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We derive simple analytical expressions for the error and computational efficiency of replica
exchange molecular dynamics (REMD) simulations (and by analogy replica exchange Monte Carlo
simulations). The theory applies to the important case of systems whose dynamics at long times is
dominated by the slow interconversion between two metastable states. As a specific example, we
consider the folding and unfolding of a protein. The efficiency is defined as the rate with which the
error in an estimated equilibrium property, as measured by the variance of the estimator over
repeated simulations, decreases with simulation time. For two-state systems, this rate is in general
independent of the particular property. Our main result is that, with comparable computational
resources used, the relative efficiency of REMD and molecular dynamics (MD) simulations is given
by the ratio of the number of transitions between the two states averaged over all replicas at the
different temperatures, and the number of transitions at the single temperature of the MD run. This
formula applies if replica exchange is frequent, as compared to the transition times. High efficiency
of REMD is thus achieved by including replica temperatures in which the frequency of transitions
is higher than that at the temperature of interest. In tests of the expressions for the error in the
estimator, computational efficiency, and the rate of equilibration we find quantitative agreement with
the results both from kinetic models of REMD and from actual all-atom simulations of the folding

of a peptide in water. [doi:10.1063/1.3249608]

I. INTRODUCTION

Molecular dynamics (MD) allows us to explore the
structure, energetics, and dynamics of molecular systems
with atomistic resolution, including those of large biomo-
lecular systems. However, the maximum time step permitted
in the numerical integration of the equations of motion is of
the order of a femtosecond, limited by the fast time scales
associated with molecular vibrations and collisions. As a re-
sult of this short time step, simulations are currently limited
to the nanosecond to microsecond regime. Therefore, many
important (bio)molecular processes remain out of reach, such
as the folding of all but the smallest proteins.

Replica exchange molecular dynamics (REMD)"? has
become an increasingly popular technique for accelerating
MD simulations, including those of biological processes
such as protein folding. Replica exchange (also named par-
allel tempering) was introduced originallya’4 in combination
with Monte Carlo sampling, but the central idea of establish-
ing an equilibrium between canonical systems with different
Hamiltonians (here, rescaled by temperature) can be traced
back at least to the seminal papers by Bennett® and Swend-
sen and Wang.6 In standard REMD, MD simulations of N
identical molecular systems are run in parallel, but each rep-
lica is thermostatted at a different temperature T; (where the
thermostat has to maintain a canonical distribution7). At
regular intervals, attempts are made to exchange the struc-
tures of pairs of replicas, i< j, accepting the exchanges with
a probability that conserves the canonical distributions at the
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two temperatures, 7; and 7. In this way, one aims to transfer
the improved sampling efficiency at the higher temperature,
where activation barriers are more easily crossed, to the
lower temperature of interest, where the system would oth-
erwise be stuck in deep local potential energy minima.

Assessing the computational efficiency of REMD, or the
analogous replica exchange Monte Carlo (REMC), is impor-
tant because the primary purpose of these methods is to ac-
celerate standard molecular simulations. Remarkably,
though, the advantages of REMD are far from being clear.
Despite the widespread use, there has been no general theory
addressing the efficiency of the REMD protocol as a function
of the system properties and simulation parameters, includ-
ing the number and temperatures of the replicas and the fre-
quency of exchange attempts.

Several recent studies addressed the problem of the rep-
lica exchange efﬁciency.&19 An important result obtained by
Sindhikara er al.® is that exchange attempts are best chosen
as frequently as possible. Similar conclusions were obtained
by Abraham and Gready17 based on analyzing the autocorre-
lation function of the potential energy.

Here, we develop a general quantitative theory of the
statistical error and the computational efficiency of REMD.
The theory applies to systems whose relaxation behavior at
long times can be described by transitions between two states
with finite rates of interconversion. Moreover, our results are
derived in the fully equilibrated asymptotic limit, where the
variance in the estimators decreases as the reciprocal of the
simulation time. For systems with true first-order transitions
(instead of the quasi-first-order transitions of, say, protein
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folding), this would require progressively longer simulation
times as the system size is increased in approaching the ther-
modynamic limit.

We define the efficiency as the rate with which the error
in an estimated equilibrium property (as measured by the
variance of the estimator over repeated simulations of the
same length) decreases with simulation time. For both regu-
lar MD and REMD simulations, we then determine analyti-
cal expressions for this rate of decrease in the error that is, in
general, independent of the particular property of interest.
These error expressions are derived for systems in which the
dynamics at long times is dominated by a single slow and
exponential relaxation process, such as the folding and un-
folding of a protein.

Our theory is based on a kinetic model of two-state sys-
tems at multiple temperatures coupled by replica exchange.
In our model, REMD is described by a rate matrix for 2N
states, where N is the number of replicas. This kinetic frame-
work is similar to the one presented recently by Zheng et
al.,” but is simplified by not keeping track of the temperature
at which a certain replica started (which substantially reduces
the number of states from N!2" to 2%). Our kinetic frame-
work is also related to the master-equation description of
replica exchange introduced by Nadler and Hansmann."* "
However, these authors focused on the rate with which indi-
vidual replicas sample the different temperatures and derived
formulas for this rate under the assumption that at each rep-
lica the energy relaxes fast between replica exchange
attempts.]3 Here, we are concerned with the sampling of ob-
servables of interest (say, the fraction folded of a protein) at
a given temperature, not the sampling of temperature space
by individual replicas. These observables relax slowly at
each temperature, whereas replica exchange is assumed to be
fast. Indeed, in agreement with Refs. 13—15, we find that
efficient sampling at a low temperature, in general, requires
fast replica exchange with higher temperatures, which can be
assessed with the “replica round-trip time.”"> We note, how-
ever, that for our systems of interest we assume ergodicity in
the regular MD such that at long times properties of interest
will be properly sampled even without replica exchange (i.e.,
with infinite round-trip times).

Addressing the REMD efficiency requires the solution of
the eigenproblem of the 2V X 2V rate matrix, which in the
general case can be obtained only numerically. However, we
derive a theoretical formula for the efficiency and the slowest
relaxation rate of the overall dynamics of the replica ex-
change protocol in the important limit of fast replica ex-
change and for a large number of replicas that span the tem-
perature range densely. We show that this formula provides
an excellent approximation in practical applications.

