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On the calculation of reaction rate constants in the transition
path ensemble
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We present improved formulas for the calculation of transition rate constants in the transition path
ensemble. In this method transition paths between stable states are generated by sampling the
distribution of paths with a Monte Carlo procedure. With the new expressions the computational
cost for the calculation of transition rate constants can be reduced considerably compared to our
original formulation. We demonstrate the method by studying the isomerization of a diatomic
molecule immersed in a Weeks—Chandler—Andersen fluid. The paper is concluded by an efficiency
analysis of the path sampling algorithm. 99 American Institute of Physics.
[S0021-960609)50513-9

I. INTRODUCTION “shoot off” a new path with slightly changed momenta in
) _ ~ forward and backward directions. Due to the chaotic nature
'!'he calculation of rate _constants for c_hem|cal reactiongyf the dynamics the new trajectory will quickly diverge from
continues to be a computationally demanding problem for allpg 614 one. Since regions and B are stable and attract
but the simplest systents. In addition to complications trajectories started nearby, the probability that the new path
caused 2by the quantum nature of important degrees Qfy connectsA and B is large. An appropriate acceptance
freedom; the definition of an appropriate reaction coordlnateCriterion guarantees that paths are harvested according to
s a majqr chaIIenge_. Thjs problgm is particularly Significanttheir proper weight. As a result of a path sampling simulation
for reactions occurring in solution, where thermal fluctua-one thus obtains a set of reactive trajectories from which the

tions of the condensed environment play a crucial ¥dre- . . :
. . reaction mechanisrtor mechanismsscan be extracted.
deed, the free energy landscape determining the mechanism I . .
The transition path sampling method does not require the

and the rate of a reaction can be drastically altered by thE‘iefinition of a reaction coordinate capable of describing the

presence of a solvent. The definition of a good reaction co- fth i tion frofito B. Instead. it suffi
ordinate requires knowledge of the reaction mechanism_ 24! >¢ OF e entire reaction fromto B. Instead, 1L SUTICes

Conventional methods for identifying reaction mechani:sms:[0 specify the stable statésandB. Since regions\ andB

such as eigenvector following, are based on a complete en@re stable they can be studied by straightforward molecular

meration of stationary points of the potential energy surfac giynam|cs simulation. Hence, characterizihgandB is usu-

Focusing on details of the energy landscape, these metho@4y Much simpler than defining a good reaction coordinate.
neglect entropic effects entirely. Therefore, exploration of N contrast to reaction pathways obtained by eigenvector

the potential energy surface with conventional methods carfe!loWing or similar methods, trajectories generated in the

not lead to a satisfactory understanding of solution chemistfansition path sampling method are true dynamical trajecto-

try. It is clear that the complexity of chemical reactions oc-/1€s free of any bias. Hence, the ensemble of paths harvested
curring in the liquid phase at finite temperature requires dn @ transition path simulation can be used to calculate reac-
different approach. tion rates. The present article describes the efficient calcula-
In a series of recent papéréwe proposed to solve this tion of reaction rate constants within the transition path en-
problem by adopting a reaction—coordinate-free descriptio$émble. We develop improved expressions for the “left—
of the reaction. In this method the notion of a single, well-Tight” time correlation function speeding up the computation
defined reaction path, such as a zero kinetic energy path, Bf rate constants considerably compared to our original
replaced by the concept of a large set of possible markeo”@rmuIationf“6 To demonstrate the method, we calculate a
different paths: theransition path ensemhléBy definition, reaction rate constant for isomerizations of a diatomic mol-
this ensemble contains all pathways starting in the reactaricule immersed in a WCAWeeks—Chandler—Andersen
stateA and arriving in the product staBwithin a maximum solvent. For low barrier heights the results of the transition
time t. Since these paths are true dynamical trajectories @ath sampling simulations are compared with results ob-
finite temperature, potential energy surfaces dense in saddigined from a straightforward molecular dynamics simulation
points and rough at a scale kT can easily be treated using and excellent agreement is found. Finally, an efficiency
the method. analysis of the path sampling is used to determine an optimal
To sample the transition path ensemble we have devekcceptance probability of 40%.
oped an efficient Monte Carlo procedure, which generates a This article is organized as follows. In Sec. Il we review
sequence of paths by small displacements. The basic idea tife theoretical basis of the transition path sampling method
the algorithm is to select a point along an existing path andnd derive a new expression for the reaction rate constant.
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Algorithms for efficient sampling of the distribution of paths B. C(t) from a “free energy” difference
are discussed in Sec. Ill. The model system is described in

. ; To determine reaction rate constants in the transition
Sec. IV, and numerical results are presented in Sec. V. I%

ath ensemble we first wri@(t) in terms of the equilibrium

Sec. VI an efficiency analysis is carried out, and conclusiv hase space distributign(xo),

remarks are made in Sec. VII.

