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Abstract: The growing adoption of generalized-ensemble algorithms for biomolecular simulation
has resulted in a resurgence in the use of the weighted histogram analysis method (WHAM) to
make use of all data generated by these simulations. Unfortunately, the original presentation of
WHAM by Kumar et al. is not directly applicable to data generated by these methods. WHAM
was originally formulated to combine data from independent samplings of the canonical ensemble,
whereas many generalized-ensemble algorithms sample from mixtures of canonical ensembles
at different temperatures. Sorting configurations generated from a parallel tempering simulation
by temperature obscures the temporal correlation in the data and results in an improper treatment
of the statistical uncertainties used in constructing the estimate of the density of states. Here
we present variants of WHAM, STWHAM and PTWHAM, derived with the same set of
assumptions, that can be directly applied to several generalized ensemble algorithms, including
simulated tempering, parallel tempering (better known as replica-exchange among temperatures),
and replica-exchange simulated tempering. We present methods that explicitly capture the
considerable temporal correlation in sequentially generated configurations using autocorrelation
analysis. This allows estimation of the statistical uncertainty in WHAM estimates of expectations
for the canonical ensemble. We test the method with a one-dimensional model system and
then apply it to the estimation of potentials of mean force from parallel tempering simulations of
the alanine dipeptide in both implicit and explicit solvent.

1. Introduction or molecular dynamics simulation is well-known. Numerous

The difficulty of computing equilibrium averages for com- minima and large free-energy barriers tend to slow explora-

plex systems such as solvated biopolymers by Monte Carlotion in phase space and trap the simulation in metastable
regions of configuration space. This hampers the ability of

_ — _ the system both to equilibrate (reach the thermodynamically
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mitigate these problems. In a generalized-ensemble simula-et al?* have described a new method for computing expecta-
tion, the probability distribution from which conformations tions and uncertainties from canonical simulations at different
are sampled is altered from a canonical distribution to one temperatures based on Bayesian inference. While Bayesian
that will induce a broader sampling of the potential energy. approaches are usually superior to those based on first-order
Proper application should in principle allow the system to Taylor expansion methods for the propagation of uncertain-
overcome energetic barriers and sample configuration spacdies (of the sort we describe in this work), they are less
more thoroughly, at the expense of spending more time in suitable for treating highly correlated measurements where
high-energy regions that may be irrelevant at the temperaturethe functional form of the correlation is essentially unknown.
of interest. The particular method by which sampling is  Here, we derive variants of WHAM that operate on replica
enhanced depends on the algorithm. In mhelticanonical trajectories that are not reordered or collected by temperature.
algorithm (MUCA),>~° conformations are sampled with a It should be noted that even if simulation data have been
probability proportional to an approximation of the inverse stored to disk sorted by temperature, they can be permuted
potential energy density of states in an attempt to produce aback to the original replica trajectories to perform the
random walk in the potential energy. $imulated tempering  proposed analyses if information about the replica-to-
(ST)l013a random walk between canonical ensembles at temperature mapping or swapping was stored. Our presenta-
different temperatures is used to produce a random walk intion takes a careful approach to the correlation times
energy, but an estimate of the free energy as a function ofinvolved, and we show under which conditions the almost
temperature is needed as input to ensure equal visitation ofuniversally omitted statistical inefficiency term that appears
all temperaturesParallel tempering(PT), a special case of in all formulations of WHAM-like methods can be properly
the replica-exchange method (REMY.eliminates the need  neglected. Finally, we show how the statistical uncertainty
to know these free energies a priori by coupling temper- in the estimator for the configuration space average for some
ature changes between pairs of a pool of simulated tem-observable can be estimated by considering the effect of
pering simulations conducted in parallel. Several other temporal correlation. The method is simple and inexpensive
algorithms and combinations thereof have also beenenough to employ in all cases where WHAM is used, and
proposed:1315 we hope all researchers using WHAM will report these

In several of these algorithms, such as simulated temperingstatistical uncertainties in the future to assess both the
and parallel tempering, each replica generates configurationsignificance and the degree of reproducibility of results from
from a mixed-canonicalistribution (a term coined in ref ~ simulations.
16)—that is, a number of configurations are generated from This paper is organized as follows: In section 2, we
the canonical distribution at each of several temperatures.present a derivation of the Kumar et al. WHAM for
To compute expectations over the canonical ensemble at andependent simulations sampling from the canonical en-
single temperature, either the configurations from all replicas semble. Careful attention is paid to the proper treatment of
that visit the temperature of interest must be collected andtime correlation in estimating the statistical uncertainty in
the remainder discarded (as in ref 17) or else a reweightingthe histograms and the resulting estimator for the expectation,
scheme must be used to properly weight the data generate@nd a novel way of obtaining estimates for multiple observ-
at other temperatures. Fortunately, the weighted histogramables is presented. In section 3, we derive analogues of the
analysis method (WHAMj3,an extension of the single- and method for treating simulated and parallel tempering simula-
multiple-histogram methods introduced by Ferrenberg and tions, STWHAM and PTWHAM, while properly capturing
Swendsenr?? allows configurations generated from inde- the correlations among sequential configurations. In section
pendent canonical simulations at different temperatures to4, we validate our uncertainty estimates in a one-dimensional
be reweighted to compute expectations from the canonicalmodel system and demonstrate an application for biomo-
ensemble at any temperature of interest. Okamoto and co-lecular systems by estimating the potential of mean force
workers have applied this method to both replica-exchangeand corresponding uncertainties from parallel tempering
simulated tempering (RESTaind parallel temperirfgneth- simulations of alanine dipeptide in implicit and explicit
ods by reordering sampled configurations into pseudo- solvent. An illustrative efficient implementation of the
trajectories, grouping configurations generated at a particularmethod in Fortran 95 for use in the analysis of simulated
temperature together regardless of which replica they cameand parallel tempering simulations can be found in the
from. Unfortunately, this permutation obscures the correlation Supporting Information.
among the stored configurations, causing the apparent
correlation times for each pseudotrajectory to appear artifi-
cially shorter than the true correlation times within the
independent replica trajectories. The permutation also intro- In this section, we review the derivation of WHAM for
duces correlatioetweenthe pseudotrajectories, which is  computing expectations from multiple independent simula-
problematic because WHAM as presented in ref 2 is tions in the canonical ensemble. Conducting independent
constructed to operate @émdependentanonical trajectories.  simulations at the same or different temperatures can reduce
Additionally, it is difficult to estimate the statistical uncer- statistical uncertainty while obtaining perfect parallelism
tainty in the resulting estimate of the expectation from these (after the initial time to reach equilibrium has been dis-
pseudotrajectories, since standard autocorrelation analysisarded). Some of these simulations might be conducted at a
technique®—23 can no longer be applied. Recently, Gallicchio higher temperature than the temperature of interest to

