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On the calculation of reaction rate constants in the transition
path ensemble
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Department of Chemistry, University of California, Berkeley, California 94720

~Received 27 October 1998; accepted 29 December 1998!

We present improved formulas for the calculation of transition rate constants in the transition path
ensemble. In this method transition paths between stable states are generated by sampling the
distribution of paths with a Monte Carlo procedure. With the new expressions the computational
cost for the calculation of transition rate constants can be reduced considerably compared to our
original formulation. We demonstrate the method by studying the isomerization of a diatomic
molecule immersed in a Weeks–Chandler–Andersen fluid. The paper is concluded by an efficiency
analysis of the path sampling algorithm. ©1999 American Institute of Physics.
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I. INTRODUCTION

The calculation of rate constants for chemical reactio
continues to be a computationally demanding problem for
but the simplest systems.1,2 In addition to complications
caused by the quantum nature of important degrees
freedom,2 the definition of an appropriate reaction coordina
is a major challenge. This problem is particularly significa
for reactions occurring in solution, where thermal fluctu
tions of the condensed environment play a crucial role.3 In-
deed, the free energy landscape determining the mecha
and the rate of a reaction can be drastically altered by
presence of a solvent. The definition of a good reaction
ordinate requires knowledge of the reaction mechani
Conventional methods for identifying reaction mechanism
such as eigenvector following, are based on a complete
meration of stationary points of the potential energy surfa
Focusing on details of the energy landscape, these met
neglect entropic effects entirely. Therefore, exploration
the potential energy surface with conventional methods c
not lead to a satisfactory understanding of solution chem
try. It is clear that the complexity of chemical reactions o
curring in the liquid phase at finite temperature require
different approach.

In a series of recent papers4–6 we proposed to solve thi
problem by adopting a reaction–coordinate-free descrip
of the reaction. In this method the notion of a single, we
defined reaction path, such as a zero kinetic energy pat
replaced by the concept of a large set of possible marke
different paths: thetransition path ensemble. By definition,
this ensemble contains all pathways starting in the reac
stateA and arriving in the product stateB within a maximum
time t. Since these paths are true dynamical trajectorie
finite temperature, potential energy surfaces dense in sa
points and rough at a scale ofkBT can easily be treated usin
the method.

To sample the transition path ensemble we have de
oped an efficient Monte Carlo procedure, which generate
sequence of paths by small displacements. The basic ide
the algorithm is to select a point along an existing path a
6610021-9606/99/110(14)/6617/9/$15.00
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‘‘shoot off’’ a new path with slightly changed momenta i
forward and backward directions. Due to the chaotic nat
of the dynamics the new trajectory will quickly diverge fro
the old one. Since regionsA and B are stable and attrac
trajectories started nearby, the probability that the new p
still connectsA and B is large. An appropriate acceptanc
criterion guarantees that paths are harvested accordin
their proper weight. As a result of a path sampling simulat
one thus obtains a set of reactive trajectories from which
reaction mechanism~or mechanisms! can be extracted.

The transition path sampling method does not require
definition of a reaction coordinate capable of describing
course of the entire reaction fromA to B. Instead, it suffices
to specify the stable statesA andB. Since regionsA andB
are stable they can be studied by straightforward molec
dynamics simulation. Hence, characterizingA andB is usu-
ally much simpler than defining a good reaction coordina

In contrast to reaction pathways obtained by eigenvec
following or similar methods, trajectories generated in t
transition path sampling method are true dynamical trajec
ries free of any bias. Hence, the ensemble of paths harve
in a transition path simulation can be used to calculate re
tion rates. The present article describes the efficient calc
tion of reaction rate constants within the transition path
semble. We develop improved expressions for the ‘‘le
right’’ time correlation function speeding up the computati
of rate constants considerably compared to our origi
formulation.4–6 To demonstrate the method, we calculate
reaction rate constant for isomerizations of a diatomic m
ecule immersed in a WCA~Weeks–Chandler–Andersen!
solvent. For low barrier heights the results of the transit
path sampling simulations are compared with results
tained from a straightforward molecular dynamics simulat
and excellent agreement is found. Finally, an efficien
analysis of the path sampling is used to determine an opti
acceptance probability of;40%.

This article is organized as follows. In Sec. II we revie
the theoretical basis of the transition path sampling met
and derive a new expression for the reaction rate const
7 © 1999 American Institute of Physics
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Algorithms for efficient sampling of the distribution of path
are discussed in Sec. III. The model system is describe
Sec. IV, and numerical results are presented in Sec. V
Sec. VI an efficiency analysis is carried out, and conclus
remarks are made in Sec. VII.