The main result is a simple expression for the relative
efficiency of REMD and MD simulations. We consider
REMD simulations of duration f;,, with N replicas at tem-
peratures 7; (i=1,2,...,N). The temperatures and exchange
attempt frequency are chosen such that exchanges are ac-
cepted frequently in comparison to the rate of the slow two-
state transition. For the sake of concreteness, we use the
specific example of folding and unfolding of a protein. In
MD, a single simulation run is performed at the sole tem-
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perature of interest, T, (which will typically be the lowest
temperature, k= 1), of length Nty,,. MD and REMD runs thus
require the same computational effort if one ignores over-
heads from replica exchange and issues of serial versus par-
allel runs. In this case, the relative efficiency of sampling an
observable A at temperature 7, in a REMD simulation versus
sampling the same property in a MD simulation using the
same net resources is

__ varyp(4) _lN

. TZ + 7
k — . + -
NVarREMD(A) Ni:l 7i + Ti

(1)

where varyp(A)/N and varggyp(A) are the variances of the
estimated means of any typical observable A in MD and
REMD simulations of the same length #,,, respectively, and
77 =1/k] and 7, =1/k; are the lifetimes of the system in its
two long-lived (unfolded and folded) states at temperature
T}, ki =kp(T;) and k; =ky(T;) are the corresponding (folding
and unfolding) rates. If 7,>1, it is more efficient to run
REMD with N replicas to sample properties at temperature
T, than to run a single MD simulation N-times as long as 7.
In practice, the REMD efficiency is further enhanced by us-
ing results from the other temperatures, for instance through
histogram reweighting.

Equation (1) for the relative efficiency of REMD simu-
lations has a physical interpretation. 7 is the ratio of the
number of folding and unfolding transitions per unit time in
the REMD runs averaged over the N replicas and in the
N-times longer MD simulation at the temperature of interest.
Equivalently, 7, is the ratio of the reactive flux in REMD
and MD, with the flux averaged over all temperatures in
REMD. As a consequence, it is advantageous in REMD to
include replica temperatures in which the frequency of tran-
sitions is higher than that at the temperature of interest. In
contrast, including temperatures with lower fluxes (typically
at lower temperatures) reduces the efficiency.

By analogy, Eq. (1) for the sampling efficiency also ap-
plies to REMC simulations. Assuming that the same Monte
Carlo move sets are used in regular Monte Carlo and in
REMC (except for replica exchange), the relaxation times
can be measured in units of the number of attempted moves.
The times 7/ and 7, are then simply the lifetimes in the
two-state (folded and unfolded) measured in units of Monte
Carlo moves.

In Sec. III, we test the validity of Eq. (1) and related
expressions for the absolute error and the rates of relaxation
and show that their predictions are in quantitative agreement
with the results from both simulated REMD and actual all-
atom simulations of an alanine pentapeptide in water. We
conclude with a discussion of the practical relevance of our
theoretical analysis of the error and efficiency of REMD.

Il. THEORY
A. Rate model of REMD

We will analyze the statistical error and efficiency of
REMD simulations for the important case of systems whose
dynamics at long times is governed by a single slow expo-
nential relaxation process. In general, complex molecular
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FIG. 1. Temperature dependence of folding (kp, red) and unfolding (k,
blue) rates and of the relaxation rates (X, black) of the A-repressor fragment
Ne_gs (Ref. 20). The temperature dependent rate constants were calculated
based on Table II of Ref. 20 and the temperature dependence of the water
viscosity.

systems have multiple states and, correspondingly, a broad
spectrum of relaxation processes. Nevertheless, in many of
these systems, the relaxation to equilibrium is dominated by
a single-exponential process at sufficiently long times, result-
ing from the slow and practically memoryless interconver-
sion between the two longest-lived metastable states. A spe-
cific example is the folding of small proteins, where the
populations of folded and unfolded states relax on time
scales that range from microseconds to seconds.

In such systems, a reduced two-state description captures
the long-time dynamics. For the sake of concreteness, we
will refer to the slow processes as protein folding and un-
folding. In the absence of replica exchange, we assume that
the interconversion between the folded and unfolded states
F; and U,, respectively, at temperature 7; of replica i can be
described by first-order kinetics,

G
U=F; (i=1,2,...,N). (2)
ki
In replica i, the folded and unfolded populations will relax to
the respective equilibrium folded populations p;=k;/ (k]
+k;) and unfolded populations ¢;=1-p; with a rate given by
the sum of the folding and unfolding rates,

M=k kL 3)

where 7,=1/\; is the corresponding relaxation time. As an
illustration, Fig. 1 shows the temperature dependence of the
folding and unfolding rates and the corresponding relaxation
rate for the \-repressor fragment )\6_85.20

Replica exchange couples the dynamics of the systems at
the different temperatures. To extend the kinetic description
[Eq. (2)] to REMD, we describe the overall state of the sys-
tem by a vector s;, where s; is 1 if replica i is folded and O if
it is unfolded. Accordingly, the number of states of the entire
system is 2. In REMD simulations, short regular MD simu-
lations alternate with replica exchange attempts. Typically,
the lifetimes in the folded and unfolded states will be long
compared to the times between attempted exchanges. There-
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FIG. 2. Kinetic model of replica exchange. Connectivity of all states is
illustrated for (a) N=2 and (b) N=3 replicas. Black arrows represent folding
and unfolding processes, while red arrows show replica exchange processes.
The corresponding reduced linear kinetic schemes, obtained in the limit of
fast replica exchange, are shown below the full kinetic diagrams.

fore, instead of alternatingly propagating the kinetic equa-
tions [Eq. (2)] and applying a Markov transition matrix to
perform the replica exchange, we describe replica exchange
simply as an additional kinetic process occurring in parallel
with the folding/unfolding processes. The dynamics can then
be described by 2" coupled rate equations instead of the N
uncoupled ones of Eq. (2) without replica exchange. In typi-
cal implementations, exchanges occur between neighboring
replicas, ordered according to temperature, as illustrated in
Fig. 2. To describe the kinetics of this coupling, we consider
exchanges F;U;— U;F;, where the subscripts i and j=i*1
are for neighboring replicas. Exchanges between identical
folding states, F;F;— F;F;=F;F; or U;U;— U,;U;=U,U;, do
not need to be considered since they do not change the over-
all state of the system.