JdXo p(Xg)ha(Xo)hg(X¢)
C(t)= H ®)
JdXo p(Xo)ha(Xo)
Il. THEORY Since in the above equation both integrands are manifestly
A. Reaction rate constants positive, we can interpreC(t) as a ratio of two partition

functions. Consequently, one can use standard free energy

Consider a dynamical system with two stable stafes, ggtimation methods to calculate the associated “free energy”
andB. These states are assumed to be stable in the sense thaterence®®

trajectories initiated ifA or B will stay there for a time long
compared to the characteristic time for molecular motions, AF(t)=—InC(t). (6)

Tmol- AccOrdingly, transitions betweeh andB are rare and - 1,5 the calculation of(t) is equivalent to the calculation
a well defined rate constant exists. This transition rate CON&f the “reversible work” necessary to confine the endpoint

stant is related to the time correlation function of a dynamical path initiated i\ at time O to regiorB at
_ (ha(Xp)hg(xp)) time t. . . .
C(t)= T 1) For a given time, the free energy differend®) may be
A computed by umbrella samplifgimagine that regiorB is
where bracketg---) denote equilibrium ensemble averagesdefined by the value of an order parameték):
andx,={q;,p;} is the set of coordinates and momenta speci- .
fying the state of the system at tinbeh, and hg are char- xeB it Amin<AX)<Nmax. @)
acteristic functions indicating if the system is /& or B, The distributionP(\,t) of the order parameter at timet for

respectively: trajectories starting i\ at timet=0 is given by
1 if xeA,B, JdXg p(Xg)ha(Xg) SIN —A(Xp) ]
= P )\,t = y 8
Mas=10 it xenB. @ (A0 Jd% p(X)NA(Xo) ®

The phase space Vecwlr evolves according to a set of de- where 5(X) is Dirac’s delta function. If the distribution
terministic equations of motion, such as those of Hamil-P(\,t) is known, we can calculat€(t) by integrating
tonian dynamics. Hencex,=x,(X,) is completely deter- P(\,t) over all order parameters belongingBo

mined by the initial conditionx, at time t=0. The

A X
correlation functionC(t) is the conditional probability to C(t)= f "dN P(MLY). 9)
find the system in regioB at timet provided it started irA Nmin
at timet=0. Since transitions fronA to B are rareP(\,t), is very small

Since transitions between the stable sta#teandB are  in regionB and it is impractical to calculate(\,t) directly.
rare,C(t) approaches its asymptotic value exponentfally  To determineP(\,t) by umbrella sampling, we first define a
_ N+ 1 overlapping region®[i] such thatB
~(h 1— t/ Ty sequence O : . . | 0
C()~(he)(1~e ) @ =B and the unionU!\_,B[i] of all regions comprises the
where 7,,= (ks g+ Kg_.») ! is the characteristic reaction whole phase space. The regidBf ] are defined through
time of the system, ankl,_,g andkg_, 5 are the forward and . . .
backward reaction rate constants, respectively. If the time X B mn M) =Amal 1] (10
scales are well separated, i.e., the reaction tigpeis much  For 0<i<N we require regionB[i] to overlap with the
larger than the molecular time,,, there exists a time re- neighboring region8[i—1] andB[i+1]. Next, one calcu-

gime mo<t<< 7, in Which C(t) grows linearly: lates the distribution of the order paramekein each of the
“windows” B[i] separately:
C(t)~Kka_,gt. (4) [i] sep y
d h hgri ON—A\
Consequently, the reactive flug(t)=dC(t)/dt displays a P()\,t;i)zf X P(X0) NA(Xo) i) (X0) o (0]
plateau whose value is the forward reaction rate constant Jdxo p(%0)Na(X0) i) (%) 1
ka_g. "

One may, in principle, computg(t) from a single, very Comparison of Eqs(8) and (11) shows thatP(\,t;i) and
long molecular dynamics trajectory. Such an approach i$(\,t) are proportional in the windows[i]:
clearly impractical for systems in which the reaction time y . .
Twn IS Much longer thanr,,. As shown in our recent POLO=POLED) for AminlHTSASAmali]. (12)
work,*~®this problem of disparate time scales can be avoided®y matching the histogramB(\,t;i) in overlapping regions
by using thetransition path samplingnethod. In the follow- and normalizing the resulting distribution one obtains
ing paragraphs we first motivate this approach and then eX?(A,t). Then, according to Eq9), C(t) is determined by
plain the method. integration. We have reduced the calculationGgt) to the
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calculation of the histogranB(A,t;i) in the windowsBJi]. {hahg(t)Hg(T)) (haHg(t))
In the following paragraphs we explain how to do so effi-  C(t)= (haHa(T)) X(h he(t')Hg(T)) X C(t'),
ciently. AB ATB B (18)