2. Independent Canonical Simulations
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promote greater sampling across barriers, for example. While the Boltzmann factore¥ and normalization
Sometimes, the expectation value of one or more observablexconstantZ(gy) differ for each simulatiork, the density of

is desired over a range of temperatures. Additionally, states(U) is independent of temperature. Since the Boltz-
simulations started from different initial conditions can be mann factor is a known function and the configurational
used as a check of equilibration and convergef@&zlow, partition function is simply a normalizing constant, knowl-
we follow roughly the same approach as Kumar et ial. edge of the density of states allows the potential energy
deriving the WHAM equations, though our notation differs probability density to be computed ahy temperature. If
substantially, and we include a more detailed treatment of the average of the observalflever all configurations with
statistical uncertainty. Additionally, we arrive at a novel way potential energy is known, these can be combined to give
of computing expectations of multiple observables and avoid the expectation at a desired inverse tempergture

the use of many-dimensional histograms. While the method

presented in ref 2 has the full generality of treating de Q(U) e Y A(U)
simulations conducted with arbitrary biasing potentials, we (AL} = 5 )
focus on the case of independent canonical simulations at de QU)e”

different temperatures, since variations on this approach will

allow us to consider simulated and parallel tempering Where A(U) is defined as the average ok over all
simulations in section 3. (For an informative treatment of configurations with potential energdy

the case of a multiple biasing potentials at a single temper-

ature, as in the case of umbrella sampling, see ref 26.) qu o(U(q) — U") A(Q)
2.1. Motivation and Definitions. Suppose we have an AU) = , (4)
observableA that is only a function of the Cartesian Jda o(U(@) — U

coordinates of the systei, and we wish to estimate the
expectation of A over the canonical ensemble at some
temperature of interest. Instead of this temperaturg,
we will generally refer to its corresponding inverse tem-
perature = (kgT)™%, where kg is the Boltzmann con-
stant. We denote the expectation Adfover the canonical
ensemble at inverse temperatytdy [AlJ, which can be

It is easily seen that substituting this expression into eq 3
recovers the configuration space average in eq 1.

Our aim is to obtain the best estimate of the density of
states and the expectation of the observable by combining
information from several simulations. Since each simulation
samples an energy range determined by its temperature, our
final estimate of the density of states will be more accurate

written as : . S ;
if we account for the different uncertainties in the estimate
qu & U0 pg) obtained fro_m each simulatio_n. We will there_fore need a
A = (1) ;eparate espmate of the d.ensr[y.of states and its correspond-
qu g pu@ ing uncertainty fromeachsimulation.

2.2. Obtaining an Estimate of the Density of States from

whereU(q) is the potential energy function of the system. Each Simulation. To obtain an estimate of the density of
Further suppose we have carried ddtindependent states from each simulation, we first need a way of
simulations that sample from the canonical ensemble (usingMathematically expressing the form of the observed prob-
such techniques as Metropolis Monte Catlor thermally ~ ability density functionp(U). While it may be possible to
controlled molecular dynamics) at corresponding inverse @ssume a particular functional form for this density, this
temperaturess, 2, ..., Bk, some or all of which may be would generally be inexact. A better approach is to use a
different from the temperature of interest. We denote the Nonparametric density estimat¢see, for example, ref 27
coordinates and potential energies sampled at a fixedfor an overview) that makes no prior assumptions as to the

time interval At from simulationk by the time series  true functional form ofp(U). Kumar et al’ as Ferrenberg
{ v U}, whereUy, = U(quy) and Ny is the number of ~ @nd Swendseéf'®earlier, chose a histogram-based estimator,

We first consider the probability density function from Set of nonoverlapping bins of equal width. While there are
which the configurations are generated in simulatiofor a number of more sophisticated smooth nonparametric

a simulation sampling from the canonical distribution, the €Stimators?’ the histogram estimator is simpler and more
probability of generating a configuration with potential efficient to apply.

energy in the intervallU aboutU at inverse temperatuyg Accordingly, we construct an estimate of the probability
is given by density functionp(U|3) on a set ofM points, labeledJy,
that span the sampled potential energy range and are spaced
p(UIB) dU = [Z(8)] * Q(U) dU e ! 2 AU apart. We denote the estimate {fJ|) at Un, by par

(#)and the corresponding estimate of the density of states
with the normalizing constanZ($), often referred to as  Q(Un) by Qn.
theconfigurational partition functionchosen to ensure that
p(V) integrates to unity. The quantif(U) is thepotential pP(B) = pU,1B) = [Z(,B)]‘lgzme_ﬁum (5)
energy density of stateandQ2(U) dU represents the volume
of configuration space with potential energy in the interval The normalization factoZ(s3) can then be approximated by
dU aroundU. a discretized integration
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ey M L individual estimate€2,, to produce a single optimal estima-
Z(p) = [duQ(U)e M~ ZAU Qe (6) tor Qn in a such way that the statistical uncertainty in the
m= resulting estimate is minimized, giving more weight to the

where we have made the assumption that the integrand,ﬁmk with smaller uncertainties. To do this, we must first
Q(U) e Y, does not change significantly over the bin width briefly review the maximum-likelihood method for combin-
AU. As the density of state@(U) increases withJ and the ing independent measurements with associated uncertainties

Boltzmann factore U decreases, their product is expected into an optimal estimate and also consider the uncertainty
to vary less rapidly than either term individually. in a mean computed from a set of correlated observations.

We definey(U) as the indicator or characteristic function ~ 2-3- Optimal Estimator from Independent Observations
for the energy bin of widthAU centered abouty, and Associated Uncertainties.Suppose we havK inde-
pendent observations or measurements of some random

Uy = 1 if Ue [U,— AU/2, U+ AU/2) 7 variableX denotedx,,... Xx, each with corresponding squared
¥m) =10 otherwise Y uncertaintyd?x,, defined by

and the time series defined by this indicator function as 0%, =[x, — XDP0= 320 3,03 (12)

{ Vit ver, Whereyma = ¥m(Uk). We denote the count of

configurations from simulatiok that fall in energy bim— where [0 here denotes the expectation over repeated

the “histogram” from which the weighted histogram analysis measurements or experimental trials. We can then Wite
method derives its nameby Hi, and see that it can be  the optimal estimator fofXCin the sense of minimizing2X,

computed by by a weighted sum of the individual estimates
Hok= ) ¥k € 2171
m pA mkn ) kZ‘[(S Xk] Xy
. . . X=———— (13)
We will also use the total number of configurations over all K
simulations that fall in energy bim, which we termHy; zl[é"‘xk]’l
k=
K Ng
Hn= Z Ymkn 9) Note that observations with smaller uncertainties get greater
k=1 n=

weight, and if all the uncertainties are equal, the weight is
simply 1K, as would be expected.

