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We present a new identity for the statistical mechanics of trajectories, showing that a distri-
bution of irreversible transformations between ensembles of trajectories is sufficient to determine

equilibrium time correlation functions.

This general and exact result extends to the dynamical

realm recently derived connections between thermodynamic free energies and statistics out of equi-
librium. In the context of chemical kinetics, we use the identity to compute reaction rate constants
through appropriate averaging of an effective work to switch from non-reactive to reactive trajectory

ensembles.

The most interesting dynamical features of a complex
system are often much slower than the basic microscopic
motions that advance them. For instance, the charac-
teristic time scale of protein folding (~ 1 s for a typical
protein) greatly exceeds that of torsional rotations along
the backbone (~ 100 ps). Other examples of processes
exhibiting widely different time scales include nucleation
of first order phase transitions, chemical reaction in so-
lution, dynamics near a glass transition, and transport
in and on solids. Such a separation of important time
scales seriously hinders the study of dynamical mecha-
nisms. Experiments cannot usually resolve the molecular
fluctuations that drive condensed phase dynamics. Com-
puter simulations, on the other hand, can feasibly gen-
erate trajectories only a few orders of magnitude longer
than the duration of microscopic fluctuations, making
long-time behavior elusive.

One common source of disparate time scales is the pres-
ence of dynamical bottlenecks between basins of attrac-
tion in phase space. Fig. 1 depicts some microstates in

FIG. 1: Several trajectories originating in a basin of attrac-
tion A. Free energy contours (in gray) indicate a bottleneck
between A and a second basin B. The vast majority of short
trajectories do not surmount this free energy barrier and thus
do not connect the two basins
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such a basin, A, (e.g., a protein’s unfolded state) and tra-
jectories emanating from each. If free energy barriers sep-
arating A from adjacent basins are much larger than typi-
cal thermal excitations, then only a very small fraction of
trajectories will escape A to end in some other metastable
state, B (e.g., the protein’s native state) within micro-
scopic correlation times. Many computational schemes
have been devised to explore the important but infre-
quently visited transition state region, but most presume
knowledge of mechanism or introduce ad hoc dynamical
rules [1-4]. More systematic strategies simply focus on
the rare short trajectories that exhibit transitions of in-
terest [5, 6].

We make these ideas quantitative by defining a parti-
tion function for the restricted ensemble of microstates
whose trajectories of length t end in B,

Zap(t) = /dl’op(xo)hA[IO]hB[xt(Io)]~ (1)

For the moment we imagine that dynamics are deter-
ministic, so that each phase space point zy uniquely
specifies a trajectory, represented here as an ordered
sequence of microstates separated by a time step At ,
x(t) = {xo, zAt, T2At, .-, 1 ;. In Eq. (1) p(z) is an equi-
librium probability density, for example the canonical
distribution function p(x) o e~ £@)/ksT  The functions
ha and hp project onto A and B respectively, i.e., h;[z]
is unity for x in state ¢ and otherwise vanishes. We now
compare Z4p(t) with the partition function for the en-
tire basin, Z4 = [dxop(xo)halzo]. The logarithm of
their ratio determines a free energy difference between
the two ensembles, AF(t) = —kgT In[Zap(t)/Z4], that
depends parametrically on time. Although free energy is
typically conceived as a static quantity, AF(t) is directly
related to an equilibrium time correlation function,

(halzolhp[zi(x0)])
(ha)

whose approach to equilibrium describes the phenomeno-

Ct) = = exp [-AF(t)/ksT], (2)



logical kinetics of transitions from A to B [7]. (We use
angled brackets to denote an average over the equilib-
rium distribution p(x).) The unusual partition function
Z Ap(t) thus connects the thermodynamic concept of free
energy to intrinsically dynamical quantities such as rate
constants.