Here, we implicitly assume that the two states dominat-
ing the relaxation at low and high temperatures are the same.
This may not be the case always, with folding and unfolding
dominating the dynamics of a protein at low temperature, for
instance, and compact to extended transitions at high tem-
perature. In such cases, the approach can be extended by
expanding the number of states for each replica to, say, M.
However, the overall number of possible states in a simula-
tion with N replicas will then increase from 2V to M". We
note further that one could in addition keep track of the tem-
perature from which each replica started at the beginning of
the simulations. For a two-state model, this leads to the state
space with N!2" distinct states considered by Zheng et al’

The change in the population in states with, say, replica
i folded and replica j unfolded by replica exchange i« j, is
described by the following kinetic equation:

ko (UiF)
FU;, = UF;, (4)
ko (FU))
where we use the notation k. (U,F;)=k(F;U;— U,F;) for the
rate of exchange. In such an exchange, the state of the N-2
other replicas remains unchanged. The exchange rates in Eq.
(4) are defined such that the equilibrium populations p; and
q; of the uncoupled system are preserved. In REMD, this
conservation of the equilibrium distribution is guaranteed by
choosing an acceptance criterion that satisfies detailed bal-
ance. Accordingly, the exchange rates must satisfy
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kxc(UiF[) _ q_zpi (5)

kxc(Fin) - piqj '

We can determine the exchange rates from the simulations
by considering the number of exchange events per unit time,
i.e., by equating the flux associated with exchanges in the
kinetic model and the simulations,
, PidPacc(UiF)
]RE(Fin - UiFj) =Pi‘1jkxc(UiFj) )
Oty
where o, is the time interval between exchange attempts of
replicas at temperatures 7; and 7', and p,..(U;F;) is the prob-
ability of accepting a replica exchange between states F; and

U,

B. Error and efficiency of MD and REMD simulations

The calculation of equilibrium properties is one of the
main objectives in both MD and REMD simulations. The
computational efficiency of the simulations can then be de-
fined as the rate with which the statistical error in the esti-
mation of the property of interest decreases with the simula-
tion time. In practice, this rate should be given in units of
wall-clock time for given computational resources; but for
simplicity, we here assume that there are no computational
overheads for, say, replica exchange, such that we can in-
stead give the rate in units of the simulation times ;. For
times 7, long compared to the overall longest simulation
time of the system, we expect from the central limit theorem

that the error in the estimate A of the exact mean (A) of a

property A decreases as var(A)=c/tg,, where var(A) indi-
cates the variance about the true mean in multiple simula-
tions of the same duration 7, and ¢ is a constant that de-
pends on the simulation method (MD versus REMD) and
thermodynamic state (temperature, pressure, etc.). Note that
we do not consider the systematic error resulting from the
choice of a particular initial condition (say, all replicas folded

or all unfolded). For a given initial condition, the estimate A
will approach the true mean (A) asymptotically as 1/z,
faster than the decrease in the statistical error (which decays
as 7> asymptotically).

To compare the efficiencies of MD and REMD simula-
tions, we will calculate the constants ¢ for each of the meth-
ods for systems with a single dominant slow relaxation pro-
cess. While we consider explicitly the case of two-state
protein folding, the results apply generally to systems with
two metastable states that interconvert slowly compared to
the relaxation processes within each state. In the two-state
case the relative computational efficiencies will in general
not depend on the particular property A. The reason is that in
such systems, A will quickly relax to the average values (A)y
and (A); of the system in folded and unfolded states F' and
U, respectively, which will, in general, be different. As a
consequence, the variance in the estimated mean can be ex-
pressed in terms of the variance of the relative fraction s of

the folded (or, equivalently, the unfolded) state: var(A)
=((A)p—(A)y)?var(s), where s=1 if the system is folded, and
s=0 if it is unfolded such that {s)=p. The rate of decrease in
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the error of 5 (the fraction of folded states) is thus sufficient
to compare different simulation methods, such as MD and
REMD.

We define the relative efficiency of REMD simulations
as compared to MD based on the asymptotic error of mea-
suring the mean equilibrium populations. If we are interested
only in the equilibrium properties at a single temperature
(Ty), then we define the efficiency gain from REMD as the
ratio of the variance oy (Ntgim) = 0np(tsim)/ N=varyp(3) in
the folded populations for N regular MD simulations of du-
ration 7, to the variance opyp(fsim) for one REMD simu-
lation of duration 7, with N replicas,

M= a-ﬁle(tsim) (7)
k= .

Nogemp(Ziim)
With this definition, REMD converges more rapidly than
MD if 7.>1.

For both MD and REMD simulations, we can express
the variance in the estimated fraction folded as the time in-
tegral over the autocorrelation function of the folding state
s(t) at the temperature of interest. The estimate of the frac-
tion folded p={(s) is

1 Lsim

§=—

1

s(t)dt. (8)

simvY 0

The corresponding variance in the estimator s can be ex-
. . . 21
pressed in terms of the autocorrelation function of s,

var(s) = tzi f " (1~ D(As(HAS(0))dr. )
sim¥ 0
where As(t)=s(r)—p.

1. MD simulations

The analysis of the statistical error in regular MD simu-
lations is analogous to that in single-molecule
experiments.zz’23 For two-state kinetics, the autocorrelation
function is single exponential, (As(r)As(0))=pq exp(—\t)
with a relaxation rate A=kp+ky, a folded fraction p
=kp/(kp+ky), and an unfolded fraction g=1-p. For this ex-
ponential relaxation, the integral in Eq. (9) can be evaluated
analytically. If the duration #,, of the MD simulations is long
compared to the folding and unfolding times 1/kp and 1/ky,
respectively, then the variance in the estimator will decrease
asymptotically as 1/zy,

2rq

oo (ta) =
MD( s1m) tsim \

; (10)
irrespective of the initial state of the system.

2. REMD simulations

To estimate the error in replica exchange simulations, we
again use Eq. (9). Here the autocorrelation function
(As(1)As(0)) is for the state (folded and unfolded) of the
replica at the temperature of interest, which is typically the
lowest temperature. In contrast to regular MD, (As(r)As(0))
will, in general, not be single exponential. For REMD with N
replicas, there are 2N distinct states overall, and the correla-
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tion function will be multiexponential, requiring for its cal-
culation either the diagonalization of the 2V X 2V rate matrix
or numerical integration. However, in the limit of fast replica
exchange, one can obtain an accurate approximation to
(As(1)As(0)) as explained in the following.

C. Limit of fast replica exchange

The dynamics of the folded and unfolded populations in
a replica exchange simulation are described by the kinetic
equations (2) and (4) for the folding and exchange processes,
respectively. For N>2 replicas, only numerical solutions are
available in general. However, we will derive approximate
but accurate analytical solutions in the limiting case when
the replica exchange rates are much faster than the relaxation
rates \; at the individual temperatures 7;.