Note that throughout our discussion, pairs of variables U i ) L .
The uncertainty in the resulting estimate is simply given

that only differ by the number of written subscripts, such
as Hp and Hpy, represent similar quantities related in this
way. K
We can estimat@m(8«) by the number of configurations 67X ={ [62Xk]71} -1 (14)
sampled from the simulation at temperatgkavith energies ;
that fall in the bin centered abouk:
These are standard formulas that come from maximum
p.(B) ~ 1 Hu (10) likelihood consideration®
" AU N, 2.4. Statistical Uncertainty in the Estimator for Cor-

_ . o related Time Series DataWe briefly review the estimation
Equating this with the definition opm from eq S and ot gagistical uncertainty for a time series of correlated
rearranging terms, we can obtain an estimatéXek the  peasurements. (See ref 20 for an early exposition of this
density of states at energy from simulationk, which we  method as applied to the analysis of Monte Carlo simulations

will denote byCm of spin systems, ref 21 for the analysis of molecular dynamics
R 1 Hoo Z(B) simulations, or ref 23 for. a recent general illustration.) .
Q= AN o Suppo;e we have a time series of correlateg sequential

k € observations of the random variabfedenoted{x } —, that
H come from a stationary, time-reversible stochastic process.
= i (12) Our estimate for the expectation ¥fis given by the time
N, AU expffy — ﬁkum] average

In the last step, we have replaced the partition funcigsh) LN

by an exponentiated dimensionless free enefgy= K== X, (15)

—In Z(By). Each independent simulatida contributes an N&E

estimate of the density of stat&, for energy binm. Each

of these estimates in turn carries a statistical uncertainty but the statistical uncertainty is more complicated than in
32Q i, determined primarily by the number of uncorrelated the independent observation case

samples of the energy bin. (Expressions 8€2 will be

derived later in section 2.5.) We will combine these %X = X — XPPO= X0 X3
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1
NZHnZ [ x,O— 3, 0%,

1N
L Smiaasl s
Nn— Nn¢n 1

[ B L= Bt [y
(16)

In the last step, we have split the sum into two straserm
capturing the variance in the observations and a remaining
term capturing the correlation between observations. Using
the properties of stationarity and time-reversibility, we can
further manipulate this to obtain

X =
Dkn = Dknﬁ] + NZ( ) [ Ok B I

2 2
_ _ 9%
= N(l+21)—N/

= 7
where the variance,?, statistical inefficiencyg, and auto-
correlation timer (in units of the sampling interval) are given

by

0l =R x4 (18)
N—-1 t

= ;(1 - N)c:t (19)

g=1+2¢ (20)

with the discrete-time normalized fluctuation autocorrelation
function C; defined as

X - 3,3
X200 4

The quantityg = (1 + 27) = 1 can be thought of as a
statistical inefficiencyin thatN/g gives the effective number
of uncorrelatedconfigurations contained in the time series.
The statistical inefficiency will depend on the time interval
at which configurations are collected for analysis; longer
intervals will reduce the statistical inefficiency, which will

C= (21)

approach unity as the sampling interval exceeds the correla-

tion time. Practically, we use our best estimates for the
varianceo,? and autocorrelation functio@; to compute an
estimate of the statistical uncertainigx.

2.5. Optimal Estimate of the Density of StatesWe now
construct an optimal estimator of the density of stdirs
from the individual estimates obtained from tkendepen-
dent canonical simulations. From the results of section 2.3,we
can write this estimator and its corresponding uncertainty
as

K
Z[azﬁmk] - ka
=

K
kZWka] '

(22)

m=

Chodera et al.

K
0% ={ Z[azfzmk]*} - (23)
k=
The results of section 2.4 show us how to write #3&
the uncertainty in our estimate of the density of states for
energy binmfrom simulationk. In eq 11 above, we see that
this uncertainty comes only frod?H, the uncertainty in
the histogram count for the energy bin, since all other terms
are known with certainty:

O*H.,
{N, AU expff, —

5%Q

(24)

mk— 2
Binl}
Hmi the histogram count from simulatiok, can be
written as a time average of the indicator functigm,
over the correlated configurations collected from the
simulation:

(25)

We can use the result of section 2.4 above to obtain
an expression fob?H, the uncertainty in the histogram
count:

2

0 mk

Nk/gmk
= Omic Nk (kazm_ kaﬁ)
= Omk Nkﬁy}mkml - |Eymku

H
= gmk [H-Imk[( N:ﬁ

where, becausepyn(U) is an indicator function (eq 7),
[vm(U)]?2 = wm(U). If the histograms are sparsely populated,

a reasonable assumption if there are a sufficient number of
histogram bins spanning the energy range sampled by each
simulation, therdH,(INx < 1, and we can further simplify
this to

O°H, = N2+

(26)

62Hmk% gmk [E-Ika:| (27)

The statistical inefficiencymk here reflects the number of
configurations required for an uncorrelated sampling of the
energy bin. This will, in general, depend on the bin index,
bin width, and temperature. This dependence was omitted
in the original Kumar et al. presentatiérAt higher tem-
peratures, the correlation time, and hence the statistical
inefficiency, is expected to be smaller as the simulation can
move through configuration space more easily. The structure
of the energy landscape may cause the simulation to be stuck
in certain regions of configuration space for different times,
hence the dependence on energy bin index is also potentially
important.

The expectationHIshould be replaced by our best
estimate of the histogram count for energy him at
temperaturely, which could be obtained from our yet-to-
be-determined optimal estimate of the density of st&tgs
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H N, p.(8) AU Mo
mkD: k Pm k) ZQmAU e*ﬁUmAm
~ N, AU Q. expf, — B U,] (28) A ~ ™ (34)
M
Substituting this expression back into eqs 27 and 24, we Zﬁm AU g #m
obtain =
A here
526, = Ok Ni AU Q. expffy, — U] "
=
" {NAU expli,— BUY Jda A@) v, (U(@)) )
_ O 29 Jda o (U@)
-1
Gmic - Ni AU expif = S Uy A, the mean of observabl over all configurations with

potential energies consistent with energy trsincan be best
Using eq 29 for the uncertainty in the density of states approximated by pooling configurations fraal K simula-
associated with simulatiokand eq 22 for the best estimate tions that have energies in bm
of the density of states, along with eq 11, we obtain

K N
K 1 Am= Hm71;| kanAkn (36)
ngk Hmk —tn=
A k=
Q.= (30) whereH, (eq 9) is the total count of configurations in energy
K 1 bin m from all simulations. Substituting this expression for
Omk N AU expff,— B U] i imah
4" An into eq 34 above produces an estimaigf) for [AL
M
Everything in the above expression can be easily evaluated, Q. AU e‘ﬁumAm
except for thefy, which depends on th,, through Ag) — =
) ) =—
A~ ¢ —AUm
fi=—InY QAU (31) W;Qm AUe
m=1
M K Nk
The fx may therefore be solved for self-consistency by Zg‘gm g FUm [Hm_lZ‘ Yok Al
iteration of eqs 30 and 31 starting from an arbitrary choice, = Sh=
such ady = 0. = " N
The statistical uncertainty iR is given by eq 14: ZQm g PUn [Hm—lz‘ Vo]
A m= =1n=
A Qm
0°Q, = - (32) K N
_ Winl(B) A
ngk N AU expff, — AU, kZ\n: " "
= = (37)
K Nk
We note that the relative uncertainty in this estimate is given Z Wir(B)
by k=1n=
)n where we have defined the per-configuration weighgs)
o) Qm K . . by
R = [ngk Hmk] (33)
Q&

M

Wkn(ﬁ) = Z 1/)mkn Hmflgm eiﬁum (38)
which is equal toH, %, the inverse of the total number of =
configurations from all simulations in energy bm if all where only one term of the sum will contribttéhe binm
Omk are unity. This is reasonable, since the Uncertainty in Containing the energ)Ukn—due to the presence of the
our estimate fol2n, should diminish as more independent indicator functionyme, Note that we only need to compute
samples are collected in energy bm the weightwi, up to a constant of proportionality because