II. THEORY

A. Reaction rate constants

Consider a dynamical system with two stable statesA
andB. These states are assumed to be stable in the sens
trajectories initiated inA or B will stay there for a time long
compared to the characteristic time for molecular motio
tmol . Accordingly, transitions betweenA andB are rare and
a well defined rate constant exists. This transition rate c
stant is related to the time correlation function

C~ t ![
^hA~x0!hB~xt!&

^hA&
, ~1!

where bracketŝ¯& denote equilibrium ensemble averag
andxt5$qt ,pt% is the set of coordinates and momenta spe
fying the state of the system at timet. hA andhB are char-
acteristic functions indicating if the system is inA or B,
respectively:

hA,B~x!5H 1 if xPA,B,

0 if x¹A,B.
~2!

The phase space vectorxt evolves according to a set of de
terministic equations of motion, such as those of Ham
tonian dynamics. Hence,xt5xt(x0) is completely deter-
mined by the initial conditionx0 at time t50. The
correlation functionC(t) is the conditional probability to
find the system in regionB at timet provided it started inA
at time t50.

Since transitions between the stable statesA and B are
rare,C(t) approaches its asymptotic value exponentially7

C~ t !'^hB&~12e2t/trxn!, ~3!

wheret rxn5(kA→B1kB→A)21 is the characteristic reactio
time of the system, andkA→B andkB→A are the forward and
backward reaction rate constants, respectively. If the t
scales are well separated, i.e., the reaction timet rxn is much
larger than the molecular timetmol , there exists a time re
gime tmol,t!t rxn in which C(t) grows linearly:

C~ t !'kA→Bt. ~4!

Consequently, the reactive fluxk(t)[dC(t)/dt displays a
plateau whose value is the forward reaction rate cons
kA→B .1,7

One may, in principle, computeC(t) from a single, very
long molecular dynamics trajectory. Such an approach
clearly impractical for systems in which the reaction tim
t rxn is much longer thantmol . As shown in our recen
work,4–6 this problem of disparate time scales can be avoi
by using thetransition path samplingmethod. In the follow-
ing paragraphs we first motivate this approach and then
plain the method.
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B. C„t … from a ‘‘free energy’’ difference

To determine reaction rate constants in the transit
path ensemble we first writeC(t) in terms of the equilibrium
phase space distributionr(x0),

C~ t !5
*dx0 r~x0!hA~x0!hB~xt!

*dx0 r~x0!hA~x0!
. ~5!

Since in the above equation both integrands are manife
positive, we can interpretC(t) as a ratio of two partition
functions. Consequently, one can use standard free en
estimation methods to calculate the associated ‘‘free ener
difference,6,8

DF~ t !52 ln C~ t !. ~6!

Thus, the calculation ofC(t) is equivalent to the calculation
of the ‘‘reversible work’’ necessary to confine the endpo
of a dynamical path initiated inA at time 0 to regionB at
time t.

For a given timet, the free energy difference~6! may be
computed by umbrella sampling.9 Imagine that regionB is
defined by the value of an order parameterl(x):

xPB if lmin<l~x!<lmax. ~7!

The distributionP(l,t) of the order parameterl at timet for
trajectories starting inA at time t50 is given by

P~l,t ![
*dx0 r~x0!hA~x0!d@l2l~xt!#

*dx0 r~x0!hA~x0!
, ~8!

where d(x) is Dirac’s delta function. If the distribution
P(l,t) is known, we can calculateC(t) by integrating
P(l,t) over all order parameters belonging toB:

C~ t !5E
lmin

lmax
dl P~l,t !. ~9!

Since transitions fromA to B are rare,P(l,t), is very small
in regionB and it is impractical to calculateP(l,t) directly.
To determineP(l,t) by umbrella sampling, we first define
sequence ofN11 overlapping regionsB@ i # such thatB0

5B and the unionø i 50
N B@ i # of all regions comprises the

whole phase space. The regionsB@ i # are defined through

xPB@ i #⇔lmin@ i #<l~x!<lmax@ i #. ~10!

For 0, i ,N we require regionB@ i # to overlap with the
neighboring regionsB@ i 21# andB@ i 11#. Next, one calcu-
lates the distribution of the order parameterl in each of the
‘‘windows’’ B@ i # separately:

P~l,t; i ![
*dx0 r~x0!hA~x0!hB@ i #~xt!d@l2l~xt!#

*dx0 r~x0!hA~x0!hB@ i #~xt!
.

~11!

Comparison of Eqs.~8! and ~11! shows thatP(l,t; i ) and
P(l,t) are proportional in the windowB@ i #:

P~l,t !}P~l,t; i ! for lmin@ i #<l<lmax@ i #. ~12!

By matching the histogramsP(l,t; i ) in overlapping regions
and normalizing the resulting distribution one obtai
P(l,t). Then, according to Eq.~9!, C(t) is determined by
integration. We have reduced the calculation ofC(t) to the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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calculation of the histogramsP(l,t; i ) in the windowsB@ i #.
In the following paragraphs we explain how to do so e
ciently.

Equation~11! suggests that we writeP(l,t; i ) as an av-
erage over a distribution functionf AB@ i #(x0 ,t):

P~l,t; i !5
*dx0 f AB@ i #~x0 ,t !d@l2l~xt!#

*dx0 f AB@ i #~x0 ,t !