In the limit of fast replica exchange, we can coarse grain
the full problem by coupling states together that rapidly
equilibrate with each other. For these collective states we can
then construct a new rate matrix of greatly reduced dimen-
sion by using the local-equilibrium approximation.24 This
process of defining macrostates composed of the original
states (microstates), coupled by fast replica exchange, is il-
lustrated in Fig. 2. For N=2, we can couple U,F, and F,U,
states together in a collective “U,F,+FU,” state and de-
crease the total number of states from 4 to 3,

U]UZ\:\“UIF2+F1U2”\:‘F1F2. (11)

Replica exchange couples two microstates of the overall sys-
tem only if they have equal number of folded (or unfolded)
replicas. This means that the 2V-dimensional problem is re-
duced to N+1 dimensions, with macrostates n=0,1,... ,N
obtained by grouping together the microstates with exactly n
folded replicas.

In the limit of fast exchange, the populations of states n
are kinetically connected in a linear chain,

=N. (12)

=l="=n=n+l=--

To estimate the relaxation dynamics of n, we consider the
limit of a large number of replicas N. In this limit, n will
fluctuate about its mean

N
(n)y=2p; (13)
i=1
with variance
N
var(n) = (An?) = 2, gip;» (14)

i=1

where An=n—(n). These relations follow immediately from
the independence of the N replicas at equilibrium. In the
limit of large N, the problem can be further simplified by
considering the continuum limit. Equation (12) can then be
approximated as one-dimensional diffusion of a continuous
variable n in a harmonic potential centered at (n) with a
spring constant 1/var(n). The slowest relaxation rate « for
such a diffusive harmonic oscillator description of the dy-
namics of n(¢) is then given by
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k=D/{An?), (15)

where D is the diffusion coefficient in the continuous prob-
lem near n={(n).

To estimate the effective diffusion coefficient D along n,
we match the fluxes n—n+1 of the kinetic model [Eq. (12)]
and the harmonic oscillator diffusion model for n=n
~(n), where n,,, is the most probable n. In the kinetic
model, the forward and backward rates of our model system
are

N
Kn%n+l = Kn+l,n = 2 k:—p(UJIl),

i=1

(16)

N
Kn—»n—l = Kn—l,n = 2 kz_p(Fz|n)’
i=1

where we used the local-equilibrium approximation24 appro-
priate for fast replica exchange. p(F;|n) and p(U,|n) are the
conditional probabilities of replica i at 7; being folded and
unfolded, respectively, with the total number of folded rep-
licas being exactly n. In the limit of large N, the properties of
an individual replica will be the same in the restrained sys-
tem with n fixed to n,,, as in the unrestrained system with n
fluctuating about n,,,,, analogous to the near equivalence of
the microcanonical and canonical distributions for small
components of a large system. The conditional probabilities
can thus be replaced by the average probabilities
P(Uj|nax) = q; and p(F;|ny.) =p;. In the discrete system
[Eq. (12)], the rate coefficients in Eq. (16) thus become
K, =2 kiq; and K,_,,_ ;==Y k7p,. For the continuum
diffusive harmonic oscillator, spatially discretized at steps of
An=1,% the diffusion coefficient is directly related to these
rates through D=K, _in =K iin_ where we used the
fact that the potential surface is flat near the minimum. We
thus arrive at the approximation

1.,n

N N
D=~ kiq;= 2 kp;. (17)
i=1 i=1

By combining this relation with Eq. (15), we obtain an ap-
proximation for the overall slowest relaxation rate in an
REMD simulation of a two-state system,

1 _ Ef;ki_l’i _ Eﬁl)\iqui
Eﬁl‘]ipi Ei'il%‘pi

(18)

K=
Trelax

The relaxation rate is expressed here as the weighted sum of
the relaxation rates of the independent replicas at the differ-
ent temperatures, where the weighting factor is the normal-
ized product of folding and unfolding probabilities. The
overall replica exchange relaxation rate falls between the
fastest and the slowest relaxation rates among all the tem-
peratures, Ain= K=\, As shown in the Appendix, Eq.
(18) for k can also be obtained from the exact short-time
expansion of the correlation function (An(r)An(0))
=(An®)exp(—«t) in the full system with 2V states.
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D. Error of REMD in the limit of fast exchange

As discussed above, if the rate of replica exchange is fast
compared to actual folding and unfolding, we can coarse
grain the full 2" representation and reduce it to N+1 states of
having exactly n=0,1,...,N replicas folded. At short times,
the REMD dynamics is therefore governed by fast exchange
between different replicas that quickly establishes an equilib-
rium for the given fixed number n of folded replicas. Over
longer times, the dynamics will be dominated by the slow
fluctuations of n(r). We thus separate our state function s(z)
into two components,

s(t) = p(Fy|n(1)) + 85(2), (19)

where p(F,|n(1)) is the equilibrium average of s(f) over tra-
jectories with a fixed number of folded replicas, defined as
the conditional probability of being folded in the replica at
the target temperature, 7}, given that n out of N replicas are
folded; and &s(z) describes the remaining fast fluctuations in
the state of the replica at T}, associated with replica exchange.
With this separation, the correlation function at times long
compared to those associated with replica exchange becomes

(s()5(0)) = (p(Filn(0)p(Fi|n(0))). (20)

This separation into a fast and a slow process is equivalent to
that used in the model-free formalism of Lipari and Szabo
for the orientational relaxation.”® To evaluate the correlation
function in Eq. (20), we again assume that we are in the limit
of large N and expand p(F,|n(z)) about the mean number
(ny=ny,, of folded replicas, p(F;|n)=p(F,|{(n))+B(n
—(n)). To estimate the linear expansion coefficient B, we use
that in the limit of large N and n=(n) individual replicas
fluctuate independently, such that p(F,|{(n)) = p; is the prob-
ability of being folded at T,. The difference p(F|{n)+1)
—p(F,|(n)) can then be estimated from the probability that
folding at T}, accounted for the increase from (n) to {(n)+1,
among all possible folding events. This relative probability is
given by the product of the replica at T} being unfolded at
(n) and folded at (n)+1, normalized by the corresponding
product of probabilities for all other replicas. We thus obtain

Dl (11— (ny). 21)

i=1Pidi

p(Filn) = py +

With this approximation, the correlation function in Eq. (20)
at long times becomes

2
(As(DAs(0)) = (%) (An(r)An(0)). (22)
ZisiPidi
We have already determined an approximation for the corre-
lation function of n(z) above in the analysis of the kinetics
with fast replica exchange, (An(t)An(0))=~(An*)exp(-«t),
where (An?)==Y p.g; and « is given in Eq. (18). For the
normalized folding state autocorrelation function, we obtain
_ (As(0As(0)) _ pgre™

o) = <A52> ELP[%‘ =

at long times and in the limit of fast replica exchange, with «
given in Eq. (18).
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After substituting Eq. (22) into Eq. (9), using Eq. (18)
for k, integrating over time, and taking the limit of long
simulation time t,,, we obtain

2 2
Pid
Orevp(fsim) = var(s) = = K9k o

sim Eﬁll’i%}\i
for the variance in the estimated fraction folded at tempera-
ture 7.