2.6. Estimating an Observable at the Temperature of  this constant drops out in the normalized sum in eq 37.
Interest. Using the estimate of the density of states obtained  This relationship is significant in that we now have an
above, we can obtain an estimate for the expectation of anyexpression for the canonical expectation of observalite
configuration functionA(g) at an arbitrary temperature by terms of a weighted sum ovell of the data. These weights
writing analogous equations to egs 3 and 4 where we haveare determined by the temperature of interest from the
discretized the energy WHAM equations and are simple functions of the count of
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configurations with energies falling in a particular energy 1 M
bin. The weightswi(3) can be computed once for the Xi=— ) W, A,
temperature of interest and then used to calculate expectations Ny =
of many observables. Ne
It should be noted that our estimate [@{4 will only be Y = 1
. . . . k= Wi (42)
reasonable if the inverse temperature of intefelés near Nk £

or within the range of inverse temperatures sampled by the

sampled range of temperatures (see refs 30 and 31 for ar]ndepender)tthe uncertainties required in eq 41 are given
examination of this issue). b
2.7. Statistical Uncertainty of the Estimator for the
Expectation. If the observable of interest has a long
correlation time compared to fluctuations in the potential X = ZNkchZXk
energy (e.g., if the observable is a function of the large scale =
molecular conformation), then it is possible that the density
of statesQ, and dimensionless free energigg} may be
sufficiently well-converged that they are not dominant
contributors to the uncertainty in the estimate of the
observable of interest. Instead, the long time-correlation in K
the observable means that there are many fewer effectively OXSY = Z Nk2 OX Y, (43)
independent observations of the observable than stored =1
configurations. We may then use the following procedure.
We can rewrite the estimatéqg as a ratio of two random  These uncertainties involve the correlated data of simulation
quantitiesX and Y k and can be estimated by standard correlation analysis
methods'23 or by block transformation method%though
the latter method requires some modification to estimate the
(39) .
uncertainty cross-termiXo Y.
To compute the uncertainties by correlation analysis
where methods as in section 2.4, we first define new observables
= WA andykn = Win and compute the uncertainties

K
Y=Y N2%Y,
2,

K N
X= Z Wkn(ﬂ)Akn 02
=1h= 2 kx;x
02X, =
K Ng Xk Nk/gk,x;x
Y= Z‘ Wi (B) (40) ,
- 0%, = kwy
Applying standard error propagation techniques for a function Ne/Biyy
of random variables (see, e.g. ref 32), which amounts to a 2
first-order Taylor series expansion & about IX[YL) SX.SY. = Ok xy A4
we can estimate the uncertainty Anas XY= N/gy (44)
Xy
2 23 ¥
X o Z ‘5X(§Y] (41) These uncertainties involve (co)variances of the tyh&y,
Y XY estimated for each replica by
Here, the cross-termiXoY = [(X — XD(Y — YDUis non- LM
zero only if the random variableX and Y are correlated, Oy = ——% (4 = X Vien — ¥ (45)
in which case the term involving it in the equation above N, — 14=
serves to reduce the uncertainty in the estimate of the
ratio A. The statistical inefficiencies of the forgkx, are computed
Recognizing thaiX andY include contributions fronkK by
statistically independent simulations, we can collect these
terms and write (dropping the hats) Oy =1+ 273,y (46)
K N— 1 t
X= ZNk X =Y (1= —|Cuxy 47)
k= & Ny
Y= ZNk Yy with the correlation function for simulatiok computed by
= taking advantage of stationarity and time-reversibility:



Weighted Histogram Analysis Method J. Chem. Theory Comput., Vol. 3, No. 1, 2083

1 1 Nt . . 1 Hq
— X [ = X Vinst — Vi) T Pm™ AU N (52)
A 2
20'kyx;y (Nk - t) n=

th,x;y ~

Vien — \A(k)(xknth — S(k)] (48) Rearranging and including our definition fafwe obtain the
coupled set of equations for estimating the density of states
See section 5.2 for a discussion on efficiently computing H

the integrated correlation timefrom Cyyy. A m
’ o 0, = (53)

L
3. Simulated and Parallel Tempering ;NI AU expffy — U]

3.1. WHAM for Simulated Tempering (STWHAM). In a

simulated tempering simulatidf? a single simulation is M U

conducted in which configurations are sampled fromixed- fi=—In ZQm AUe """ (54)
canonicalensemblé® In practice, a simulation algorithm that =

samples from the canonical ensemble is used to generaternegse equations are similar to egs 30 and 31 for the canonical

configurations, and at regular interval; attempts are m"’_‘deensemble WHAM if the configurations are grouped by the
to change the temperature among a discrete set of Cho'ce?emperature at which they were generated but lacking

Pa....L. The probability of accepting a proposed temperature gagistical inefficiency terms since we are not combining data
change is given by the Metropolis-like criterion from multiple simulations.

P8, — ) = min{1, expl- (B — A)U + (& — )]} (49) The uncertainty irt2y, is then given by

2
where the constantfa}_, are specified beforehand and 520 = 0 Hm
chosen, often by tedious exploratory simulations, to attempt " L
to achieve near-equal visitation of each temperature and, {ZM AU expf, — AU, ]}
hopefully, potential energy. The optimal choice {&} is =
given by the dimensionless free enerdi&$ in the equation O (]
above, and proposed temperature changes are usually be- . (55)
tween neighboring temperatures because the exchange prob- {ZN' AU expff, — ﬁ|Um]}2
ability diminishes with increased temperature separation. Use =

of the above criterion for accepting or rejecting proposed _ _
temperature changes ensures that, if the configurations werevhere, as in eq 27, we assume the histograms are sparsely
originally distributed from the equilibrium distribution at the Populated and introduce the statistical inefficiergy to
old temperature, they are also distributed from the canonical €stimate the histogram uncertainty.
distribution at the new temperature. The estimate for the expectation of the total histogram
As a result of this procedure, the system spends a fractioncount in energy bimis given by the sampling probability

of time in each of a number of different temperatures. Since .
we know the number of times each temperature was visited A

. . . . * [H = NAUp,~ NAU Q N/N) exp[f, — 5,U 56
we can write the probability density for energy bimas a m P m;( /N explf = fiUnl - (56)
weighted sum of the canonical probability density functions
at these different temperatures which gives the final estimate for the uncertainty as

LN, Q, e/ o Q,
p=y—— (50) 0°Q, = (57)

<N .
Z Z(p) Zgr{l N, AU expff, — fU,)

where N/N is the fraction of configurations generated at
inverse temperatur& over the course of the simulation. As Following the approach in section 2.6, we can again write

above, we introduce the Helmholtz free enerfy= the estimator in the form of a weighted sum over configura-
— In Z(f3)), which allows us to write tions
L N, N
Pm= ZN Qm eXp[fl - ﬂlum] Wn(ﬁ) An
= A n=
Ap) = N (58)

L
=Q_ Z(N'/N) explf, — AU, (51) W,(B)

&
We can approximatp, as before using our histogram count, M .

