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Abstract. Bayesian inference is used to obtain self-consistent estimates of free
energies and position-dependent diffusion coefficients along complex reaction
coordinates from molecular dynamics simulation trajectories. Effectively, exact
solutions for the dynamics of a diffusive model are matched globally to the
observed molecular dynamics data. The approach is first tested for a simple one-
dimensional diffusion model, and then applied to the dihedral-angle dynamics of
a peptide fragment dissolved in water. Both long equilibrium molecular dynamics
simulations and short, appropriately initialized, replica simulations are used to
sample the short-time dynamics of the peptide–water system. In both cases,
accurate estimates of free energies and diffusion coefficients are obtained.
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1. Introduction

Over its 65-year history, the Kramers [1] model of diffusive barrier crossing has become one of
the most powerful and widely used approaches to describe transitions in molecular systems [2].
In Kramers theory, the underlying many-body dynamics of a molecular system is condensed into
a one-dimensional (1D) diffusive motion along a chosen reaction coordinate Q. The problem of
obtaining rate coefficients for molecular transitions then reduces to (i) finding the free-energy
surface F(Q) along the reaction coordinate, in particular the height and shape of the barrier,
and (ii) to estimating an effective, position-dependent diffusion coefficient D(Q) that describes
the local dynamics on the free-energy surface. Obtaining the free-energy surface, or potential of
mean force, amounts to counting population densities p(Q) ∝ e−βF(Q) as a function of Q under
equilibrium conditions, which can be performed rigorously and with a variety of straightforward
techniques of classical molecular simulations [3, 4] and of non-equilibrium pulling experiments
[5]. In contrast, estimating a local diffusion coefficient poses a more serious challenge because
(i) diffusive dynamics is only an approximate assumption such that no rigorous expressions for
D(Q), unlikeF(Q), is expected; and (ii) the observed dynamics is determined by a combination of
free energies and diffusion coefficients, requiring a ‘deconvolution’ step to remove contributions
from a non-uniform free-energy surface F(Q) when going from observed trajectories to D(Q).
In view of these difficulties in obtaining D(Q), it is reassuring that the rates, while exponentially
sensitive to the barrier height, are only linearly proportional to the diffusion coefficient in the
Kramers theory.

How can one estimate accurate position-dependent diffusion coefficients? Following the
earlier works of Berne et al [6], Woolf and Roux [7] proposed an elegant approach in which free
energies and diffusion coefficients are calculated effectively from the same set of simulations.
In their formalism, umbrella sampling [8] with a harmonic bias on Q is used to sample p(Q)
locally. From the Laplace transformation of the autocorrelation function of the velocity Q̇ along
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the reaction coordinate in the harmonically restrained simulations, one can then estimate D(Q).
As shown in appendix A, the expression of Woolf and Roux can be simplified considerably, and
reduced exactly to

D(Q = 〈Q〉) = var(Q)

τQ

, (1)

where 〈Q〉 is the average of the reaction coordinate Q in the biased run, var(Q) = 〈Q2〉 −
〈Q〉2 is its variance and τQ the characteristic time of its autocorrelation function, τQ =∫ ∞

0 〈δQ(t)δQ(0)〉dt/var(Q) with δQ(t) = Q(t) − 〈Q〉. Equation (1) is a relation between the
diffusion coefficient and correlation time of a harmonic oscillator with overdamped Langevin
dynamics [9] that has been used, for instance, to estimate the diffusion coefficients along protein
[10] and peptide folding reaction coordinates [11].

Recently, Liu et al [12] proposed a different approach to calculate diffusion coefficients
in anisotropic and inhomogeneous systems. For anisotropic systems, such as a liquid–vapour
interface, the elements of a diagonal diffusion tensor are related to the conditional mean square
displacement of only those particles that remain within a given position interval. If the system is
inhomogeneous with a known free-energy surface F(Q), the friction coefficient in independently
run Langevin dynamics simulations on F(Q) is varied to match the probability of remaining
within a chosen interval, as obtained from the full molecular dynamics (MD) simulation.