By combining Egs. (10) and (24), we can now compare
the relative computational efficiencies of MD versus REMD
simulation,

_ O-ﬁ/ID(tsim) _ Eﬁ]Piqﬂ\,’
N ‘TZREMD(tsim) Npqih

Tk (25)
By substituting p;=k; / (k] +k;) and ¢;=1-p, this relation for
the relative efficiency can be rewritten as Eq. (1). The effi-
ciency in REMD can thus be interpreted as the ratio of the
sum of unfolded and folded lifetimes at the target tempera-
ture and the average of the reciprocal lifetime sums calcu-
lated over all temperatures. Equivalently, the relative effi-
ciency of REMD is given by the ratio of the number of
folding and unfolding transitions per unit time averaged over
the N replicas and in the N-times longer MD simulation at
the temperature of interest. 7, also corresponds to the ratio of
the reactive flux in REMD and MD to the flux averaged over
all temperatures in REMD.

The relative efficiency 7, of REMD approaches a con-
stant as the number N of replicas increases. If the replicas are
spaced at equal intervals in temperature, the limiting value is
given by the integral,

1 (™ (T) + 7(T))
= dT.
Ty-T, le (1) + 7 (1) g

Mk (26)

This independence of N may seem surprising at first glance.
However, it can be understood by realizing that all folding or
unfolding events at any replica temperature speed up the
equilibration also at the temperature 7}, of interest because of
the fast replica exchange.

It is instructive to compare our results for the relative
efficiencies of REMD and MD to the efficiency analysis of
Zheng et al.’ Here, we have defined the efficiency as the rate
with which the variance of the estimator of an essentially
arbitrary observable decreases with simulation time. Specifi-
cally, we have calculated the relative efficiencies of MD and
REMD simulations as the ratio of the variances in the frac-
tion folded for given total simulation times, 7
=0%n(Ntgim)/ Orpyp(fsim)- This ratio tells us how much
longer one has to simulate in MD to achieve the same statis-
tical error in the estimator as in a REMD simulation, correct-
ing for the fact that only one of the N REMD runs is actually
used for the analysis. In contrast, Zheng et al.’ introduced as
a measure of the efficiency of REMD simulations the num-
ber Nyg(tgm| i) of “round-trip” transitions of particular rep-
licas between the U and F states at the temperature of inter-
est T} during the observation time 7;,,. For two replicas in the
limit of fast exchange, they empirically found an approxima-
tion in terms of harmonic means, Nyg(fgy|T)) = timl (1/k]
+1/k))7'+(1/k3+1/k3)7"]. Remarkably, despite the seem-
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ingly unrelated definitions, their measure of efficiency com-
bined with their empirical approximation produces a formula
essentially identical to ours for the specific case of a two-
replica system, with the only difference being the normaliz-
ing factor 1/(7]+7;)/2 for the MD reference simulation. Our
analysis thus justifies both the choice of efficiency in Ref. 9,
and the empirical approximation in terms of harmonic
means. Specifically, we can now interpret the formula in Ref.
9 as the expected number of folding and unfolding events
observed at all temperatures during the simulation time g,
which in the fast-exchange limit all contribute to the relax-
ation at the temperature of interest.

E. Optimizing the number and temperature range
of replicas

For optimal efficiency the lowest replica temperature
should be chosen as T|=T} if at temperatures below T} the
fraction in the integral of Eq. (26) is <1. To reach the fast
replica exchange limit, as many replicas should be used as
one can afford. The best choice of the upper temperature, Ty,
however can depend on the temperature dependence of the
rates. In case of Arrhenius temperature dependence, with
both folding and unfolding rates increasing with 7, it is best
to choose Ty as high as possible given that replica exchange
is still fast (to ensure fast and uniform replica exchange cur-
rents, one can employ different criterian’n’lsm). However,
for typical proteins, the relaxation rate exhibits “chevron-
like” behavior (see Fig. 1). If one of the rates actually de-
creases with increasing temperature, and 1/[7(T)+7(7)]
has a maximum, the best choice is to use an upper tempera-
ture Ty at a somewhat higher value than this maximum.
More precisely, one should use a Ty for which 7, in Eq. (26)
itself becomes maximum. By differentiating Eq. (26) for
equally spaced temperatures with respect to Ty, one obtains
an implicit equation for the optimal T,

w-T f T dT
™(Ty) + 7 (Ty) 7, (1) +7(T)

(27)

With the help of Eq. (26), we find that the maximum effi-
ciency is

+ -

Mmax = M (28)
™(Ty) + 7 (Ty)

for systems with chevronlike rates and using the optimal

T,=T, and Ty of Eq. (27).

Figure 3 shows the relative efficiency of REMD as a
function of temperature 7 for fixed 7,=300 K for the fold-
ing of the N\g g5 proteinzo and the Alas peptide in water.”*%’
Assuming that the rates fitted near ambient conditions hold
to high temperatures (see Fig. 1 and the following section for
rates), we find that for the N4 g5 protein, the optimal upper
temperature is Ty=~366 K, whereas for Alas it is best to go
to temperatures as high as possible, as long as replica ex-
change is still fast.