Equation(11) suggests that we writB(\,t;i) as an av-

erage over a distribution functiohhggi;(Xo.t): where we have also multiplied and divided the right hand

side of the equation byh,Hg(T)). For simplicity, we have

PO )= JdXo f appiy(Xo,t) LN = N(Xp) ] dropped the argument, of Hg(Xo,T). Equation (18) is
()= JdXo fagig(Xo,t) valid for all t,t’ €[0,T]. Here, the quantity
=(N—N(X) ) agqiy (13 _ (hahg(t)Hg(T))
where (Me(t))ne (haHg(T))
fAB[i](XO:t)EP(XO)hA(Xo)hB[i](Xt). (14) _ deO p(XO)hA(XO)HB(XO1T)hB(Xt) (19)

f agi1(Xo ) is the distribution function of all initial condition Jdxo p(x0)Na(X0)He(X0, T)

Xp in regionA leading to trajectories ending exactly Bji ] can be interpreted as an averagehgfx;) over the distribu-

at timet. P(\,t;i) can be calculated as a weighted averagdion

over all paths connecting andBJ[i] in timet. Accordingly, EralXa T) = 0(X N a(X ) HalXn T 20

we call the quantity AB(Xo, T)=p(Xo)ha(Xo)Hg(Xo, T). (20
Fag(Xo,T) is the ensemble of all initial conditiong, in A

(AX0)) AT = J %0 T agriy(Xo ) AlXv (Xo)] (15  leading to trajectories visiting3 in the interval[0,T]. In
& JdXo fagrig(Xo,t) contrast tof og(Xg,T), Fag(Xo,T) contains also those trajec-
a path averageand the distribution functiomgij(Xo,t), & tone; reachingB but Ieavmgllt again beford@. Using this
path ensembleNote thatt’ can be different fromt. As ~ Notation Eq.(18) can be rewritten as
shown in our previous work® path ensembles can be (hg(t))ag
sampled using a Monte Carlo procedure. Efficient algorithms ~ C(t)= et ns XC(t'). (21)
to do so are described in Sec. IIl. BYT J/AB

The distributionF 5g(Xo,T) may also be sampled by the

Monte Carlo techniques described in Sec. lll, so that an ef-

ficient calculation of(hg(t))ag is possible. Thus, the corre-
Using the method described above, it is possible to callation functionC(t) in the time interval 0,T] can be deter-

culate C(t) for a number of different times. Thek(t) is  mined from a single path sampling simulatifte calculate

determined by numerical differentiation. k{t) displays a (hg(t))ag] and a single “free energy” calculatigio calcu-

plateau, the rate constant is determined by the valugtyf  late C(t') at a certain time']. The “free energy” calcula-

in the plateau region. Since this procedure involves manyion consists of a series of transition path simulations per-

“free energy” calculations, it is very time consuming for all formed in overlapping windows. We note thtlt can be

but the simplest systems, making such an approach impra€hosen to be much smaller tharfor an efficient calculation

tical. In our previous work® we derived new expressions for of C(t’).

the rate constant which circumvent this problem and require

only a single “free energy” calculation. In the present paper

we develop improved expressions leading to an increase &- Summary

C. An advantageous factorization of  C(t)

efficiency of almost an order of magnitude. o We now summarize the procedure for the calculation of
To calculateC(t) in the intervall 0,T] we factorize it as  rate constants in the transition path ensemble as follows.
(hahg(t))  (hahg(t’))  (hahg(t)) First, one performs a path sampling simulation with the path

C(t)= (haha(t) X hy (haha(t') X C(t"), ensembleF pg(Xo,T) from Eq.(20) to calculate(hg(t))ag in

(16) the interval[O,T]. If the time derivative of hg(t))ag does

) ) _ _ not display a plateau, one has to repeat the path sampling
where botht andt’ are in[0,T]. For notational convenience gjmulation with a longer total timel. If d(hg(t))as/dt

we have dropped the argumenttof, which is always as-  reaches a plateau, one chooses a tifria the interval[ 0,T]
sumed to bexy. Also, we write hg(t) instead ofhg(x;). and computeC(t’) by employing the umbrella sampling

Next, we define the function technique described above. Sin¢bg(t’))as is already
Hg(Xo,T)= maxhg(xy). (17 known, one can now calcula@(t) from Eg. (21) and ex-
o<t<T tract the rate constami, .5 from the plateau of
The indicator functioHg(xg,T) is unity if a trajectory start- dC(t) <hB(t)>AB
ing from x, at timet=0 visits regionB in the interval[0,T] k(t)= XC(t"). (22

and vanishes otherwisEg(xq,T) is unity even if the system dt {ha(t"))e

arrives inB at a timet<<T but lies outside oB at timeT.
SinceHg(Xq,T) vanishes only ifhg(x;) vanishes for all O
<t<T and Hg(Xq,T) is unity otherwise, we can insert For adjacent region& and B, i.e., ha(X) +hg(x)=1,
Hg(xg,T) into the averages of E16) obtaining the transition path sampling formalism reduces to the reac-

