
2 denotes the sample variance of the observations

{xn}n)1
N and g denotes the statistical inefficiency obtained

from the autocorrelation time, i.e.

Combining eqs 77 and 78 gives

where we have moved the statistical inefficiencies and
variances out of the absolute value, as they are always
positive. Finally, we obtain an upper bound forgx;y:

In using numerical methods to estimate the statistical
inefficienciesg from finite trajectories, this inequality may
not hold, sometimes leading to negative squared uncertain-
ties. Limiting the estimatedgx;y by capping it at this value
will prevent this from occurring.

Appendix B: Uncertainty Estimates for
Confidence Curves
To estimate the uncertainties in Figures 1 and 4, a Bayesian
inference scheme was used. Since the expectations computed
from each block are independent, the number of blocksn
that fall inside the given scaled deviationσ is described by

a binomial distribution with parameterθ, true (unknown)
probability that the blocks fall within the given deviationσ:

We can write the posterior distribution for the probabilityp
given the observed number of blocksn within the given
deviation using Bayes’ rule

wherep(θ) is the prior distribution for the parameterθ. If
we choose the priorp(θ) to be a Beta distribution with
hyperparametersR andâ, given by

whereB(R,â) is the beta function, then the posteriorp(θ| n)
will also be a Beta distribution with parametersn + R and
(N - n) + â, as the Beta distribution is a conjugate prior to
the Binomial distribution. We take the hyperparametersR
and â to be unity to make the prior distribution uniform,
resulting in a posteriorθ∼Beta(n + 1, N - n + 1). A 95%
central confidence interval, corresponding to the location
where the cumulative distribution function for the Beta
distribution reaches the values of 0.025 and 0.0975, was
plotted.
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