Here, I follow a different approach and estimate diffusion coefficients and free energies
self-consistently. The central idea is that long equilibrium simulation runs or, equivalently, an
ensemble of independent and appropriately initialized short simulations can be used to probe
the local ‘propagators’ along the coordinate Q. After coarse-graining in time, one can compare
the observed motions along Q with those expected from diffusive dynamics. Such a global
comparison will provide self-consistent information about the free-energy surface, F(Q), and
the diffusion coefficient, D(Q). To perform this comparison, I use a global Bayesian analysis
of the simulation data. Under the assumption of diffusive dynamics (after some short initial
time accounting for fast molecular processes), and for a given free-energy surface and position-
dependent diffusion coefficient, a likelihood function can be constructed that gives the probability
of observing exactly the motions along Q seen in the simulation runs. Using Bayes’ formula,
the likelihood of observations given the parametrized diffusive model is turned into a posterior
density of the unknown ‘parameters’F(Q) and D(Q) of the diffusive model, given the simulation
observations. Entering additionally into Bayes’ formula is the ‘prior’, i.e., a distribution of the
parameters that reflects what is known about them before the observations are made [13]. Implicit
in the formalism is the assumption that Q is a ‘good’ reaction coordinate. If that is not the case,
the dynamics along Q is not Markovian and the estimated diffusion coefficients will depend on
the timescale at which the observations were made. Such time dependences can be used as a test
of the underlying assumption of diffusive dynamics.

Within this Bayesian approach, one can infer the slow dynamics in the projected coordinate
Q and construct a coarse master equation represented by a rate matrix [14]. At sufficiently fine
discretizations along Q, this rate matrix contains the necessary information about free energies
F(Q) and diffusion coefficients D(Q) in an inhomogeneous system. The general procedure will
be illustrated for a simple 1D test system, and applied to the analysis of dihedral-angle transitions
in a hydrated peptide fragment [15].
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2. Theory

2.1. Master equation

As in [14], the starting point is Zwanzig’s generalized master equation for Newtonian dynamics in
configuration space [16]. If the complete configuration space is divided into N non-overlapping
cells, the probability pi(t) of being in cell i at time t satisfies a generalized master equation,

ṗi(t) = −
∫ t

0
dt′

∑

j

Kij(t − t′)pj(t
′), (2)

where ṗi(t) ≡ dpi(t)/dt and Kij(t) is the transition memory kernel given formally in terms of
projections [16]. Here, the cells i correspond to intervals along the coordinateQ. Note in particular
the absence of the ‘random force’ (i.e., an inhomogeneous term) in equation (2), which requires
that initially (at time t = 0) all phase-space variables are at equilibrium within a given cell i, and
non-equilibrium in the initial conditions is limited to the partitioning between different cells i.

Here, one is interested in diffusion, and I assume that after some time, the dynamics becomes
Markovian. With this coarse graining in time, one can approximate equation (2) by a Markovian
rate equation,

ṗi(t) =
∑

j

Rijpj(t), (3)

where the Rij are the constant elements of a rate matrix R, with Rij ! 0 for i (= j, Rii " 0, and∑
i Rij ≡ 0. One can solve equation (3) in terms of a matrix exponential,

pi(t) =
∑

j

(etR)ijpj(0). (4)

The ‘propagators’ of the Markovian model are accordingly given by

p(i, t|j, 0) = (etR)ij, (5)

where p(i, t|j, 0) is the conditional probability that a trajectory starting from cell i (with
equilibrium initial conditions in phase space within i) is in cell j at a later time t.

2.2. Diffusive dynamics

In the following, I will connect this general rate formalism to diffusive dynamics by spatially
discretizing the Smoluchowski diffusion equation and turning it into a system of rate equations.
The resulting rate matrix R describes the dynamics between neighbouring intervals along Q,
and contains information about free energies F(Q) and diffusion coefficients D(Q).