In order to clarify this connection in principle, and
to make it useful in practice, we along with others have
developed a statistical mechanics of trajectories, in close
analogy to the familiar statistical mechanics of individual
microstates [5, 8, 9]. Ensembles of trajectories, weighted
by their frequency of occurrence, form the basis for this
approach. The probability density of observing a partic-
ular pathway z(¢t) at equilibrium depends in general on
the distribution of initial conditions p(xg), and on tran-
sition probabilities for each step in time:

t/At—1

Pequlz()] = p(zo) [[ piae = zsnan).  (3)
1=0

Integrating the path distribution Peqy[x(t)] over all pos-
sible pathways consistent with relevant constraints gen-
erates the analog of a partition function, Z(t). For
the ensemble of trajectories whose initial points lie in
A, Z4(t) = [Dx(t)Pequlz(t)]ha(zo). (The notation
| Dx(t) represents integration over all phase space points
comprising a trajectory of length t.) Further constrain-
ing trajectories to end in B at time ¢ gives Zp(t) =
| Da(t) Pogulz(t)]ha(zo)hp(x:). For deterministic dy-
namics transition probabilities are Dirac delta functions,
and Z4p(t) reduces to the function Z,p(t) in Eq. (1).
For stochastic dynamics (e.g., Langevin or Monte Carlo),
however, transition probabilities may have finite width.

Within this perspective thermodynamic quantities re-
lated to partition functions have analogous meaning for
trajectories. For example, —In[Z4p5(t)/Z4(t)] is effec-
tively the “free energy” difference between the ensemble
of all trajectories originating in A and the ensemble in-
cluding only reactive trajectories that originate in A and
end in B. As a result of this connection, many standard
techniques of statistical mechanics have analogous utility.
Importance sampling can be used to focus on rare trajec-
tories of interest, such as those executing transitions be-
tween basins of attraction. This transition path sampling
technique, in effect a biased random walk through the
space of all dynamical paths, has been applied to several
very slow but important processes in complex systems
[10-13]. Other analogies to equilibrium thermodynam-
ics have been revealed and exploited, primarily toward
the end of determining reaction rates and mechanisms
[14-16].

In this Letter we show that connections between the
statistical mechanics of trajectories and that of mi-
crostates exist even out of equilibrium. We do so by deriv-
ing a dynamical version of the nonequilibrium identity re-
cently presented by Jarzynski [17]. That identity relates

differences in equilibrium free energy, or reversible work
Wiev, to repeated irreversible transformations between
the corresponding ensembles. This exact relationship
amends Clausius’s inequality, W > Wi, profoundly. A
corollary to the first and second laws of thermodynamics,
the standard inequality establishes the average (denoted
by an overbar) of expended work W over many realiza-
tions of an irreversible process as an upper bound on
Wiev- Jarzynski’s result, on the other hand,

exp [-W/kpT| = exp (—Wiev /kpT), (4)

shows how to properly average over nonequilibrium real-
izations so that Wi, is obtained exactly [17]. The me-
chanical work W appearing in (4) is the total change in
energy E(x) accumulated along non-equilibrium trans-
formations due to the action of an external field driving
the system out of equilibrium [17, 18].

We extend the concept of mechanical work to tra-
jectory space by defining a path “energy,” E[z(t)] =
—In{P[z(¢)]Z(t)}, corresponding to a particular path
distribution P[z(¢)]. In this case, the “work” is the
change in path “energy” &[z(t)] accumulated when
changing one path distribution to another at finite rate.
If the change is done in N sudden steps, then the total
“work” supplied is

W= Nil (5(i+1)[x(i)(t)] _g® [x(i)(t)]) . (5)

By averaging the exponential of this effective work over
many realizations of the transformation, we will show
that a result identical in form to Jarzynski’s applies to
ensembles of trajectories.

>0

FIG. 2: Schematic depiction of one possible sequence of tra-
jectories of the model system described in the main text. Dark
regions are areas where the biasing potential U (z:, )\(i)) is not
much greater than unity. At step ¢ = 0, this region encom-
passes all of phase space, since the trajectory endpoint is un-
biased. As ¢ increases toward N, however, the region shrinks
to include only state B.