[^d@l2l~xt!#&AB@ i # , ~13!

where

f AB@ i #~x0 ,t ![r~x0!hA~x0!hB@ i #~xt!. ~14!

f AB@ i #(x0 ,t) is the distribution function of all initial condition
x0 in regionA leading to trajectories ending exactly inB@ i #
at time t. P(l,t; i ) can be calculated as a weighted avera
over all paths connectingA andB@ i # in time t. Accordingly,
we call the quantity

^A~xt8!&AB@ i # ,5
*dx0 f AB@ i #~x0 ,t !A@xt8~x0!#

*dx0 f AB@ i #~x0 ,t !
, ~15!

a path average, and the distribution functionf AB@ i #(x0 ,t), a
path ensemble. Note that t8 can be different fromt. As
shown in our previous work,4–6 path ensembles can b
sampled using a Monte Carlo procedure. Efficient algorith
to do so are described in Sec. III.

C. An advantageous factorization of C„t …

Using the method described above, it is possible to c
culate C(t) for a number of different times. Thenk(t) is
determined by numerical differentiation. Ifk(t) displays a
plateau, the rate constant is determined by the value ofk(t)
in the plateau region. Since this procedure involves m
‘‘free energy’’ calculations, it is very time consuming for a
but the simplest systems, making such an approach imp
tical. In our previous work5,6 we derived new expressions fo
the rate constant which circumvent this problem and req
only a single ‘‘free energy’’ calculation. In the present pap
we develop improved expressions leading to an increas
efficiency of almost an order of magnitude.

To calculateC(t) in the interval@0,T# we factorize it as

C~ t !5
^hAhB~ t !&

^hAhB~ t8!&
3

^hAhB~ t8!&

^hA&
5

^hAhB~ t !&

^hAhB~ t8!&
3C~ t8!,

~16!

where botht andt8 are in@0,T#. For notational convenienc
we have dropped the argument ofhA , which is always as-
sumed to bex0 . Also, we write hB(t) instead ofhB(xt).
Next, we define the function

HB~x0 ,T![ max
0<t<T

hB~xt!. ~17!

The indicator functionHB(x0 ,T) is unity if a trajectory start-
ing from x0 at timet50 visits regionB in the interval@0,T#
and vanishes otherwise.HB(x0 ,T) is unity even if the system
arrives inB at a timet,T but lies outside ofB at timeT.
SinceHB(x0 ,T) vanishes only ifhB(xt) vanishes for all 0
<t<T and HB(x0 ,T) is unity otherwise, we can inser
HB(x0 ,T) into the averages of Eq.~16! obtaining
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C~ t !5
^hAhB~ t !HB~T!&

^hAHB~T!&
3

^hAHB~ t !&

^hAhB~ t8!HB~T!&
3C~ t8!,

~18!

where we have also multiplied and divided the right ha
side of the equation bŷhAHB(T)&. For simplicity, we have
dropped the argumentx0 of HB(x0 ,T). Equation ~18! is
valid for all t,t8P@0,T#. Here, the quantity

^hB~ t !&AB[
^hAhB~ t !HB~T!&

^hAHB~T!&

5
*dx0 r~x0!hA~x0!HB~x0 ,T!hB~xt!

*dx0 r~x0!hA~x0!HB~x0 ,T!
~19!

can be interpreted as an average ofhB(xt) over the distribu-
tion

FAB~x0 ,T![r~x0!hA~x0!HB~x0 ,T!. ~20!

FAB(x0 ,T) is the ensemble of all initial conditionsx0 in A
leading to trajectories visitingB in the interval @0,T#. In
contrast tof AB(x0 ,T), FAB(x0 ,T) contains also those trajec
tories reachingB but leaving it again beforeT. Using this
notation Eq.~18! can be rewritten as

C~ t !5
^hB~ t !&AB

^hB~ t8!&AB
3C~ t8!. ~21!

The distributionFAB(x0 ,T) may also be sampled by th
Monte Carlo techniques described in Sec. III, so that an
ficient calculation of̂ hB(t)&AB is possible. Thus, the corre
lation functionC(t) in the time interval@0,T# can be deter-
mined from a single path sampling simulation@to calculate
^hB(t)&AB# and a single ‘‘free energy’’ calculation@to calcu-
late C(t8) at a certain timet8#. The ‘‘free energy’’ calcula-
tion consists of a series of transition path simulations p
formed in overlapping windows. We note thatt8 can be
chosen to be much smaller thanT for an efficient calculation
of C(t8).

D. Summary

We now summarize the procedure for the calculation
rate constants in the transition path ensemble as follo
First, one performs a path sampling simulation with the p
ensembleFAB(x0 ,T) from Eq.~20! to calculatê hB(t)&AB in
the interval@0,T#. If the time derivative of̂ hB(t)&AB does
not display a plateau, one has to repeat the path samp
simulation with a longer total timeT. If d^hB(t)&AB /dt
reaches a plateau, one chooses a timet8 in the interval@0,T#
and computesC(t8) by employing the umbrella samplin
technique described above. Since^hB(t8)&AB is already
known, one can now calculateC(t) from Eq. ~21! and ex-
tract the rate constantkA→B from the plateau of

k~ t !5
dC~ t !

dt
5

^ḣB~ t !&AB

^hB~ t8!&AB
3C~ t8!. ~22!