E. Reactive flux formalism
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tive flux formalism’ In the latter, the transition-state-theory
reaction rate constarkys, is corrected by a time dependent
dynamical transmission coefficier(t):

k(t)=krgrx(t). (23

In general, the transmission coefficiertis different from
one due to recrossings of the surface separaifigm B. It

is usually determined by computing dynamical trajectories
initiated at the dividing surface. The transition state theory
estimatek;gt is a purely static quantity depending mainly on
the probability of finding the system at the dividing surface.
To demonstrate the equivalence of the reactive flux method
and the transition path sampling we approximate ogh')
and(hg(t'))ag linearly for smallt’. Using Eq.(23), we then
obtain:

k()" (ha(t)ae
(hg(0))agt’  (ha(0))as

k(t)=(hg(t))apX XKrgr-

(29)
FIG. 1. Schematic representation of the shooting m@je the shifting

Thus, (hg(t))ag Normalized by its value at=0 is identi-  move(b), and the path reversal move).
cally the transmission coefficient of the reactive flux formal-
ism.

acceptance probability. As a consequence, the initial condi-
tionsxy move slowly through the allowed region making the
Ill. SAMPLING THE TRANSITION PATH ENSEMBLE sampling of the path ensemble inefficient.
This problem can be remedied by changing the state of
As shown in Sec. ll, the calculation of the time correla- ¢ system at timeinstead of time 0, i.e., by changing for
tion functionC(t) involves the calculation of averages over gomet [0,T]. Since the old path connecfs and B, there
the path ensemblesag(Xo, T) and Fap(Xo,T) defined in  myst exist intermediate states for which even a consider-
Egs.(14) and(20), respectively. Whilef sg(Xo, T) is the dis-  gpje displacementx, leads to trajectories still connectiry
tribution function of all paths starting il and ending ex-  angB with a high probability. Of course, trajectories are still
actly in B at time T, Fag(Xo,T) is the distribution of all  chaotic, but since regions andB attract trajectories started
paths starting irA and visitingB in the interval[0,T]. Av- nearby, a high acceptance probability can be expected for
erages over Fhese path ensembles can be calculated by MO'H&[hs generated by changing an intermediate phase space
Carlo sampling. A new path is generated from an old onepgint x,. More specifically, in a shooting move one first
which is then accepted or rejected according to a detailedg|ects a poink{q;,,p;} at random along the current path.
balance criteriofi. The efficiency of such a procedure de- Then one changes the momemiaat timet at random by a
pends on the ability to generate new paths which are suffigma) amountdp, keeping the coordinates fixed. Integra-
ciently different from the old paths but are still accepted withiion of the equations of motion backwardstte 0 and for-
a reasonable probability. We will discuss this point quantitasyards tot=T from the new state’= (g, p,+ Jp) vields a
tively in Sec. VI. In our previous work, we have devised ey trajectory with initial condition}). This procedure is
algorithms(called “shooting” and *“shifting”) which pro-  justrated in part@) of Fig. 1.
vide an efficient way to generate paths. We shortly describe |, order to sample the path ensembBlgg correctly, we

these techniques and explain how they can be used to Ca|CHE:cept a new path according to the Metropolis criterion
late rate constants. In addition to the shooting and shifting

moves we introduce path reversal moves. n
P F (X3, T)Pged N—0)

. P 4. 0—N)=min| 1, : (29
A. Shooting acd Fag(Xg:T)Pged 0—n)

Consider a path starting &g in A and reaching regioB
after going over a high potential energy barrier. One couldThis choice satisfies detailed balaricelere, P,.{0—n) is
try to create a new path by applying a small displacement téhe probability for accepting the new path from the old one,
the original old initial conditionsx, to obtain a new path Py {0—n) andPy.{n—o0) are the probabilities to generate
starting fromxy+ 8%g. In general, complex systems are cha-the new path from the old one and vice versa. The generation
otic and, more significantly, trajectories are very unstable irprobability Py {0—n) depends on how the point is se-
the vicinity of saddle points. Small changes in the initial lected along the path and how the momentum chafés
conditionsx, can therefore lead to large changes in the trachosen. For a symmetric generation probability, i.e.,
jectory. Thereforedx, must be very small in order to gener- Pg.{0—n)=P4{n—0), the acceptance probability reduces
ate paths which conne& and B, ensuring a reasonable to
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_ p(Xg) sembleF 5og(Xq,T) of paths visitingB in the time interval
Pacd 0—n)=min LmhA(XB)HB(XS;T) : (26)  [0,T], however, is it possible to finat in region A. For
pi%o such paths a reversal is always accepted. Since no integration
The acceptance probability of a shooting move in the enef the equations of motion is required for a path reversal, the
semblef og(Xq, T) is obtained simply by replacing g(xg;T) computational cost of such moves is negligible and path re-
with hg(x{) in Eqg. (26). Since the acceptance probability of versal moves should be performed whenever possible. In
paths generated by shooting depends on the momentum difgct, path reversals can facilitate ergodic sampling of the path
placementdép, one can optimize the efficiency of the algo- space if qualitatively different pathways connecth@ndB
rithm by controlling 5p. exist.