Hm, the number of configurations with potential energy in w,(B) = ZwmnHm_l Qme_ﬁu"‘ (59)
the bin centered aboli,, m=
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where again, only one term contributes to the sum in the whereg; is the current inverse temperature of replicand
expression for the weighty,. The statistical uncertainty in U, is the corresponding potential energy.

this estimate, as in section 2.7, can be computed by eq 41, Becayse of this exchange procedure, each replica executes
whereX and'Y are now given by a more or less random walk in temperature, eliminating the

1N need to perform exploratory simulations to determine the
X=—%w, A, parameterq a} iK:l required for simulated tempering. Each

N#= replica simulation is nearly independent, as the correlation

1N between configurations of different replicas introduced by

Y=—Sw, (60) the exchange of temperatures is minimal. The dominant
Ni= contribution to statistical uncertainties will almost certainly

_— . . be due to the variance and temporal correlation in the value
These uncertainties are simply computed as in eqs . s . .
. . . . of the observable of interest within each replica, which
44—48, without the subscripk as there is only one simu- . .
reduces the effective number of independent samples. We

lation instead of many. The quantitiésand ¥ no longer thoref | el t ng simulati
correspond to canonical averages, since they are the ex2" Nerefore analyze€ a parailel tempering simulation as a

pectations over the simulated tempering trajectory which St ©findependensimulated tempering simulations, each
spends a different amount of time at each of the with a numbelL of gcces&ble temperatL_Jres, wittequal to
temperaturesit is a mixed canonical average. The sample h€ number of replicak. Below, we derive an analogue of
mean over the trajectory provides the best estimator for theseth® Kumar et al. WHAM procedure for the treatmenttof
guantities. independent simulated tempering simulations (replicas) each
Here, the statistical inefficienay, appearing in eq 57 and ~ capable of visiting. temperatures, allowing this method to
the inefficiencies required in applying eqs 448 are also treat simulations generated by procedures such as
computed from the correlation functions computed over the REST? We make use of the sampling distribution for
simulated tempering trajectory, which includes unphysical simulated tempering described above and properly account
jumps in temperature. It is worth noting that expressions for for the correlation within each replica, eliminating the need
[A[4 given in formulations by Okamoto and co-workers (e.g. to artificially reorder configurations from parallel tempering
eq 24 of ref 14) instead contain a statistical inefficiency for simulations by temperature.
eachtemperature In principle, one could account for a
temperature-dependent statistical inefficiency, since one
might expect correlation times to be different at each
temperature, but, in practice, the limited number of con-
figurations sampled between temperature changes is likely

We can use the simulated tempering eqs 53 and 57 above
to write the estimator and uncertainty for the density of states
obtained from each replidaas

too short to allow temperature-dependent correlation times O = Hing (62)
to be computed. Additionally, a temperature-dependent mke L

treatment does not account for the correlation between ZNHAU expff, — fU,l
configurations sampled before and after a temperature swap. =

The derivation presented here assumes the statistical inef- O

ficiency gn depends only on the energy him which causes 520 = m (63)
these factors to cancel out of our estimator &g in egs mi L

58 and 59. Omic ZNKIAU explf, — U,

3.2. WHAM for Parallel Tempering or Independent
Simulated Tempering Simulations (PTWHAM). In a
parallel tempering (or replica-exchange among temperatures)vhere we have added the indieto denote theeplicafrom
simulationt24it was recognized that the constasisieeded ~ Which the data are generatem« therefore denotes the
in the simulated tempering simulation to ensure equal number of configurations sampled with potential energy in
sampling of temperatures could be eliminated if multiple energy binm from replicak, andNy denotes the number at
simulated tempering simulations were conducted in parallel temperaturg; from replicak. gnkis the statistical inefficiency
and the temperature changes of two simulations were coupleccomputed from replick for energy binm.
together into a temperature swap between the replicas. In Again using the optimal combination rule of eq 13, we

practice, a numbéf of replicasare simulated independently obtain the optimal estimate for the density of states
at inverse temperatureg,... 8k using some simulation

method that samples from the canonical distribution. At given

K
intervals, an attempt is made to exchange the temperatures Z‘g k*l H..
of two replicasi andj, with the exchange accepted with R < "
probability Qn=— - (64)
-1
Poen= Min{ 1, expl- (8 — BV, + (8 — &)1} x kZlgmk Z!NK,AU expff, — A,U,]

min{1, exp=(8 — B)Y; + (& — )1} =
min{1, exp=(6; — A)(U; — Upl} (61) and the statistical uncertainty from eq 14:
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-1 previous attempts to apply the method to parallel tempering
ZNkI AU expffi — U] simulations? would give correlation times that are errone-
ously short and make the incorrect assumption that these
Z Q. pseudotrajectories are statistically independent.

Qn, 4. Applications
I L (65) 4.1. One-Dimensional Model Potential.To validate the
ngkfl ZNK' AU expff, — U] STWHAM and PTWHAM methods described abgvg for
= estimating expectations and corresponding uncertainties, we
consider a one-dimensional model potential where canonical
expectations can be computed directly and a large quantity
et of simulation data can be obtained in order to verify our
O = m (66) uncertainty formulas. We use an asymmetric double well
L potential, given by
3 Nt AU expl, ~ fUy] .
= Ul@=(@-1)(a+1)+0.1q (69)

where HY' = 31 gmk "Hme is the effective number of  All simulations utilize the Metropolis Monte Carlo mettigd
independent samples in energy birfrom all replicas, and  with the trial displacemenAq uniformly distributed on the
N = Sk ,0mc 'Ni is an effective number of independent interval [-0.2,+0.2] to generate a series of configurations
samples at temperatuf from all replicas. which are sampled every 10 move attempts, resulting in
To compute the estimator of the expectation for an highly correlated data. In the following simulations, we
observableA, we apply the same technique in section 2.6 estimate the expectatidgij at* = 4, where the integrated
above and write the expectation as a weighted sum overcorrelation time ofq is rather long-approximately 130

We can rewrite eq 64 as

configurations samples. The initial conformation was chosen uniformly on
K N the interval [-1.8,+1.8] and the first 1®steps discarded to
W (8) A equilibration.
. kZanl kn n Four types of simulations were performed: a standard
_— (67) canonical Metropolis Monte Carlo (MMC) simulation @t
K N = p* = 4, as described above; a set of four independent
ZZWkn(ﬂ) canonical (4MMC) simulations with inverse temperatyes
e exponentially spaced in the range4 (3 ~ {4, 2.52, 1.59,
where the weights are given by 1}); a simulated tempering simulation (ST) with the same

four possible temperatures and analytically computed optimal
1A AU weights; and a parallel tempering (PT) simulation with
W) = rr;wmanm Qe (68) replicas at the same four temperatures.
All simulations were conducted for & 10’ steps each
As in egs 38 and 59, the sum overreduces to a single  (per replica, if multiple replicas are used), generating 5
term, the one with energy bin index appropriate for config- 10° samples (per replica). The data were then divided into
urationn of replicak. A, is the value of the observable 500 sequential blocks of 1@onfigurations (per replica) each,

for configurationn of replicak and Hy, = XE=1Z§=1¢mkn whose expectations were verified to be statistically indepen-
the total number of configurations from all replicas with dent by computing the correlation between expectations in
potential energy in bim. neighboring blocks. The standard deviation of the set of