The Smoluchowski diffusion equation describes the time evolution of the probability density
p(Q, t) along the coordinate Q,

∂p(Q, t)

∂t
= ∂

∂Q

{
D(Q)e−βF(Q) ∂

∂Q
[eβF(Q)p(Q, t)]

}
, (6)
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with β−1 = kBT , where kB is Boltzmann’s constant and T the absolute temperature. Equation
(6) can be discretized in space following Bicout and Szabo [9] to give a system of rate equations
in the form of equation (3). In one dimension, the resulting rate equations take the following
simple form

ṗi(t) = Ri,i−1pi−1(t) − (Ri−1,i + Ri+1,i)pi(t) + Ri,i+1pi+1(t) for 1 " i " N, (7)

where pi(t) is the probability of being in interval i around Qi at time t and RN,N+1 ≡ RN1

and RN+1,N ≡ R1N for periodic boundary conditions, and RN,N+1 = RN+1,N = 0 for reflecting
boundary conditions, respectively.

The free-energy surface can be estimated from the equilibrium probabilities Pi of being in
interval i around Qi

F(Qi) ≈ −kBT ln
Pi

%Q
, (8)

where %Q = |Qi+1 − Qi| is the bin width (assumed to be a constant for simplicity). The
vector P = (P1, . . . , PN)T of equilibrium probabilities is an eigenvector of R with eigenvalue 0,
R · P = 0. The position-dependent diffusion coefficients, Di+1/2 = D[(Qi + Qi+1)/2], are related
to the rate matrix and its equilibrium distribution through [9]

Di+1/2 ≈ %Q2Ri+1,i

(
Pi

Pi+1

)1/2

, (9)

where i and i + 1 are two neighbouring cells at centre-to-centre distance |Qi+1 − Qi|. Note
that equation (9) is symmetric with respect to exchanging i and i + 1 because the rate matrix
satisfies detailed balance, Ri+1,i/Ri,i+1 = Pi+1/Pi = e−β[F(Qi+1)−F(Qi)]. With equations (8) and (9),
the positional coarse graining of the diffusion equation, equation (6), has turned the problem of
finding D(Q) and F(Q) into that of estimating rate coefficients for transitions between adjacent
intervals along Q. For systems that do not satisfy detailed balance (e.g., driven systems), but can
be described by the kinetic scheme equation (3), the full rate matrix Rij could be estimated.

2.3. Likelihood function

Following [14], Bayesian inference will be used to estimate the rate matrix R from either long
equilibrium simulations or short replica simulations. Consider that one has made the following
observations in either the short replica runs or the equilibrium trajectory: at a time tα after the
system was in state jα, the system is found in state iα. Under the assumption of the kinetic model
equation (3), the likelihood of such an observation is p(iα, tα|jα, 0) = (etαR)iαjα . The likelihood
L of a series of such observations is then simply the product of these probabilities,

L =
∏

α

p(iα, tα|jα, 0) =
∏

α

(etαR)iαjα, (10)

assuming that the observations are independent and that the dynamics is given by the Markovian
rate matrix R. For non-Markovian dynamics, the observations are the actual paths, with a
generalized path action functional determining their likelihood [14].
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2.4. Bayesian analysis of simulation data

To estimate the rate coefficients Rij in equation (7), I use the Bayesian-inference method of [14].
Alternatively, one could also use a maximum-likelihood approach. In the Bayesian formalism, a
posterior distribution of the model parameters Rij is constructed from the simulation data through

p(parameters|data) ∝ p(data|parameters)p(parameters), (11)
where p(data|parameters) ≡ L is given by the likelihood function L of equation (10). In the
following, I will assume a uniform prior distribution of model parameters, p(parameters) =
constant, such that

p(parameters|data) ∝ L. (12)

Implicit in the ‘uniform’ prior is the assumption of a particular integration measure because
p(parameters|data) is a probability density.