B. Shifting IV. MODEL

A computationally simple way to generate a new path
from an old one is to translate the initial conditions in time.
In other words, one obtains a new initial conditiaf by
evolving the old initial conditiorxg by a timet:

To illustrate the method described above, we calculate
the transition rate constant for a diatomic molecule with two
stable states immersed in a fluid of purely repulsive particles.
A similar model has been studied by Straub, Borkovec, and
X5 =x2(x9). (27) Bernel® The model consists dfl two-dimensional particles

e . ) . of massm interacting via the purely repulsive Weeks—
The shifting timet can be positive as well as negative. This chandler—Andersen potential

path move is schematically depicted in pény of Fig. 1. "
Provided one choosdsat random from a distribution sym- LA
metric aboutt=0, the acceptance probability for a shifting Viea(r)= € ( r) ( r

move is also given by Eq26). The combination of shifting 0 if r>ryea,

and shooting moves provides an efficient and correct algo- (29)
rithm to sample the transition path ensemble.

Since shifting a path by a small tinterequires the inte-

6
+e€ if r$rWCA521/60',

wherer is the interparticle distance ardand o are param-
gration of the equations of motion for only a few time steps,eters specifying the strength and the interaction radius of the

a shifting move is much less expensive than a Shootiné)otential,_respectively. In addition_, two of thé particles
move. It is therefore advantageous to attempt shifting movellteract via the double well potential

much more frequently than shooting moves, and to store all (r—rwea—Ww)?]?

the new trajectory segments calculated in subsequent shifting  Vaw(r) =h|1———7—— . (30
moves. Consider, for example, a sequenc®l afonsecutive

shifting moves, each of which translates the initial conditionsHere.r is the distance of the two particles belonging to the
by a small timeAt forward or backward. If the trajectory diatomic molecule. The parametercontrols the height of
information is stored for each shifting move, later shifting the barrier between the stable states locatet=at,c, (the
moves can be performed with little computational cost. Thuscompact stateand r=ryca+2w (the extended staltere-

to doN shifting moves of time\t, on average it is necessary SPectively. The system evolves according to Hamilton's
to integrate the equations of motion only for a tingBIAt. equatlon_s.of motion in a simulation box with periodic bound-
Of course, the trajectory information is lost if the shifting &y conditions.

moves are interrupted by a shooting move. Long sequences If the barrier heighth is large, transitions between the
of shifting moves correspond to a random walk of the initialcoOmpact and the extended state are rare. In this case the
conditions in time. Even if the shifting moves do not Chamgediatomic oscillates in one of the stable states for a long time
the path significantly in the sense that they lead to a newntil, due to collisions with the solvent particles, sufficient
transition state, they are important for statistical refinemen€nergy to cross the barrier is deposited into the reaction co-
of the correlation functiorC(t). Shifting moves help to ex- ordinate. Then a quick transition occurs, and the energy of

tract as much information as possible from paths obtaine§€ diatomic is absorbed by the solvent, stabilizing the di-
using the shooting algorithm. atomic molecule again. In the following we calculate rate

constants for such isomerizations.

C. Path reversals

Another path move, which can be useful under CertainV' NUMERICAL RESULTS

circumstances, is path reversal. In this path move one obtains = Since the system evolves at constant total en&gyith
new initial conditionsxg by taking the final point of the path a fixed center of mass, the appropriate distribution function

xt and reversing the momenta: of initial conditions X, is the microcanonical distribution
with the additional constraint of a vanishing total momentum
xo={ds.pgr={a%, —p%}. (29 g

This path move is schematically depicted in p@tof Fig. B B
1. Since in the case of the path ensemiglg(x,,t) defined p(X0) = 8(H(Xo) ~E) 5(P). 3D

in Eq. (14), x{ is always in regiorB, path reversals cannot Accordingly, the momentum displaceme#ip used in the

be employed to samplé,g(Xg,t). In the case of the en- shooting algorithms must be chosen to conserve both the
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total energyH and the total momenturR of the system. In 20 -
this case the acceptance probability for shooting moves sim- ——— t201t
plifies to ool / N\ | 1 - ::=g_gr
e 120,87