E. Reactive flux formalism

For adjacent regionsA and B, i.e., hA(x)1hB(x)51,
the transition path sampling formalism reduces to the re
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tive flux formalism.7 In the latter, the transition-state-theo
reaction rate constant,kTST, is corrected by a time depende
dynamical transmission coefficientk(t):

k~ t !5kTSTk~ t !. ~23!

In general, the transmission coefficientk is different from
one due to recrossings of the surface separatingA from B. It
is usually determined by computing dynamical trajector
initiated at the dividing surface. The transition state the
estimatekTST is a purely static quantity depending mainly o
the probability of finding the system at the dividing surfac
To demonstrate the equivalence of the reactive flux met
and the transition path sampling we approximate bothC(t8)
and^hB(t8)&AB linearly for smallt8. Using Eq.~23!, we then
obtain:

k~ t !5^ḣB~ t !&AB3
k~0!t8

^ḣB~0!&ABt8
5

^ḣB~ t !&AB

^ḣB~0!&AB

3kTST.

~24!

Thus, ^ḣB(t)&AB normalized by its value att50 is identi-
cally the transmission coefficient of the reactive flux form
ism.

III. SAMPLING THE TRANSITION PATH ENSEMBLE

As shown in Sec. II, the calculation of the time corre
tion functionC(t) involves the calculation of averages ov
the path ensemblesf AB(x0 ,T) and FAB(x0 ,T) defined in
Eqs.~14! and~20!, respectively. Whilef AB(x0 ,T) is the dis-
tribution function of all paths starting inA and ending ex-
actly in B at time T, FAB(x0 ,T) is the distribution of all
paths starting inA and visitingB in the interval@0,T#. Av-
erages over these path ensembles can be calculated by M
Carlo sampling. A new path is generated from an old o
which is then accepted or rejected according to a deta
balance criterion.6 The efficiency of such a procedure d
pends on the ability to generate new paths which are s
ciently different from the old paths but are still accepted w
a reasonable probability. We will discuss this point quant
tively in Sec. VI. In our previous work, we have devise
algorithms~called ‘‘shooting’’ and ‘‘shifting’’! which pro-
vide an efficient way to generate paths. We shortly desc
these techniques and explain how they can be used to c
late rate constants. In addition to the shooting and shift
moves we introduce path reversal moves.

A. Shooting

Consider a path starting atx0 in A and reaching regionB
after going over a high potential energy barrier. One co
try to create a new path by applying a small displacemen
the original old initial conditionsx0 to obtain a new path
starting fromx01dx0 . In general, complex systems are ch
otic and, more significantly, trajectories are very unstable
the vicinity of saddle points. Small changes in the init
conditionsx0 can therefore lead to large changes in the t
jectory. Thereforedx0 must be very small in order to gene
ate paths which connectA and B, ensuring a reasonabl
Downloaded 24 Oct 2003 to 169.230.22.31. Redistribution subject to A
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acceptance probability. As a consequence, the initial co
tionsx0 move slowly through the allowed region making th
sampling of the path ensemble inefficient.

This problem can be remedied by changing the state
the system at timet instead of time 0, i.e., by changingxt for
sometP@0,T#. Since the old path connectsA andB, there
must exist intermediate statesxt for which even a consider
able displacementdxt leads to trajectories still connectingA
andB with a high probability. Of course, trajectories are st
chaotic, but since regionsA andB attract trajectories starte
nearby, a high acceptance probability can be expected
paths generated by changing an intermediate phase s
point xt . More specifically, in a shooting move one fir
selects a pointxt$qt ,pt% at random along the current path
Then one changes the momentapt at time t at random by a
small amountdp, keeping the coordinatesqt fixed. Integra-
tion of the equations of motion backwards tot50 and for-
wards tot5T from the new statext

n5(qt ,pt1dp) yields a
new trajectory with initial conditionsx0

n . This procedure is
illustrated in part~a! of Fig. 1.

In order to sample the path ensembleFAB correctly, we
accept a new path according to the Metropolis criterion

Pacc~o→n!5minF1,
FAB~x0

n ,T!Pgen~n→o!

FAB~x0
o ,T!Pgen~o→n!G . ~25!

This choice satisfies detailed balance.6 Here, Pacc(o→n) is
the probability for accepting the new path from the old on
Pgen(o→n) andPgen(n→o) are the probabilities to genera
the new path from the old one and vice versa. The genera
probability Pgen(o→n) depends on how the pointxt is se-
lected along the path and how the momentum changedp is
chosen. For a symmetric generation probability, i.
Pgen(o→n)5Pgen(n→o), the acceptance probability reduc
to

FIG. 1. Schematic representation of the shooting move~a!, the shifting
move ~b!, and the path reversal move~c!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Pacc~o→n!5minF1,
r~x0

n!

r~x0
o!

hA~x0
n!HB~x0

n ;T!G . ~26!