Again, if the observable of interest has a correlation time expectations computed from each block is indicative of the
that is long compared to fluctuations in the potential energy, statistical uncertainty in simulations of a single block lergth
we may compute the dominant contribution to the statistical 10* samples (per replica)and the difference between the
uncertainty 6%A(3) by eqs 4148, with the important mean of these estimates and the expectation computed from
distinction thatk now indexes theeplicas rather than the  the potential directly is indicative of the bias. Expectations
temperatures. The correlation times are, as in the simulatedand uncertainties for each block were computed using the
tempering case, computed over the nonphysical replicacode appearing in listing 1 of the Supporting Information.
trajectories; because the replicas perform random walks in  To assess the performance of the uncertainty estimate for
temperature, these times are likely to be shorter than theeach block, we compute the fraction of blocks for which
correlation time for this observable computed from a the true magnitude of the deviation from the mean of the
canonical simulation at the lowest temperature. These replicablock expectations is smaller than a multiplicative constant
correlation times properly capture the correlation between ¢ times the estimated uncertainties, fo€[0.1, 3]. This
successive snapshots generated by a sampling method likéraction is related to a confidence interval if compared to
Metropolis Monte Carlo or molecular dynamics, and their the error function Gaussian integral (Figure 1). For example,
use in estimating the uncertainty is the primary novel result for our uncertainty estimates to be meaningful, we expect
of this paper. Collecting configurations from all replicas into the difference between the true mean and our estimate to be
pseudotrajectories of constant temperature, as suggested iwithin one standard deviatiom approximately 66% of the
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Figure 1. Confidence curves for Metropolis Monte Carlo
simulations on the 1D model potential. The fraction of
statistically independent blocks for which the true uncertainty
(the deviation of the estimated expectation over the block from
the mean of the block estimates) is less than a multiplier of
the predicted 1o uncertainty (here plotted as the independent
variable is shown). The solid curve shows the fraction
expected to fall within the interval for the normal distribution.
Ideally, the curves would coincide. The results are shown for
(MMC) a single Metropolis Monte Carlo simulation at 5 = 4;
(4MMC) a set of four independent canonical simulations
spanning the range f = 1—4; (ST) a simulated tempering
simulation spanning f = 1—4; (PT) a parallel tempering
simulation with four replicas spanning § = 1—4. Uncertainties,
with 95% confidence intervals shown here as vertical bars,
were computed as described in Appendix B.

Chodera et al.

Figure 2. Terminally blocked alanine peptide with (¢,y)
torsions labeled.

sponding to the flag igh1) was employed with radii from
AMBERS®6, along with a surface area penalty term of the
default 5 cal mot! A-2 Covalent bonds to hydrogen were
constrained with SHAKE using a tolerance of #0438
Long-range electrostatics for the explicit solvent simulation
were treated by the particle-mesh Ewald (PME) method
with default settings.

Each system was first subjected to 50 steps of steepest
descent energy minimization, followed by 1000 steps of
conjugate gradient optimization. To equilibrate the explicit
solvent system to the appropriate volume, a 100 ps molecular
dynamics simulation was performed with the temperature
adjusted to 300 K and the pressure to 1 atm by the Berendsen
weak-coupling algorith? with temperature and pressure
relaxation time constants of 1 and 0.2 ps, respectively. The
simulation box was fixed at the final size obtained from this
equilibration step, with a volume of 132323Ain all
subsequent simulations.

A parallel tempering (or replica-exchange among temper-
atures) molecular dynamics simulatiamas conducted using
a parallel Perl wrapper for the sander program. [A copy of
this Perl wrapper to perform replica-exchange simulations
using AMBER7 and AMBERS can be obtained from URL
http://www.dillgroup.ucsf.edufjchodera/code/rex.] Replica
temperatures were exponentially distributed over the range

time. Itis readily apparent from the figure that the computed 273-600 K, with 10 replicas required for the implicit solvent
uncertainty estimate Computed for each block is in fact quite simulation (y|e|d|ng an exchange acceptance probabi“ty

good. Additionally, the bias is smatless than 10% of the

between neighboring temperatures of approximately 75%)

magnitude of the statistical uncertainty in the cases studiedand 40 replicas for the explicit solvent simulation (yielding

(data not shown).
4.2. Alanine Dipeptide in Implicit and Explicit Solvent.

an acceptance probability of approximately 50%). All
momenta were reassigned from the Maxwell-Boltzmann

To illustrate the utility and verify the correctness of the distribution at the appropriate replica temperature after each
PTWHAM procedure described above for simulations of exchange attempt. Between exchanges, constant-energy,
biological interest, we demonstrate their use in the analysis constant-volume molecular dynamics was carried out for the
of parallel tempering simulations of alanine dipeptide in explicit solvent simulation, while the implicit solvent simula-
implicit and explicit solvent. A similar strategy to the 1D tion utilized Langevin dynamics with a friction coefficient
model system described above was adopted, with a longof 95 ps® to mimic the viscosity of water. All dynamics
simulation partitioned into short blocks (here, 2 ns/replica utilized a 2 fstime step. The algorithm used to select pairs
per block) whose expectations were verified to be statistically of replicas for temperature exchange attempts starts from
independent by the same procedure described above. the highest-temperature replica and attempts to swap the
Using the LEaP program from the AMBER7 molecular configuration for the next-lowest temperature replica using
mechanics packagé,a terminally blocked alanine peptide a Metropolis-like criteria and proceeds down the temperatures
(sequence ACE-ALA-NME, see Figure 2) was generated in in this manner. On the next iteration, swapping attempts start
the extended conformation. For the explicit solvent system, from the lowest temperature and proceed upward, and this
the peptide was solvated with 431 TIP3P water moleélles alternation in direction is continued in subsequent pairs of
in a truncated octahedral simulation box whose dimensionsiterations.
were chosen to ensure a minimum distance to the box Starting all replicas from the minimized or volume-
boundaries from the initial extended peptide configuration equilibrated configuration described above, 100 iterations
of 7 A. Peptide force field parameters were taken from the were conducted with 1 ps between exchange attempts to
parm96 parameter s&tFor the implicit solvent simulation,  equilibrate the replicas to their respective temperatures. This
the Generalized Born method of Tsui and Cageorre- equilibration run was followed by a production run with 20
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Figure 3. Potential of mean force in y for implicit and explicit solvent parallel tempering simulations. Left: implicit solvent; right:
explicit solvent. Upper panels: The potential of mean force in the y torsion angle at 300 K. The solid line shows the PMF
estimated from the entire simulation, while the filled circles show the estimated PMF uncertainty using the method described in
the text for a single 2 ns/replica block. Lower panels: The computed uncertainties for the same 2 ns block (filled bars) along
with the average uncertainty expected for a simulation 2 ns/replica in length, estimated from the standard deviation of the PMFs
computed from all nonoverlapping blocks of length 2 ns in the full simulation (open bars). All uncertainties are shown as one

standard deviation.
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computed PMF and uncertainty for a representative block is
depicted in the top panel, along with the PMF computed
using the entire trajectory. The deviations of the block PMFs
from the whole-simulation estimate fall within theo1
uncertainty bars to the expected degree. In the lower panel,
the uncertainties computed from the representative block are
compared to the standard deviation of the PMF computed

from all blocks, which should be indicative (to within an
order of magnitude) of the uncertainty expected from a
simulation of the block length. These too compare favorably.