Pacd0—n)= hA(XS)H B(Xg ). (32 —_— =201

In other words, any new path generated by a shooting move
is accepted if it connectd andB. Since Hamilton's equa-
tion of motion conserves both the total energfyand the
total momentunP, the acceptance probability for a shifting
move is also given by Eq32).
Our numerical results are presented in reduced units, i.e., -6.0
lengths are measured in units af energies in units of,
masses in units of, times in units ofr=(mo?/€)*? and o By
transition rate constants in units ef 1. In all our simula- _8'01_0 11 12 13 14 15 16 17 18
tions we employ the velocity Verlet algorithm with a time r'c
step OfAt:O'QOZT o integrate the equations of motion. FIG. 3. Logarithm of the probability distributior(r,t") of the diatomic
For shooting moves all the components of the momengistancer the end of the path for different total path length-0.1r, 0.4r,
tum displacement vectafp are chosen from a Gaussian dis- 0.8r, and 2.¢- for the same set of parameters used to obtain the results
tribution with a certain width. Next, components &b cor- shown in Fig. 2. The graphs were obtained by matching the distributions of

: i obtained from 5 independent simulations whera/as confined to win-
responding to a nonvanishing total momentum are removeqj,OWS defined by 0.26< <122, 1.24r<r <1.260, 1.257<1<130s,

Then,8p is agdec(i) to the 0|.d QOentUp? yielding the new 1 5q, 1 <1 46, and 1.45<r <. The vertical dotted lines indicate the
momentump;'=p;+ 8p which is rescaled to conserve the jimits Ry=1.300 andRz=1.45 of the initial and final region, respectively.
total energyE. This procedure for changing is symmetric  Integration over the final regioB yields the values of the correlation func-
in the sense that the generation probability for the mptg)/e tion C(t") for the different values of’: C(0.1r)=1.306<10 ¢, C(0.47)

n . . =3.003<107°, C(0.87r)=6.548< 10" °, C(2.0r)=1.456x 10" “.
—p; equals the generation probability for the backwards
move p{—py. Hence, such shooting moves obey the de-

tailed balance condition and lead to a correct sampling of thepggen to optimize the sampling rate. A detailed discussion
transition path ensemble. The average magnitudgpolvas  f his point appears in Sec. VI. After each shooting move,

100 shifting moves of 10 time stepst each are performed.

Despite the large number of shiftings, the computational cost
08 of the whole shifting sequence is only a fraction of the cost
for a shooting move. We perform path reversal moves when-
ever it is possible.

log P(r,t))
0
o

08 As described in Sec. Il, to calculate a transition rate con-

g stant one first has to perform a path simulation to determine
é 0.4 . the path averagéhg(t))ag. Such a simulation yields the
4\:/”’ correlation functionC(t) up to a multiplicative factor. To

determine this multiplicative factor, a “free energy” calcu-
lation of C(t’) at an intermediate timg is necessary. In the
following paragraphs we present the results of a complete
0.0 ‘ ‘ ‘ calculation of the transition rate constant for the diatomic in
0.0 0.5 1.0 15 2.0 solution.
The interatomic distance provides the natural order
10 - ] parameter for the definition of the stable regichsand B:
we define regiong andB to contain all configurations with
r<R, and r>Rg, respectively. ObviouslyR, and Rg
should lie on different sides of the separating barrier and
05 r ’ allow the stable regions to accommodate most of the equi-
librium fluctuations around the potential energy minima. In
all our simulations we us®,=1.30, Rg=1.4%, and a
0.0 barrier width ofw=0.25r. Consequently, the top of the bar-

\/ rier is atr ~1.370, and the minima of the bistable potential

: : : are atr~1.12 andr~1.62.
00 05 1,[,2 18 20 First, we determine the path averages(t))ag in the
interval[0,T]. Figure 2 showghg(t))ag and its time deriva-

FIG. 2. Path averagghg(t)) g (top) and its time derivativel{hg(t))ag/dt tive (d hB(t)>AB/dt as a function ot obtained from a path

(bottom) for the diatomic in the WCA fluid. The parameters of the simula- _. . . .
tion wereN=9 (7 solvent particles and 2 particles belonging to the di- simulation consisting of 3:81C° shots. The choice of pa-

atomio, E=9¢, h—6e, w=025r, p=060-3 R.—130 and R, fameters =9, E=9¢, h=6¢, p=0.60" %) guarantees that
=1.45. the transition betweeA andB is rare and that a transition