The acceptance probability of a shooting move in the
semblef AB(x0 ,T) is obtained simply by replacingHB(x0

n ;T)
with hB(xt

n) in Eq. ~26!. Since the acceptance probability
paths generated by shooting depends on the momentum
placementdp, one can optimize the efficiency of the alg
rithm by controllingdp.

B. Shifting

A computationally simple way to generate a new pa
from an old one is to translate the initial conditions in tim
In other words, one obtains a new initial conditionx0

n by
evolving the old initial conditionx0

o by a timet:

x0
n5xt

o~x0
o!. ~27!

The shifting timet can be positive as well as negative. Th
path move is schematically depicted in part~b! of Fig. 1.
Provided one choosest at random from a distribution sym
metric aboutt50, the acceptance probability for a shiftin
move is also given by Eq.~26!. The combination of shifting
and shooting moves provides an efficient and correct a
rithm to sample the transition path ensemble.

Since shifting a path by a small timet requires the inte-
gration of the equations of motion for only a few time step
a shifting move is much less expensive than a shoo
move. It is therefore advantageous to attempt shifting mo
much more frequently than shooting moves, and to store
the new trajectory segments calculated in subsequent shi
moves. Consider, for example, a sequence ofN consecutive
shifting moves, each of which translates the initial conditio
by a small timeDt forward or backward. If the trajectory
information is stored for each shifting move, later shiftin
moves can be performed with little computational cost. Th
to doN shifting moves of timeDt, on average it is necessar
to integrate the equations of motion only for a timeANDt.
Of course, the trajectory information is lost if the shiftin
moves are interrupted by a shooting move. Long sequen
of shifting moves correspond to a random walk of the init
conditions in time. Even if the shifting moves do not chan
the path significantly in the sense that they lead to a n
transition state, they are important for statistical refinem
of the correlation functionC(t). Shifting moves help to ex-
tract as much information as possible from paths obtai
using the shooting algorithm.

C. Path reversals

Another path move, which can be useful under cert
circumstances, is path reversal. In this path move one obt
new initial conditionsx0

n by taking the final point of the path
xT and reversing the momenta:

x0
n5$q0

n ,p0
n%5$qT

o ,2pT
o%. ~28!

This path move is schematically depicted in part~c! of Fig.
1. Since in the case of the path ensemblef AB(x0 ,t) defined
in Eq. ~14!, xT

o is always in regionB, path reversals canno
be employed to samplef AB(x0 ,t). In the case of the en
Downloaded 24 Oct 2003 to 169.230.22.31. Redistribution subject to A
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sembleFAB(x0 ,T) of paths visitingB in the time interval
@0,T#, however, is it possible to findxT in region A. For
such paths a reversal is always accepted. Since no integr
of the equations of motion is required for a path reversal,
computational cost of such moves is negligible and path
versal moves should be performed whenever possible
fact, path reversals can facilitate ergodic sampling of the p
space if qualitatively different pathways connectingA andB
exist.

IV. MODEL

To illustrate the method described above, we calcul
the transition rate constant for a diatomic molecule with t
stable states immersed in a fluid of purely repulsive partic
A similar model has been studied by Straub, Borkovec, a
Berne.10 The model consists ofN two-dimensional particles
of mass m interacting via the purely repulsive Weeks
Chandler–Andersen potential

VWCA~r !5H 4eF S s

r D 12

2S s

r D 6G1e if r<r WCA[21/6s,

0 if r .r WCA ,
~29!

wherer is the interparticle distance ande ands are param-
eters specifying the strength and the interaction radius of
potential, respectively. In addition, two of theN particles
interact via the double well potential

Vdw~r !5hF12
~r 2r WCA2w!2

w2 G2

. ~30!

Here,r is the distance of the two particles belonging to t
diatomic molecule. The parameterh controls the height of
the barrier between the stable states located atr 5r WCA ~the
compact state! and r 5r WCA12w ~the extended state!, re-
spectively. The system evolves according to Hamilto
equations of motion in a simulation box with periodic boun
ary conditions.

If the barrier heighth is large, transitions between th
compact and the extended state are rare. In this case
diatomic oscillates in one of the stable states for a long ti
until, due to collisions with the solvent particles, sufficie
energy to cross the barrier is deposited into the reaction
ordinate. Then a quick transition occurs, and the energy
the diatomic is absorbed by the solvent, stabilizing the
atomic molecule again. In the following we calculate ra
constants for such isomerizations.

V. NUMERICAL RESULTS

Since the system evolves at constant total energyE with
a fixed center of mass, the appropriate distribution funct
of initial conditions x0 is the microcanonical distribution
with the additional constraint of a vanishing total momentu
P,

r~x0!5d~H~x0!2E!d~P!. ~31!