J. Chem. Phys. 131, 165102 (2009)
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FIG. 3. Efficiency gain 7 of REMD over MD as a function of the highest
replica temperature 7. The reference temperature is 7;,=7,=300 K. Plotted
is the efficiency in the limit of a large number N of replicas, which is
independent of N, as obtained from Eq. (26). Note that for temperatures
above 350 K, we used extrapolated rates.

lll. RESULTS AND DISCUSSION

A. Convergence of the exact and approximate
relaxation times

To test the range of validity of the theory, we first com-
pare the analytical formulas for the error and efficiency of
REMD to the exact values obtained by matrix diagonaliza-
tion. Two systems are considered: (1) the folding of a A
repressor flragrnent,20 in which the unfolding rate exhibits an
Arrhenius-like temperature dependence, but the folding rate
is highly non-Arrhenius (Fig. 1); and (2) the folding of a
small helical peptide Alas in water with Arrhenius-like fold-
ing and unfolding rates obtained from REMD simulations of
Ala5.28 These rates were adjusted slightly for more accurate
equilibrium populations from longer simulations according
to the Langevin protocol in Ref. 7: ky(T)=Aye *UT and
kp(T)=Ape EFT  with  Ay=1047.7 ns™!,  Ap=2.9745
X 10% ns7!, E;,=2656.3 K, and Ez=5589.5 K.

In both cases, we used a total of N=12 replicas, resulting
in 2'2=4096 states, spread uniformly over a range from 283
to 353 K for the A repressor and from 295 to 350 K for Alas.
For each of the two systems, we set up a 4096 X 4096 rate
matrix corresponding to Egs. (2) and (4) and varied the rates
k. of replica exchange (while maintaining detailed balance)
to explore the convergence to the limit of fast replica ex-
change. We calculate both the rate « of the slowest overall
relaxation, defined as the nonzero eigenvalue of the rate ma-
trix with the smallest magnitude, and the relative efficiency
7, at the lowest temperature.

Figure 4(a) shows the relaxation rate k for the \ repres-
sor as a function of the replica exchange flux jgg. The replica
exchange rates were calculated from the flux according to
Eq. (6), with jgg varied from 0 to 5 us~!. As replica ex-
change is turned on (jrg>>0), the slowest relaxation rate x
[blue line in Fig. 4(a)] rapidly rises from the limit A; without
replica exchange. We conclude from these results that even
infrequently accepted replica exchange can speed up the
overall relaxation by a factor of 20 or more. The limit of
infinitely fast replica exchange [black horizontal line in Fig.
4(a)] is approached already at jrg<<1 us, less than \y. We
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FIG. 4. Convergence of the relaxation rate and the efficiency of REMD for
the \-repressor fragment A4 g5 (Ref. 20). (a) The exchange rate dependence
of the rate limiting eigenvalue (k) is shown for the full kinetic problem (blue
line), for the exact fast replica exchange limit (black line), and for the
approximate Eq. (18) (red line). The eigenvalues corresponding to MD (no
replica exchange coupling), A (7;=283.15 K) and \,, (7},=353.15 K) are
marked with arrows. (b) REMD efficiency [Eq. (7)] vs the target tempera-
ture. The fast-exchange limit is shown as black line with circles, the results
using Eq. (25) are shown as red dashed line, the MD simulations correspond
to efficiency of 1, shown in blue. The arrow indicates the variation in the
efficiency for increasing replica exchange rate. The inset shows the REMD
variance for different target temperatures.

also find that the analytical formula [Eq. (18)] for the fast-
exchange limit (red horizontal line) is a good approximation
of the exact rate «. Finally, we note that for fast exchange «
is about two orders of magnitude faster than the relaxation
rate at the lowest temperature (\; at 283 K) and two orders
slower than that at the highest temperature (A at 353 K).

For Alas, the results are similar to those for the \ repres-
sor, as shown in Fig. 5(a). The main differences are that the
rise in « with increased replica exchange is not as dramatic.
Also, notably, the analytical formula [Eq. (18)] for « in the
fast-exchange limit (red horizontal line) is a near-perfect ap-
proximation of the exact relaxation rate.

Figure 4(b) plots the relative efficiency gain 7, of
REMD over MD for the N\ repressor at each of the 12 tem-
peratures 7. In the limit of infinitely fast replica exchange
(black line with circles), the analytical formula [Eq. (1)] is an
excellent approximation to the actual efficiency gain, ex-
ceeding the exact value only slightly. We also note that an
efficiency gain of more than 10* at the lowest temperature is
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FIG. 5. Convergence of the relaxation rate and the efficiency of REMD for
the Arrhenius folding/unfolding rates of Alas. (a) The exchange rate depen-
dence of the rate limiting eigenvalue (k) is shown for the full kinetic prob-
lem (blue line), for the exact fast replica exchange limit (black line), and for
the approximate Eq. (18) (red line). The eigenvalues corresponding to MD
(no replica exchange coupling), \; (7,=295 K) and X\, (7},=350 K) are
marked with arrows. (b) REMD efficiency [Eq. (7)] vs the target tempera-
ture. The fast-exchange limit is shown as black line with circles, the results
using Eq. (25) are shown as red dashed line, the MD simulations correspond
to an efficiency of 1, shown in blue. The arrow indicates the variation in the
efficiency for increasing replica exchange rate. The inset shows the variance
0*(tgy,) of the fraction folded as a function of the target temperature, scaled
for reference and readability to a simulation length of #;,=2 ns.

dramatic. However, our model also shows that this fast-
exchange limit is approached only very slowly as the ex-
change rate is increased. The thin lines show the efficiency
for different values of the replica exchange rate [here we
included very high replica exchange fluxes jgrr=10 ns~!
(green) and jre=100 ns~' (magenta)]. An efficiency of 7
=1 is indicated as a horizontal blue line, whereas the bottom
black line corresponds to no exchange with an efficiency of
m=1/N. We find that for finite exchange rates, the efficiency
at the lower temperatures remains well below the fast-
exchange limit. The inset in Fig. 4(b) shows the variance in
the folded fraction (scaled to a simulation time 7g,=2 us)
on a log scale as a function of the target temperature. Con-
sistent with the efficiency gains, at low temperatures and
with fast exchange the variance is dramatically lower with
REMD than with MD simulations even if the latter are N=12
times longer.

We again find qualitatively similar behavior for Alas, as
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shown in Fig. 5(b). Here, the analytical formula [Eq. (1)] for
7, is nearly exact. However, the overall efficiency gain from
replica exchange is much smaller, about a factor of 4 at the
lowest temperature. Nevertheless, this means that the error in
the folded fraction decreases about four times faster in the
REMD simulations compared to MD simulations of N=12
times the length.