02 1

dehy(t)>e/dlt T
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TABLE I. Time correlation functiorC(t’) and rate constamt,_,z obtained 0.60
for different timest’ for the parameter sdtl=9, E=9¢, h=6¢, andp
=0.60"2. h=1¢
t’ C(t") Ka_g 0.40 - .
0.17 1.31x10°© 6.8x107 %771 =
0.47 3.00<10°° 7.9x107%771 <
0.8r 6.55x 107° 8.3x10° %771
2.0 1.46x10°% 751075771 020 | l
0.00 : : :
rate constant is well defined. As can be seen in the figures, 0.0 05 1.0 15 2.0
(hg(t))ag reaches a linear regime afterl.5r. Accordingly, 0.08 ‘ ‘ '
after a few oscillations, which arise from trajectories reach- h=3e
ing B and then leaving, its time derivative displays a plateau. 0.06 T 1
Next, we calculate the correlation functi@{t’) for an
intermediate time’ for the same set of parameters. Figure 3 ©
shows the distributioP(r,t’) of the order parametar for g 004y i
differentt’ ranging fromt’=0.17 tot’=2.0r. P(r,t’) was
obtained by using the overlapping windows @20r 0.02 | -
<1.22r, 12l6<r<1.260, 12%<r<1.30r, 1.2%<r
<1.460, and 1.4%5<r <o, For each window we performed
a path sampling simulation consisting ox30° shots in 0.00,% 05 10 15 20
which the endpoint of the path was confined to the respective 1

order parameter window.

As shown in Fig. 3, the probability to find the diatomic
in region A (corresponding to small values of is high for
all timest’. Since the transition fromA to B is a rare event,
the probability to be in the extended st&ecorresponding
to large values of) is small. For longer times' this prob-
ability increases leading to a small peakRifr,t’) in region
B. For times very large compared to the reaction timg,
P(r,t") approaches the equilibrium distribution of the order . . o
parameter, which has two peaks of approximately the samtehe purpose of calcul;sltlng a rgacnon rate co,nstant it is nec-
height in regionsA andB. By integratingP(r,t’) over re- essary 1o comput?(t ) for a smgle,value ot’. Here, we
gion B, i.e., forr>Rg, we obtain the values for the corre- have computed(t”) at a variety oft’ for comparison.

. ' , : By inserting({hg(t))ag @and C(t’) into Eqg.(21) we ob-
lation functionC(t’) shown in column two of Table I. For tain C(t) and, by numerical differentiation, its time deriva-

tive k(t). Figure(4) showsk(t) calculated for different val-
ues oft’. The corresponding transition rate constants are
shown in column three of Table I. Ak(t) curves lead to

FIG. 5. Comparison of transition path sampling results with the results
obtained by straightforward molecular dynami@dD) simulation for h

=1e (top) and h=3e€ (bottom). All other parameters are identical to the
parameters used to obtain the results shown in Fig. 2. The solid line indi-
catesk(t) computed by path sampling whereas the dotted line indicates the
MD result. The MD trajectories consisted of 20Q0° steps of lengthAt
=0.002r.

0.0002

= 0.0001

ST

—-—- t=0.17
----- t=0.41
e $=0.81
— =201

approximately the same plateau value and hence to the same
transition rate constant. Differences in the curves are due to
statistical errors in the calculation @(t’) and(hg(t))ag-

The computational cost for the calculation 6{t’) at t’
=0.17 is smaller by a factor of 20 than &#t=2.0. Thus, it is

feasible to reduce the computational cost of transition rate
calculations considerably by performing the “free energy”
estimation ofC(t’) at short timeg’'.
For low values of the barrier height the results of the
transition path sampling simulations can be compared with
‘ ‘ the results of straightforward molecular dynamics simula-
0.0 05 1.0 1.5 20 tions. Figure 5 showk(t) as a function oft for the barrier
vt heights h=1¢ (top) and h=3e (bottom. In the caseh
FIG. 4. Time dependent reaction rdt¢t) as a function oft obtained ac- = 1€, transitions between the compact and the extended state
cording to Eq.(21) by combining the(hg(t))ag Shown in Fig. 2 with the  occur very frequently and there is no separation of time
r?sults shown‘ in Fig. 3. Different graphs correspond to different values olgcgles. Consequently(t) does not reach a plateau but rather
tCleTeZe ;f::cﬂ?gllf;tze ;g;sltgﬁi—?t?ta;?gigin;.gzel(?—l?;e—i? Vkazl(;’gi) of "@ecays exponentially after the molecular timgy. For h
—8.3x10 57 1, andk(2.0) = 7.5x 10 57 L, These differences are due to = 3€ the transitions are raféut still frequent enough for an
statistical errors in the “free energy” calculations. MD (Molecular Dynamicssimulation] so thatk(t) reaches a

0.0000
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plateau and a transition rate constant is well defined. In both 0.0
cases the result of the transition path sampling simulation
(solid line) and the MD simulatior{dotted ling agree very
well.