A specific set of rules for sampling dynamical paths
constitutes a “dynamics” in trajectory space. We empha-
size that a system’s natural dynamics, governing the time



evolution within individual trajectories, are not modi-
fied by this set of evolution rules, which determines a
sequence of trajectories, such as that depicted in Fig. 2.
Viewing the exploration of trajectory space as a random
walk, we represent a particular set of rules using transi-
tion matrices, {M(O)7 M@ ... MW} that conserve the
distributions {P©), PM) . PN

/ Da(t)MD[z(t) — o'

Matrix elements M () [z(t) — /(t)] express the probabil-
ity that a walker situated at path x(t) at step i — 1 will
reside at path 2/(t) at step i. In transforming between
two trajectory ensembles, path distributions conserved
by the initial and final steps should clearly describe the
initial and final ensembles, respectively. Beyond this re-
quirement, we will see, the choice of M® at intermedi-
ate steps is arbitrary. Crooks has shown that the exact
form of phase space dynamics is analogously arbitrary for
Jarzynski’s identity [18].

1P [z(t)] = PUR' (). (6)

e~ W =

P(N) (N1

Given a set of N transition matrices, the probability of
observing a particular sequence of trajectories, X (N,t) =

{2 (1), 2D (), ..., 2N (1)}, is:

N
PIX(N,t)] = PORO @) [T MO0 (1) — 29 (1)].

(7)
This weight determines averages of sequence-dependent
quantities, Y[X(N,t); {M®1], over many realizations of
the random walk:

ZP

X(N,t)

VXN, MDY (8)

The sum in Eq. (8) runs over all possible path sequences
of length N. In general such an average depends on the
choice of M) and is therefore sensitive to the way in
which ensembles are transformed.

Combmlng Egs. (5), (6), (7), and 8, we obtain for the
case Y = e W

(1)) MM EWN=D (1) — 2™ ()] ..

N)
ZZ((mf /D ) /D (V-1

/D:z: ()]

p<1> 20 (7))

Since P(M[z()(#)] is the stationary distribution corre-
sponding to M| the integral over z(9)(¢) simply pro-
duces a factor P [z(M(¢)], which is cancelled by the de-
nominator in the second line of Eq. (9). The integral
over (1 (t) then yields a factor P([2(?)(t)], which is
similarly cancelled. The last of the N integrations on the
right hand side of Eq. (9) is [ Dz™) (£) PN [z(M)(¢)] = 1,
leaving

ZWN)(¢)
ZO)(t)

e~ W =

(10)

The right hand side of Eq. (10), a ratio of trajectory
ensemble partition functions, is the exponential of work
required to reversibly switch between initial and final
path ensembles. The left hand side is an average over
irreversible transformations in a path sequence of finite
length. Equation (10) is thus the dynamical analog
of Jarzynski’s identity. Remarkably, as in the case of
Eq. (4), this result is independent of the procedure used
to switch ensembles. By choosing PO [x(t)] = Poqu[z(t)]
and PN [z(t)] = Poqu[z(t)]w[z(t)]/Z(t), one can in prin-
ciple calculate the equilibrium average of any dynamical
function ZWN)(t) = [ Da(t) Poqulz(®)]wlz(t)] = (wlz(t)])
in this way, 1nclud1ng time correlation functions of an
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arbitrary number of observables [19].

We illustrate the practical utility of Eq. (10) by using
it to calculate the kinetics of a model reaction, namely
the isomerization of a diatomic solute in dense solvent
[14, 20]. This two-dimensional model consists of a di-
atomic molecule immersed in a bath of purely repulsive
soft particles. (See Ref. [14] for a detailed description
of the model.) The diatomic molecule can reside in two
states, A (for which r < r4) and B (for which r > rp),
differing in intramolecular distance r and separated by
a potential energy barrier from each other. If the bar-
rier is high compared to kg7, transitions between the
two states are rare. The relevant correlation function
describing the kinetics of such isomerizations, C(t) in
Eq. (2), is obtained from Eq. (10) by selecting as ini-
tial and final path distributions P(®) = P, ha[zo]/Za(t)
and PV) = Poguhalzolhp|z]/ZaB(t), respectively. To
convert an ensemble of trajectories unconstrained at time
t into an ensemble of reactive trajectories switching from
isomer A to isomer B, we make the arbitrary choice for
steps 0 < i < N