Accordingly, the momentum displacementdp used in the
shooting algorithms must be chosen to conserve both
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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total energyH and the total momentumP of the system. In
this case the acceptance probability for shooting moves s
plifies to

Pacc~o→n!5hA~x0
n!HB~x0

n ,T!. ~32!

In other words, any new path generated by a shooting m
is accepted if it connectsA and B. Since Hamilton’s equa-
tion of motion conserves both the total energyH and the
total momentumP, the acceptance probability for a shiftin
move is also given by Eq.~32!.

Our numerical results are presented in reduced units,
lengths are measured in units ofs, energies in units ofe,
masses in units ofm, times in units oft[(ms2/e)1/2, and
transition rate constants in units oft21. In all our simula-
tions we employ the velocity Verlet algorithm with a tim
step ofDt50.002t to integrate the equations of motion.

For shooting moves all the components of the mom
tum displacement vectordp are chosen from a Gaussian di
tribution with a certain width. Next, components ofdp cor-
responding to a nonvanishing total momentum are remov
Then,dp is added to the old momentumpt

o yielding the new
momentumpt

n5pt
o1dp which is rescaled to conserve th

total energyE. This procedure for changingpt is symmetric
in the sense that the generation probability for the movept

o

→pt
n equals the generation probability for the backwa

move pt
n→pt

o . Hence, such shooting moves obey the d
tailed balance condition and lead to a correct sampling of
transition path ensemble. The average magnitude ofdp was

FIG. 2. Path averagêhB(t)&AB ~top! and its time derivatived^hB(t)&AB /dt
~bottom! for the diatomic in the WCA fluid. The parameters of the simu
tion were N59 ~7 solvent particles and 2 particles belonging to the
atomic!, E59e, h56e, w50.25s, r50.6s23, RA51.30s, and RB

51.45s.
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echosen to optimize the sampling rate. A detailed discuss
of this point appears in Sec. VI. After each shooting mo
100 shifting moves of 10 time stepsDt each are performed
Despite the large number of shiftings, the computational c
of the whole shifting sequence is only a fraction of the c
for a shooting move. We perform path reversal moves wh
ever it is possible.

As described in Sec. II, to calculate a transition rate c
stant one first has to perform a path simulation to determ
the path averagêhB(t)&AB . Such a simulation yields the
correlation functionC(t) up to a multiplicative factor. To
determine this multiplicative factor, a ‘‘free energy’’ calcu
lation of C(t8) at an intermediate timet8 is necessary. In the
following paragraphs we present the results of a comp
calculation of the transition rate constant for the diatomic
solution.

The interatomic distancer provides the natural orde
parameter for the definition of the stable regionsA and B:
we define regionsA andB to contain all configurations with
r ,RA and r .RB , respectively. Obviously,RA and RB

should lie on different sides of the separating barrier a
allow the stable regions to accommodate most of the e
librium fluctuations around the potential energy minima.
all our simulations we useRA51.30s, RB51.45s, and a
barrier width ofw50.25s. Consequently, the top of the ba
rier is at r;1.37s, and the minima of the bistable potenti
are atr;1.12s and r;1.62s.

First, we determine the path average^hB(t)&AB in the
interval@0,T#. Figure 2 showŝhB(t)&AB and its time deriva-
tive ^dhB(t)&AB /dt as a function oft obtained from a path
simulation consisting of 3.63106 shots. The choice of pa
rameters (N59, E59e, h56e, r50.6s23! guarantees tha
the transition betweenA and B is rare and that a transition

FIG. 3. Logarithm of the probability distributionsP(r ,t8) of the diatomic
distancer the end of the path for different total path lengtht850.1t, 0.4t,
0.8t, and 2.0t for the same set of parameters used to obtain the res
shown in Fig. 2. The graphs were obtained by matching the distribution
r obtained from 5 independent simulations wherer was confined to win-
dows defined by 0.20s,r ,1.22s, 1.21s,r ,1.26s, 1.25s,r ,1.30s,
1.29s,r ,1.46s, and 1.45s,r ,`. The vertical dotted lines indicate th
limits RA51.30s andRB51.45s of the initial and final region, respectively
Integration over the final regionB yields the values of the correlation func
tion C(t8) for the different values oft8: C(0.1t)51.30631026, C(0.4t)
53.00331025, C(0.8t)56.54831025, C(2.0t)51.45631024.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rate constant is well defined. As can be seen in the figu
^hB(t)&AB reaches a linear regime after;1.5t. Accordingly,
after a few oscillations, which arise from trajectories rea
ing B and then leaving, its time derivative displays a plate

Next, we calculate the correlation functionC(t8) for an
intermediate timet8 for the same set of parameters. Figure
shows the distributionP(r ,t8) of the order parameterr for
different t8 ranging fromt850.1t to t852.0t. P(r ,t8) was
obtained by using the overlapping windows 0.20s,r
,1.22s, 1.21s,r ,1.26s, 1.25s,r ,1.30s, 1.29s,r
,1.46s, and 1.45s,r ,`. For each window we performe
a path sampling simulation consisting of 53105 shots in
which the endpoint of the path was confined to the respec
order parameter window.