It is important to note that our neglect of the uncertainty
in the dimensionless free energi¢§}, is only reasonable
if the correlation time of the observable of interest is much
longer than that of the potential energy. When this condition
is satisfied, the dominant contribution to the uncertainty in
the computed expectation of the observable is due to the

ps between exchange attempts, giving a total of 100 small number of eff_ectively. independent samples of this
ns/replica for the implicit solvent production run and 20 ns/ OPServable present in the simulation data. To demonstrate
replica for the explicit solvent run. Solute configurations and that this is the case for systems of interest, we have assessed
potential energies were saved from the production run everythe relative contribution of the neglected uncertainty in the
1 ps. Expectations and uncertainties were again estimated fi} {0 the uncertainty of the estimated probability of the
using listing 1 appearing in the Supporting Information. ~ conformation of the alanine dipeptide system considered here.
Over 2 ns blocks of simulation time (containing 2000 The resulting contribution is 10 times smaller than the
configurations/replica in each block), we computed the uncertainty due to the time correlation treated above for the
probability of the peptide occupying the; conformation at explicit solvent system and 100 times smaller for the implicit
300 K, with og here defined as-105< ¢ < 0 and—124 < solvent system. [The impact of the uncertainty in £ on
Y < 28. This Corresponds to Configurations that would be the Uncertainty in the estimated observable was Computed
classified as right-handed alpha-helical. To validate the in the following manner: We first computed estimates of
uncertainty estimates, confidence curves of the type descrip-the{fi} over all uncorrelated 2 ns/replica blocks of simulation
tion in section 4.1 were computed and are shown in Figure data to form a pool of dimensionless free energies that
4. Though the confidence intervals are larger because therepresent the typical uncertainty in a simulation of this length.
data contain fewer independent blocks, the uncertainty Next, for each 2 ns/replica block, we computed the standard
estimates are still good indicators of the expected deviation deviation in the estimatedr probability when all{f;} in
from the true expectation. this pool were substituted into the WHAM equations. The
The potential of mean force (PMF) for thetorsion angle mean of this standard deviation over all blocks then provides
at 300 K was also computed and is shown in Figure 3. The an estimate of the magnitude of the impact of typical

Figure 4. Confidence curves for implicit and explicit solvent
parallel tempering simulations. As in Figure 1, the fraction of
statistically independent 2 ns blocks for which the true
uncertainty is less than a multiplier of the predicted lo
uncertainty is shown. The observable used is an indicator
function for the o configuration. Left: implicit solvent (sta-
tistics over 50 blocks); right: explicit solvent (statistics over
10 blocks).
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uncertainties in the{fi} on the observable of interest.] in the computed correlation function grows approximately
However, if the observable has a correlation time comparablelinearly with the lag time.*? Even for trajectories many times

to that of the potential energy (e.g., if the expectation of the longer than the correlation length, this sum will be dominated
potential energy itself is of interest), then the uncertainty by contributions from the noisy tail, likely resulting in large
due to imperfect knowledge of tHd|} can be comparable errors or even negative values for the computed correlation
to the uncertainty due to the correlation in the observable. time r. Janke proposes a self-consistent approach where the
In these cases where correlation times are comparable, arsummation is performed only out to lag times af @fter
algorithm that combines our approach with the T-WHAM which the correlation function is assumed to be negligible.
method of Gallicchio et aP4 which explicitly treats the Evertz contends that this approach produces incorrect
uncertainty in the{f} when the potential energy samples results?® instead proposing an exponential fit to the tail of
are uncorrelated, may provide a superior estimate of thethe correlation function and use of this fit to evalute the
uncertainty in the estimate of the observable. summand when the correlation function is dominated by

We further note that pathological cases may arise where noise. Neither solution is both stable and straightforward to
simulations at neighboring temperatures may have poorapply, so we instead truncate the sum when the normalized
energy overlap, resulting in large uncertainties in some of fluctuation correlation functioi€; first crosses zero, since it
the {f}. Fortunately, these cases are easily detected byiS likely unphysical for the correlation function to be negative
examination of the exchange acceptance rates betweerfor most observables. [Velocity autocorrelation functions,
neighboring temperatures, where they will be conspicuously where there is often a clear negative peak at short times, are
low, and detectable early in the simulation. Such cases arean obvious exception.] The zero crossing is an indication
easily remedied by adjusting the temperature spacing or bythat the statistical uncertainty dominates the signal and that
the addition of more replicas at intermediate temperatures.the remainder of the correlation function should be consid-
ered indistinguishable from zero.

For most systems and observables, the correlation function
will decay rapidly at first and then slowly, approximately
Several issues of great importance to successful implementaexponentially for large. To avoid the expense of computing
tion of the algorithm have received little discussion in the C; at each value dfwhile still obtaining reasonably accurate
literature. integrated correlation times for observables with very dif-

5.1. Choice of Bin Width and Number of Bins.There ~ ferent decay time scales, we use an adaptive integration
is a bias-variance tradeoff in the choice of energy histogram scheme in which the correlation functi@is computed only
width. As the energy bin width increases, the uncertainty in attimest =1+ i(i — 1)/2, whereé =1, 2, 3,.... In computing
our histogram estimator fap,(3), the probability density ~ the correlation timer, the sum in eq 19 is now performed
for energy binm, decreases. At the same time, one expects only over thet; terms, with each term weighted tyy; — t;,
the resulting estimate of the density of stafasto become  With t; = 1. This approach ensures high time resolution at
increasingly biased, especially considering the dependencesmallt whenC; is likely to be rapidly changing but avoids
of p(U) on the rapidly varying exponential Boltzmann factor the expense of computirg at everyt in the slowly decaying
e Y. Because of this, a reasonable assumption might be thatails. We find the accuracy of this approach to be acceptable
the bin width AU should be chosen such that) < kgT. differences typically amount to at most 10%.

However, if the bin size is too small, the uncertainty in the  5.3. Neglect of Bin Statistical Inefficienciegi.. It is often
estimate for thepm(8) will be large. One possibility might  assumed or stated without justification that the energy bin
be to use a data based choice of histogram bin width, as instatistical inefficienciesgn appearing in eqs 30 and 64,
Wand# which uses concepts from nonparametric density representing the number of snapshots required for a statisti
estimation in attempting to minimize the mean integrated cally independent sampling of the energy bin, are all equal
square error (MISE) to the true probability density. or equal to unity>* All gmi will be equal to unity only if

For the alanine dipeptide simulations described in section the {y,,, } N, are uncorrelated. To test this assumption, we
4.2 above, we find that the estimated probability of occupying have computed the statistical inefficiencies for the systems
the ok region of conformation space is largely insensitive to mentioned in section 4 above. To our knowledge, this is the
the number of bins used to discretize the sampled potentialfirst time a test of this claim has been reported in the
energy range. In fact, the variation in the computed expecta-literature. Indeed, for the explicit solvent system studied in
tion is well within the statistical uncertainty over the range section 4.2 above, we find large differences in the statistical
of 50—5000 bins (corresponding to a range of bin widths of inefficiencies for the same replica but different energy bins,
0.5-50 kgT). sometimes differing up to two orders of magnitude. Similarly,

5.2. Computing Integrated Correlation Times. Estimat- for the same energy bin, the statistical inefficiencies from
ing the correlation time, defined above in eqs 19 and 21, different replicas can differ by up to 2 orders of magnitude.
can be difficult when one is confronted with noisy correlation  In the limit that our parallel tempering simulation is very
functions. While ensuring trajectories are many times longer long—long enough for each replica to execute an unrestricted
than the longest correlation times is necessary for an accuratgandom walk through all temperatures and explore all
estimate, even if this is achieved, performing the straight- relevant regions of configuration spaeeach replica can be
forward sum over the entirety of the correlation functi©n considered to be equivalent. In this case, the statistical
asin eq 19 is almost always a poor choice, as the uncertaintyinefficiencies should be independent of replica inéteand