It is interesting to compare the efficiency of straightfor-
ward molecular dynamics simulation with the efficiency of
the path sampling method. In a straightforward molecular
dynamics trajectory the average time needed to obtain a re-
action event is precisely the reaction timg,,. For barrier
heights h=1¢, h=3¢, and h=6¢, the average waiting
times for a transition are approximately, #0r, and 12 508,
respectively. By contrast, the time needed to generate statis-
tically independent trajectories with the path sampling algo- 20 . . ,
rithm does not depend on the barrier height. As can be in- 0 50 100 150 200 250
ferred from Figs. 2 and 5 trajectories of length &e long n
enough to capture typical transitions. As shown in the nexkig. 6. Logarithm of the correlation functiors(n) as a function of the
paragraph, trajectories are statistically independent if theyumber of cycles for the quantitigsy(xy,) (solid ling), V,, (dotted ling,
are separated by.~5 Monte Carlo cycles. The generation andt, (broken ling for the same parameters used to obtain the results
of a statstically independent pathway therefore requires thg12"0 1.7, 2 T1e 5 somiing smuien consmer T e
integration of the equations of motion for5X27=107.  ;ccepted with a probability of 40%.

Including the cost of the “free energy” calculation we ob-

tain an integration time of- 20—40r per independent trajec-

tory. Hence, forh=1¢ direct MD simulation is more effi- fining a thresholc:* (n) below which paths are regarded to
cient than path sampling, but already ftr=3e, path  pe uncorrelated. Alternativelyy, can be defined as the inte-
sampling exceeds in efficiency. At=6e path sampling is  gral of c(n), i.e.,no=3,c(n). In our example, the number
more efficient than straightforward simulation by a factor ofof correlated cycles obtained with a threshold of 0.5 is

~500. Clearly, with increaSing Separation between mOleCUSma”er by a factor of 2—3 than th@c obtained from the
lar time and reaction time scales the path sampling schem@tegration ofc(n).

becomes more and more efficient compared with straightfor-  Sjnce an exhaustive correlation analysis is computation-
ward dynamics. While for typical molecular systems g|ly expensive, it is useful to examine the dependence of the
Straightforward molecular dynamiCS simulation is typlcally number of correlated Cyc|e9c, upon the acceptance prob_
limited to time scales of hanoseconds, reactions with charaqibi“ty P.c.. The number of correlated cycles, (for a
teristic times many orders of magnitude larger can be treateghreshold of 0.5 is shown as a function of the acceptance
with the transition path sampling method. probability P e in Fig. 7 for hg(Xry), Vigp, andt,. Differ-

ent acceptance probabilities were obtained by employing dif-
ferent magnitudes of the momentum displacemépt A

-10 r

-15r

log(<SA(0)5A(N)>/<5A%>)

VI. EFFICIENCY

In general, the efficiency of a Monte Carlo simulation
depends on how quickly the available space is sampled. 12 ' ' ' ' ' ' ' '
Strong correlations between consecutive states lead to slow
sampling and hence to a poor efficieréyThe efficiency of

a path sampling simulation can therefore be assessed by cal 107 1
culating the autocorrelation functiar(n) of the fluctuation
of an appropriate quantith(x) as a function of the number s | i
n of simulations cycles: .
c
_ (5A(0) (SZA(n»AB, 33 6| |
(0A%) B

where SA(n)=A(n)—(A(n))ag. Fast decay ot(n) indi-
cates fast sampling and hence high efficiency. Figure 6 41
shows the correlation functiaz(n) as a function of the num-
ber of simulation cycles for three different quantiti®éx): 5 L L
the indicator functiorhg(x7;) at the midpoint of the path 00 0.1 02 03 04 05 06 07 0.8 09 1.0
(solid line), the potential energy,,, of the system on top of P
the barrier(dotted ling, and the transition time,, (broken
line). The transition time,, is the time needed to cross the FIG. 7.‘ _Numbernc of correllated cycles_ as a function of the acceptance
. probability P,..for hg(xy5) (circles, V,, (diamond$, andt, (squares Each
gap be,tweem and B. All three curves decay qUICkIy, at simulation consisted of £shots and 100 shifts of length 0.fafter each
short times but decorrelate more slowly for longer times.ghot The numben, of correlated cycles was obtained by determining
One can estimate the numbey of correlated cycles by de- where the corresponding correlation function falls below a threshold of 0.5.

acc
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small 6p leads to a high acceptance probability but to a low~4. Furthermore, recent transition path sampling studies of
efficiency because subsequent paths are highly correlatedydrogen bond breakidg and ionic dissociatioli in bulk

On the other hand, a large momentum displacement causester indicate tham<10 even in systems of high dimen-
subsequent paths to differ widely. However, such paths arsionality. Thus, possible applications of the transition path
only rarely accepted resulting again in low efficiency. Be-sampling method include chemical reactions occurring in so-
tween these extremes, displays a rather wide minimum lution and the dynamics of complex biopolymers.
corresponding to the optimum efficiency. These results sug-

gest that, as a rule of thumb, the magnitudepfshould be ~ACKNOWLEDGMENTS
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