We conclude from this analysis that the analytical ex-
pressions for both the overall relaxation rate and the relative
efficiency of REMD in the limit of fast replica exchange are
accurate and useful in realistic systems. The data in Fig. 4
predict large possible gains in efficiency from replica ex-
change. Practically, there are a number of limitations. For
one, our formulas are derived for the asymptotic limit of long
simulations. Most current REMD simulations of, say, protein
folding are far from that limit: at times of 10-100 ns/replica,
a REMD simulation system with replicas starting unfolded
cannot be expected to have reached equilibrium because
typical folding times are at least microseconds over the entire
range of temperatures. In addition, we assumed that replica
exchange was fast. In practice, this may not be the case, in
particular, for large systems requiring a narrow temperature
spacing. Our kinetic model shows that to reach the maximum
gains at low temperature would require unrealistically high
rates of replica exchange [thin lines in Fig. 4(b)]. For more
realistic rates of exchange, we find efficiency gains limited to
factors of 10-100.

B. Simulations of penta-alanine

As a test against actual molecular simulations, we have
analyzed the relaxation in long MD and REMD simulations
of Alas in explicit water. The REMD simulations were run
according to the Langevin protocol in Ref. 7. The MD simu-
lation trajectories are those of Ref. 29. The folding state of
the peptide was extracted from the simulation trajectories
according to the transition-path based assignment described
in Refs. 28 and 29.

Figure 6 shows the normalized autocorrelation functions
of the folding state c(t)=(As()As(0))/{As?) at the 12 differ-
ent temperatures of the REMD simulations, spanning the
range from 295 to 350 K in intervals of 5 K. As predicted by
the theory, after an initial sharp drop in ¢(r) because of rep-
lica exchange without actual folding or unfolding (see fol-
lowing paragraph), the c(¢) at the different temperatures de-
cay with the same relaxation rate x. The amplitude of the c(z)
at different temperatures is different, consistent with the pre-
dictions of the theory, but because of the narrow range in
temperature with a relatively small change in the equilibrium
fraction folded, the amplitudes of the slow relaxation phase
vary by less than a factor of 1.5. The identical relaxation rate
k at the different temperatures is in sharp contrast to the
large differences in the autocorrelation functions ¢(7) from
regular MD simulations, as shown for 300 and 350 K. c(z)
decays rapidly at 350 K and slowly at 300 K, both without an
initial sharp drop.

Figure 6 also shows the normalized autocorrelation of
the total number n(z) of folded states among all replicas. As
predicted by the theory for fast replica exchange, this auto-
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FIG. 6. Autocorrelation function of the folding state s(z) at different tem-
peratures obtained from REMD simulations of Alas. Also shown are the
corresponding ¢(#) for regular MD simulations at 7=300 K (blue) and T
=350 K (green), and the autocorrelation function of the number n(r) of
folded states (red). The dashed black lines show exponential decays with the
slowest relaxation rate « obtained from Eq. (18).

correlation function exhibits single-exponential decay with
the rate « given in Eq. (18) and is consistent with the long-
time decay of the ¢(f) curves.

In Fig. 7, we compare the variance in the folded popu-
lation obtained from 11 independent REMD runs, each with
12 replicas and run for 150 ns, to that predicted by the theory
[Eq. (24)]. All variances have been scaled to correspond to a
simulation time of #;,=2 ns for better readability. We find
that the analytical formula provides a fully quantitative esti-
mate of the actual variance over the entire range of tempera-
tures. Also shown is the variance as a function of simulation
temperature expected for MD simulations 12 times longer.
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FIG. 7. Variance in the fraction folded p calculated from REMD simulations
of Alas for different target temperatures. For reference and readability, all
results have been scaled to a simulation time of #;,,=2 ns. The red symbols
show data obtained from 11 independent 150-ns-long REMD simulations.
The solid lines are obtained for the reduced kinetic model (blue) in the
fast-exchange limit from the exact solution of the coarse grained kinetic
model and in the continuum limit (black symbols) using the formula of Eq.
(24). The green line corresponds to the variance for N=12 times longer MD
simulations.
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We find that the latter is about four times larger at low tem-
peratures than the REMD variance, but decreases with tem-
perature; in contrast, the REMD variance increases with tem-
perature. As predicted by the kinetic model [Fig. 5(b)],
REMD results in an efficiency gain for temperatures below
325 K and an efficiency loss above.

IV. CONCLUDING REMARKS

We have built a kinetic model of REMD simulations to
assess their error and efficiency for systems described by
two-state relaxation at long times. This kinetic framework
allows us to determine the slowest relaxation rate of the
overall system and the error of measuring folded/unfolded
equilibrium populations and other observables.

While the general kinetic model using actual replica ex-
change rates can be solved either by diagonalization or by
kinetic simulation, we also provide an analytic solution for
obtaining the relaxation rate and the statistical error of mea-
suring equilibrium populations in the limit of fast exchange
and densely spaced replicas within the temperature range of
the simulation.

We show that the analytical formulas provide a practi-
cally useful approximation for the folding of the lambda re-
pressor fragment and the Alas peptide solvated in explicit
water. In particular, we obtained quantitative agreement be-
tween our formulas and the results from actual REMD simu-
lations of Alas. This agreement of the errors predicted from
theory and obtained from Alas REMD simulations is encour-
aging because an earlier study of the same system29 had
shown that the folding kinetics was significantly better de-
scribed by a four-state system than the simpler two-state sys-
tem assumed in the present formalism.

We note, however, that there are a number of practical
issues that may limit the efficiency gains. Most importantly,
our formulas apply to the asymptotic limit of long simula-
tions, whereas many current simulations of, say, protein fold-
ing may be too short to see any significant number of genu-
ine folding events. In addition, replica exchange has to be
fast, which may require too many replicas for large molecu-
lar systems. If the two species U and F differ significantly in
their internal energy compared to the potential energy fluc-
tuations, then one may not have the relevant fast exchange of
unfolded and folded species (UF <« FU) even if the rate of
accepted replica exchanges appears to be large (dominated
by exchanges FF« FF and UU <« UU). This lack of energy
overlap in UF+«+ FU exchanges is a particular concern in
implicit-solvent simulations with large energy gaps between
F and U states.