» x xo) exp|—U (x, \®
P(Z)[x(t)]z Pequ[ (t)]hA(ZO()Z)(tI))[ U( A )]’ (11)
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FIG. 3: Distributions of effective work W to transform an
ensemble of trajectories beginning in isomer A to an ensem-
ble switching from isomer A to isomer B. The distributions
peaked at positive values of VW correspond to path “compres-
sions” in which the biasing potential was gradually applied
(raising the drawbridge). The distributions peaked at nega-
tive value of W, on the other hand, result from simulations in
which the biasing potential was gradually released (lowering
the drawbridge).

where Z()(t) is determined by normalization and
U(x,A\) = Ax[rg —r(z)] x (1 — hp[z]) (12)

is an effective potential whose exponential interpolates
smoothly between 1 (for A = 0) and hp[z] (for A = o).
This “potential” U(z, \) acts as a drawbridge (anchored
at r(x) = rp) that, when lifted, pulls trajectory end-
points into B. Here, we let A(*) vary linearly with i, i.e.,
AD = Apaxi/(N —1) for i < N and V) = co. In all our
simulations Apax = 100, and r4 = 1.300 and rg = 1.450,
where ¢ is the particle diameter.

To evaluate C(t) we must finally determine rules for
evolution in trajectory space that are consistent with
the chosen bias functions. For this purpose we adapt
the methods of transition path sampling, a Metropolis
Monte Carlo sampling of trajectories [9, 21]. Specifically,
we construct trial moves by the shooting and shifting al-
gorithms described in Ref. [9], and accept them at step 4
with probability

PQx(t) — ' (1)] =
Pequla’ ()]w [2/(2)]

0| (O (1)

(13)

The corresponding transition matrices M) conserve
path distributions P()[z(t)] by construction.

Results for C(t) computed in this way are given in
Fig. 3. We have focused on a single value of ¢ but have
considered several values of N in the range 103 — 10%.
Our numerical results bear out the validity of Eq. (10).
Although the mean “work,” W, is very different for differ-
ent values of N, the estimates of AF(t) = —In(e~") are
indeed identical within statistical error of a few percent.

The computational effort expended in these calcula-
tions is comparable to that of calculating C(t) (to similar
accuracy) with the methods of transition path sampling
alone (i.e., implementing a quasi-reversible change of tra-
jectory ensemble). In light of applications of Jarzyn-
ski’s identity [22-24], this observation is not surprising.
On the one hand, these nonequilibrium relations provide
computational savings by allowing fast switching between
ensembles. On the other hand, the averages in Eqgs. (4)
and (10) can be slow to converge. Although the distri-
butions of W plotted in Fig. 3 are not especially broad,
the corresponding distributions of e™"Y have substantial
weight in the wings. As a result, a small fraction of path
sequences can dominate the average. Significant effort
is thus spent exploring regions of sequence space with
little quantitative importance. One possible remedy for
this disadvantage is to introduce a bias that preferen-
tially guides sampling toward the most important path
sequences. Sun has formulated an analogous approach
for Jarzynski’s identity [25], in effect employing transition
path sampling to focus on the regions of trajectory space
that dominate the average in Eq. (4). Applied to our
result (Eq. (10)) such an approach may seem abstract,
amounting to an importance sampling for sequences of
trajectories that are themselves generated by the meth-
ods of transition path sampling. But it could well make
possible important dynamical calculations (e.g., rates of
folding for atomistic models of protein) that are currently
impracticable.

PLG was an MIT Science Fellow during most of this
work.
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