5. Practical Considerations
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we can writegy, as the statistical inefficiency for energy bin  dominate and the estimate of the square uncertaint of
m. Applied to eqs 64 and 65, this yields a new set of (eq 41) to be negative. Clearly, this should not be allowed
expressions: to occur, as the squared-uncertainty should be a strictly
« positive quantity.
H The statistical inefficiencieg should obey the following
kZ‘ mk relation (derived in Appendix A):

Q.= (70) 12 0x9y (73)

K L
Vv =
I(Z;Nkl AU expf, — BU,] 9y = (6:9) |ox;y2|

A This is often violated when the correlation function is noisy
520, = Qn (71) and can lead to negativg estimates of Fhe squared uncertainty
m K L when the cross-correlation term dominates. In these cases,
gmﬁlZZNk' AU expf, — AU, ] we find it best to simply limitgy, to its maximum allowed
== value computed from the right-hand side of eq 73. Since

K ] the autocorrelation times are usually shorter than the cross-
The quantity} —,Nw, simply represents the total number of - oo ejation time, it is believed that these estimates will be

configurations stored from any replica at temperafiré&or better than the integrated cross-correlation time.
a parallel tempering simulation, where each temperature must

be populated by exactly one replica at all times, this is simply 6. Conclusion
N, the total number of configurations stored per replica. ,,

We have presented extensions of the weighted histogram

s _ K .
Additionally, Hm = 3\;Hmi is the total number of con- 55 sis method, STWHAM and PTWHAM, for the analysis
figurations over all replicas (and hence temperatures) with of one or more independent simulated tempering or parallel

energy in binm. This gives tempering simulations. The method provides not only

H, estimators of canonical expectations but also estimators for

Q. = (72) the statistical uncertainties in the resulting estimates. We hope
L that, with the availability of the provided example code,
NZeXp[ﬁ = AUl workers using these simulation techniques will provide

uncertainty estimates so that the statistical significance of

which is identical to the WHAM result for independent results obtained from them can be assessed. We have shown
canonical simulations for the case wheregallare identical ~ that the estimator for the expectation has small bias and
or unity. If there is no correlation in the datthat is, all produces excellent uncertainty estimates for both a 1D model
configurations are independetit does not matter whether ~ System and a solvated biomolecular system in implicit and
we apply this analysis to the original data or collect the explicit solvent.
configurations by temperature and apply WHAM equations ~ While other workers had attempted to apply WHAM to
for independent canonical simulations. This expression is in Simulated or parallel tempering data in the pésthe key
fact identical to the one used in many published works that advance here is the consideration of the correlated nature of
have previously attempted to use the weighted histogramthe configurations sampled by each replica as it performs a
analysis method for the analysis of parallel tempering Pseudorandom walk in temperature, allowing a proper
simulations, such as refs 4 and 1. assessment of the true number of independent samples

Under these same assumptions, the correlation functionsPresent in the data. This produces correct optimal estimators
for any observablé should also be identical for each replica. and makes possible the estimation of statistical uncertainties.
One can therefore average estimates of the unnormalizedlhis method can be extended to the analysis of other
correlation functionsA.A.iCJover the replicas and use generalized-ensemble simulations, such as the multicanonical
optimal estimates of the mean and variance computed overmethod (MUCA);~? by consideration of replica correlation
all of the replicas to obtain an optimal estimate of the times as the system samples various energy levels biased
statistical inefficiencies and uncertainties. An implementation by the estimate of the density of states. Still, it is important
illustrating this procedure is provided in the Supporting to point out that, while we consider the contribution from
Information as listing 2. time-correlation of the observable to the uncertainty estimate,

Note, however, that the above assumptions of equivalencewe currently neglect the contribution of the uncertainty in
cannot be made in cases where the replicas are clearlyjthe per-configuration weights (which originates from the
inequivalent such as in a simulated tempering replica- uncertainty in the density of states) to the estimate of the
exchange (STREM) simulatich In that case, the expres- €xpectation-we assume it is negligible and await a more
sion above will only be recovered if the time between complete treatment of the uncertainty in cases where it is
samples is so long that all thgg are unity. not.

5.4. The Statistical Inefficiency for the Cross-Correla-
tion Term, gewaw. IN cOmputing the statistical inefficiency ~Appendix A: Relation for Statistical
for the cross-correlation term, uncertainties in the computed Inefficiencies
integrated autocorrelation times due to insufficient data or Consider a random process where we make a seriéé of
approximations may cause the cross-correlation term totime-correlated measurements of two (possibly correlated)
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observables X and Y, resulting in the time series a binomial distribution with parametet, true (unknown)
{X, Yol h,. We estimate the quanti@ = XI[YCfrom our probability that the blocks fall within the given deviation
sample means and wish to compute the uncertainty in our NI
estimate, defined as P(IO) = ————0"(1— O)" " (82)

n!(N — n)!

25 2 __ _ 2 2M
0°2= 0, =2~ ZY0= 2’0~ 208 (74) We can write the posterior distribution for the probability

given the observed number of blockswithin the given

To first order aboutX[LY[] this uncertainty is given by o X

deviation using Bayes’ rule
[0 2 O 2 Oy. 2
4L X (75) p(0In) O p(n|6) p(6) (83)

2 __ X ?
27 |x3 o3 T _
wherep(6) is the prior distribution for the parametér If
whereox.y? denotes the (not necessarily positive) covariance we choose the priop(f) to be a Beta distribution with
of the expectations oK and Y. The Schwartz inequality = hyperparameters andj, given by
requires that this covariance obey the relation
pOlaf) =Bl X (L —-x""  (84)

whereB(a,) is the beta function, then the posterpf)| n)
(see, for example, ref 44). Given this, we note will also be a Beta distribution with parameterst a and
(N — n) + 3, as the Beta distribution is a conjugate prior to
the Binomial distribution. We take the hyperparameters
= (77) and  to be unity to make the prior distribution uniform,
resulting in a posteriof~Betaf + 1,N — n + 1). A 95%
Correlation analysis gives estimators for these quantities ascentral confidence interval, corresponding to the location
, I where the cumulative distribution function for the Beta
oy =019, N) distribution reaches the values of 0.025 and 0.0975, was
plotted.

|02x;y| < 0y0y (76)

2
Ox.y

Ox0y

o= 0,/l(g, "N)
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Combining eqs 77 and 78 gives

2
9%y T Gy
102=
%%y (049

Supporting Information Available: Source code
where we have moved the statistical inefficiencies and Listings 1 and 2 for reference implementations of PTWHAM
variances out of the absolute value, as they are alwaysin Fortran 90/95, assuming inequivalent and equivalent

positive. Finally, we obtain an upper bound g replicas, respectively, as well as an archive containing a
compilable version of Listing 1 and a test data set. This
< ( )1/2ﬂ (81) material is available free of charge via the Internet at http://
Oy = (Ox Gy 2
0%y | pubs.acs.org.
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