As shown in Fig. 3, the probability to find the diatom
in regionA ~corresponding to small values ofr ! is high for
all timest8. Since the transition fromA to B is a rare event,
the probability to be in the extended stateB ~corresponding
to large values ofr ! is small. For longer timest8 this prob-
ability increases leading to a small peak ofP(r ,t8) in region
B. For times very large compared to the reaction timet rxn ,
P(r ,t8) approaches the equilibrium distribution of the ord
parameter, which has two peaks of approximately the sa
height in regionsA and B. By integratingP(r ,t8) over re-
gion B, i.e., for r .RB , we obtain the values for the corre
lation functionC(t8) shown in column two of Table I. Fo

FIG. 4. Time dependent reaction ratek(t) as a function oft obtained ac-
cording to Eq.~21! by combining thê hB(t)&AB shown in Fig. 2 with the
results shown in Fig. 3. Different graphs correspond to different value
t8. The reaction rate constants obtained from the plateau values o
curves are: k(0.1t)56.831025t21, k(0.4t)57.931025t21, k(0.8t)
58.331025t21, andk(2.0t)57.531025t21. These differences are due t
statistical errors in the ‘‘free energy’’ calculations.

TABLE I. Time correlation functionC(t8) and rate constantkA→B obtained
for different timest8 for the parameter setN59, E59e, h56e, and r
50.6s23.

t8 C(t8) kA→B

0.1t 1.3131026 6.831025t21

0.4t 3.0031025 7.931025t21

0.8t 6.5531025 8.331025t21

2.0t 1.4631024 7.531025t21
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the purpose of calculating a reaction rate constant it is n
essary to computeC(t8) for a single value oft8. Here, we
have computedC(t8) at a variety oft8 for comparison.

By inserting^hB(t)&AB and C(t8) into Eq. ~21! we ob-
tain C(t) and, by numerical differentiation, its time deriva
tive k(t). Figure~4! showsk(t) calculated for different val-
ues of t8. The corresponding transition rate constants
shown in column three of Table I. Allk(t) curves lead to
approximately the same plateau value and hence to the s
transition rate constant. Differences in the curves are du
statistical errors in the calculation ofC(t8) and ^hB(t)&AB .
The computational cost for the calculation ofC(t8) at t8
50.1t is smaller by a factor of 20 than att852.0. Thus, it is
feasible to reduce the computational cost of transition r
calculations considerably by performing the ‘‘free energ
estimation ofC(t8) at short timest8.

For low values of the barrier heighth the results of the
transition path sampling simulations can be compared w
the results of straightforward molecular dynamics simu
tions. Figure 5 showsk(t) as a function oft for the barrier
heights h51e ~top! and h53e ~bottom!. In the caseh
51e, transitions between the compact and the extended s
occur very frequently and there is no separation of ti
scales. Consequently,k(t) does not reach a plateau but rath
decays exponentially after the molecular timetmol . For h
53e the transitions are rare@but still frequent enough for an
MD ~Molecular Dynamics! simulation# so thatk(t) reaches a

f
he

FIG. 5. Comparison of transition path sampling results with the res
obtained by straightforward molecular dynamics~MD! simulation for h
51e ~top! and h53e ~bottom!. All other parameters are identical to th
parameters used to obtain the results shown in Fig. 2. The solid line i
catesk(t) computed by path sampling whereas the dotted line indicates
MD result. The MD trajectories consisted of 2003106 steps of lengthDt
50.002t.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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plateau and a transition rate constant is well defined. In b
cases the result of the transition path sampling simula
~solid line! and the MD simulation~dotted line! agree very
well.

It is interesting to compare the efficiency of straightfo
ward molecular dynamics simulation with the efficiency
the path sampling method. In a straightforward molecu
dynamics trajectory the average time needed to obtain a
action event is precisely the reaction timet rxn . For barrier
heights h51e, h53e, and h56e, the average waiting
times for a transition are approximately 1t, 40t, and 12 500t,
respectively. By contrast, the time needed to generate st
tically independent trajectories with the path sampling al
rithm does not depend on the barrier height. As can be
ferred from Figs. 2 and 5 trajectories of length 2t are long
enough to capture typical transitions. As shown in the n
paragraph, trajectories are statistically independent if t
are separated bync;5 Monte Carlo cycles. The generatio
of a statistically independent pathway therefore requires
integration of the equations of motion for;532t510t.
Including the cost of the ‘‘free energy’’ calculation we ob
tain an integration time of;20– 40t per independent trajec
tory. Hence, forh51e direct MD simulation is more effi-
cient than path sampling, but already forh53e, path
sampling exceeds in efficiency. Ath56e path sampling is
more efficient than straightforward simulation by a factor
;500. Clearly, with increasing separation between mole
lar time and reaction time scales the path sampling sch
becomes more and more efficient compared with straight
ward dynamics. While for typical molecular system
straightforward molecular dynamics simulation is typica
limited to time scales of nanoseconds, reactions with cha
teristic times many orders of magnitude larger can be trea
with the transition path sampling method.