Although the implementation of the kinetic models as
well as the theoretical formulas require some a priori knowl-
edge of the temperature dependence of the rates, which may
not be available, a number of general recommendations can
be made without detailed rate information. In particular, our
theoretical analyses and numerical studies have identified a
number of factors relevant for the efficiency of REMD.
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A. Exchange frequency and number of replicas

To achieve high efficiency gains from REMD, it is im-
portant that replica exchange is fast compared to folding and
unfolding at the temperature of interest. This result is con-
sistent with the conclusions of Sindhikara er al.® There are a
number of factors that affect the effective exchange rate, in-
cluding the frequency of exchange attempts, the temperature
spacing of the replicas, and the relaxation rate of the total
potential energy differences between neighboring replicas as
the main factor controlling the acceptance rate. Up to a cer-
tain point, one can increase the replica exchange rate simply
by decreasing the time interval ot between exchange at-
tempts. However, we expect that at short times o, the re-
laxation of degrees of freedom other than the folding state (U
and F) will become important, resulting in a breakdown of
the Markovian assumption underlying the kinetic
description.lo As an alternative, to enhance the exchange ac-
ceptance probability and establish fast exchange, the tem-
perature spacing can be decreased without penalty in effi-
ciency. The reason is that according to Eq. (1) an increase in
the number of replicas within a fixed temperature range will
not reduce the efficiency as long as replica exchange is fast.
Finally, alternative implementations of replica exchange may
also help overcome the limitations arising from low accep-
tance probabilities in larger systems, such as “replica ex-
change with solute tempering” by Liu et al.*

B. Temperature range

Typically, 7(T)+ 7 (T) decreases as temperature T in-
creases. Then, the target temperature 7} should be the lowest
temperature in the REMD simulations (k=1). The upper
limit of Ty of the temperature range should be chosen by
keeping two factors in mind. Most importantly, for a fixed
number N of replicas, the temperature range should be small
enough such that the replica exchange rates are fast com-
pared to folding and unfolding. Once near the fast limit, the
optimal Ty depends on the temperature dependence of the
folding and unfolding rates. For Arrhenius rates, 7(7)
+7°(T) monotonically decreases with T, and Ty should be
chosen as high and possible, while staying in the fast limit. If
7(T)+ 7 (T) has a minimum, then the upper temperature will
also have an optimal value, as defined in Eq. (27).

Other variables that can be optimized are the precise
temperatures 7; of the replicas. Here, we have implicitly as-
sumed an even temperature spacing of the replicas. However,
it follows from Eq. (1) that the highest efficiency can be
achieved by having relatively more replicas where 7(7)
+77(T) has a minimum, while still maintaining fast replica
exchange. Such optimization would result in an uneven tem-
perature spacing of the replicas.

C. Equilibration

Plotting autocorrelation functions of the properties of in-
terest, as in Fig. 6, should help in assessing the degree of
equilibration. The theory predicts that at long times, the au-
tocorrelation functions for any property coupled to folding in
a two-state system should decay with a single-exponential
relaxation, with a rate irrespective of the temperature of the
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replica and the property of interest. Moreover, in the limit of
fast exchange, the autocorrelation function for the number
n(t) of folded replicas should exhibit a single-exponential
decay with the same time constant as the state autocorrela-
tion functions at fixed temperatures.

In addition to the formal results of this paper, one can
directly use the kinetic frameworks [Egs. (2) and (4)] to ex-
plore and optimize REMD parameters. Such an approach has
been pursued by Hritz and Oostenbrink.' Replica exchange
rates can be obtained from the attempt frequencies and ac-
ceptance rates. The latter can be estimated from the energy
distributions in the folded and unfolded states at the different
temperatures (from simulation at some temperatures and in-
terpolation at others). Combined with estimates of the fold-
ing and unfolding rates, the kinetic matrix can be constructed
and solved either by diagonalization or by kinetic simula-
tions. In this way, a numerically optimized protocol can be
determined for an actual simulation system by minimizing
the error at the temperature of interest.

In summary, we have shown that replica exchange can
substantially enhance the computational efficiency, as mea-
sured by the decrease in the simulation time required to
achieve a particular statistical accuracy. However, to achieve
high efficiency requires a careful choice of the simulation
parameters.
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APPENDIX: SHORT-TIME APPROXIMATION
OF THE CORRELATION FUNCTION

In this appendix, an approximation for the relaxation rate
« of the number n of folded replicas will be derived from the
short-time expansion of the correlation function (An(r)An)
for the kinetic system [Eq. (12)]. We show that the « derived
from this approximation is identical to Eq. (18) derived in
the main text under the assumption of diffusive dynamics on
a quadratic surface for a continuous n.

The autocorrelation function of n can be written as

N N

(n(0n(0)) = > 2 np(n,t

n=0 m=0

m,0)mpey(m), (A1)

where the propagator p(n,t|m,0) is the conditional probabil-
ity that exactly n replicas are folded at time ¢, given that m
replicas were folded at time 0, and p.4(m) is the equilibrium
probability of having exactly m folded replicas. At short
times, the propagator can be approximated as p(n,t|m,0)
=8yt Kyt +O(?), where 6, is the Kronecker symbol and
the K,,,, are the rate coefficients in the kinetic scheme of Eq.
(12). At short times, we can thus approximate
(An(t)An(0))/{An?y~exp(—«kt) = 1 - kt with
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N N

K== 2 2 nK,ympeg(m)/{An®).

n=0 m=0

(A2)

To simplify this expression for «, we first use that only
neighboring states are connected in the kinetic system [Eq.

(12)],

N N N
2 E nKnmmpeq(m) = E [(n + I)Km-l,n +nk,,
n=0 m=0 n=0

+ (l’l - I)Kn—l,n]npeq(n)’ (A3)

with Ky, y=K_; o=0. To further simplify the above expres-
sion, we use that the columns of the rate matrix sum to zero,

such that K,,,==K,,,| ,—K,_1 .,
N
K== E n(Kn+1,n - Kn—l,n)peq(n)/<An2>- (A4)
n=0

Substituting the detailed balance relation, K. ,peq(n)
=K, nr1Peq(n+1), into Eq. (A4) and regrouping of the terms
results in

N

K= E Kn+l,npeq(n)/<An2>-
n=0

(A5)

In the final step, we assume that replica exchange is fast,
such that we can use the local-equilibrium approximations
[Eq. (16)] for K, ,. Substituting Eq. (16) into Eq. (AS5), we
obtain

N N
k=2 2 ki p(Uin)peg(n)/{An?). (A6)
n=0 i=1

By exchanging the order of summation, the condition on n
can be eliminated, 2, p(U;|n)pe(n)=g,, which results in

_ Eﬁilk;%

K= A (A7)

Substituting (An?) from Eq. (14), we find that « in Eq. (A7)
is identical to that in Eq. (18).
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