VI. EFFICIENCY

In general, the efficiency of a Monte Carlo simulatio
depends on how quickly the available space is samp
Strong correlations between consecutive states lead to
sampling and hence to a poor efficiency.11 The efficiency of
a path sampling simulation can therefore be assessed by
culating the autocorrelation functionc(n) of the fluctuation
of an appropriate quantityA(x) as a function of the numbe
n of simulations cycles:

c~n![
^dA~0!dA~n!&AB

^dA2&AB
, ~33!

where dA(n)[A(n)2^A(n)&AB . Fast decay ofc(n) indi-
cates fast sampling and hence high efficiency. Figure
shows the correlation functionc(n) as a function of the num
ber of simulation cycles for three different quantitiesA(x):
the indicator functionhB(xT/2) at the midpoint of the path
~solid line!, the potential energyVtop of the system on top o
the barrier~dotted line!, and the transition timet tr ~broken
line!. The transition timet tr is the time needed to cross th
gap betweenA and B. All three curves decay quickly a
short times but decorrelate more slowly for longer tim
One can estimate the numbernc of correlated cycles by de
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th
n

r
e-

is-
-
-

t
y

e

f
-
e

r-

c-
d

d.
w

al-

6

.

fining a thresholdc* (n) below which paths are regarded
be uncorrelated. Alternatively,nc can be defined as the inte
gral of c(n), i.e., nc5(nc(n). In our example, the numbe
of correlated cycles obtained with a threshold of 0.5
smaller by a factor of 2–3 than thenc obtained from the
integration ofc(n).

Since an exhaustive correlation analysis is computati
ally expensive, it is useful to examine the dependence of
number of correlated cycles,nc , upon the acceptance prob
ability Pacc. The number of correlated cyclesnc ~for a
threshold of 0.5! is shown as a function of the acceptan
probability Pacc in Fig. 7 for hB(xT/2), Vtop, andt tr . Differ-
ent acceptance probabilities were obtained by employing
ferent magnitudes of the momentum displacementdp. A

FIG. 6. Logarithm of the correlation functionsc(n) as a function of the
number of cycles for the quantitieshB(xT/2) ~solid line!, Vtr ~dotted line!,
and t tr ~broken line! for the same parameters used to obtain the res
shown in Fig. 2. The path sampling simulation consisted of 106 shots and
100 shifts of length 0.02t after each shot. Paths generated by shooting w
accepted with a probability of 40%.

FIG. 7. Numbernc of correlated cycles as a function of the acceptan
probabilityPacc for hB(xT/2) ~circles!, Vtr ~diamonds!, andt tr ~squares!. Each
simulation consisted of 105 shots and 100 shifts of length 0.02t after each
shot. The numbernc of correlated cycles was obtained by determinin
where the corresponding correlation function falls below a threshold of
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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small dp leads to a high acceptance probability but to a l
efficiency because subsequent paths are highly correla
On the other hand, a large momentum displacement ca
subsequent paths to differ widely. However, such paths
only rarely accepted resulting again in low efficiency. B
tween these extremesnc displays a rather wide minimum
corresponding to the optimum efficiency. These results s
gest that, as a rule of thumb, the magnitude ofdp should be
chosen to obtain an acceptance probability of about 4
Taking into account that the computational cost of a rejec
move is lower than for an accepted move, even smaller
ceptance probabilities might be advantageous.

VII. CONCLUSION

The new formulas derived in this paper further redu
the cost of transition path sampling calculations of rate c
stants. Although we demonstrate the accuracy and pract
ity of the new formulas by studying a simple model, tran
tion path sampling is not restricted to low-dimension
systems. Indeed, transition path sampling is practical for
system where straightforward molecular dynamics is f
sible. Of course, the latter produces few if any transitio
between long lived stable states while the former focu
entirely on such transitions.

The general feasibility of transition path sampling is t
result of linear scaling. Namely, the computational cost
harvestingN statistically independent paths, eachL time
steps long, is the same as that for a straightforward trajec
that ism3N3L steps long. The proportionality constant,m,
is the number of simulation cycles required to harvest a
tistically independent trajectory. This number is genera
not large. For example, from the efficiency analysis p
sented in Sec. VI one findsm'5 for the system studied
herein. A similar analysis6 for structural transitions in a two
dimensional seven particle Lennard–Jones cluster yieldm
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'4. Furthermore, recent transition path sampling studies
hydrogen bond breaking12 and ionic dissociation13 in bulk
water indicate thatm,10 even in systems of high dimen
sionality. Thus, possible applications of the transition p
sampling method include chemical reactions occurring in
lution and the dynamics of complex biopolymers.
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