The condition of detailed balance reduces the number of free parameters in R, which can
be written as

Rij =






Rij if i > j,

−
∑

l( (=i) Rli if i = j,

RjiPi/Pj if i < j.

(13)

For N states, there are N − 1 free equilibrium probabilities Pi (with 1 ! Pi > 0 and the Nth
Pi given by normalization,

∑
i Pi = 1) and N(N − 1)/2 free rate coefficients in general. For

1D diffusion, the number of free off-diagonal rate coefficients is reduced to N and N − 1 with
periodic and reflecting boundary conditions, respectively.

To obtain the propagators p(i, t|j, 0) for a given R, I use an eigenvalue technique for the
symmetric matrix R̃ij = Pi

−1/2RijPj
1/2. Its matrix U of eigenvectors satisfies R̃U = UΛ, where

! = diag(λ1, . . . , λN) is the diagonal matrix of eigenvalues. The matrix exponential determining
the propagators then becomes etR = diag(P1

1/2, . . . , PN
1/2)etR̃diag(P1

−1/2, . . . , PN
−1/2), where

etR̃ = Uet!UT with et! = diag(etλ1, . . . , etλN ). In some cases, it may also be possible to avoid
the spatial discretization of the diffusion equation and instead use exact analytic expressions
for the continuous propagators p(Q, t|Q′, 0), or at least accurate short-time expansions for
locally smooth free-energy surfaces F(Q) and diffusion coefficients D(Q) (such as the short-
time propagators used to generate diffusive trajectories [17]). Such expressions could be used to
obtain the likelihood function without numerical matrix computations.

To construct posterior distributions of the parameters according to equation (11), I will
sample parameters using Metropolis Monte Carlo simulations [14, 18] in which the negative
log-likelihood, − ln L, serves as an effective energy function in parameter space. In the Monte
Carlo simulations, the equilibrium free energies, gi = − ln Pi, and the rate coefficients Rij (i > j)
are randomly varied, the latter being restricted to the positive axis. For both Rij and gi, a uniform
prior is assumed, unless specified otherwise. According to the Metropolis criterion [18], Monte
Carlo moves are always accepted if the log-likelihood increases; if the log-likelihood decreases
by %, the move is accepted with probability exp(−%). From these Monte Carlo simulations in
parameter space, one also obtains directly the posterior distributions of ‘observables’ derived
from R, in particular, F(Qi) and D(Qi), according to equations (8) and (9). I will report the
mean of these distributions, and uncertainty intervals about the mean given by the points where
the cumulative distributions reach 0.1587 and 1 − 0.1587, corresponding to ±SD for a Gaussian
distribution.
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2.5. Prior for smooth free energies and diffusion coefficients

In many practical situations, one may expect that the free-energy profile F(Q) and the position-
dependent diffusion coefficient D(Q) are smooth, such that their values in neighbouring intervals
should be similar. Such ‘a priori’ expectations can be imposed by choosing an appropriate prior
‘p(parameters)’ in equation (11). Specifically for D(Q), one can multiply the likelihood L by a
weighting function that puts a harmonic penalty on deviations |D(Qi) − D(Qi+1)| of diffusion
coefficients at adjacent grid points,

p(parameters|data) ∝ L
∏

i

e−[D(Qi)−D(Qi+1)]2/2γ2
, (14)

where small values of the parameter γ impose smooth D(Q).Alternatively, one could also impose
smoothness by using low-order series expansions of the position-dependent F(Q) and D(Q),
and then obtain Bayesian estimates of the series expansion coefficients.

3. Results

3.1. Test for 1D diffusion

To test the algorithm for reconstructing F(Q) and D(Q) from simulation data, I first analyse
a simple model system. The purpose of this comparison is to explore whether the Bayesian
procedure can accurately recover both the underlying free-energy surface and the position-
dependent diffusion coefficients from noisy simulation data created for a known diffusive model.
The model was designed to mimic the more complicated dihedral-angle dynamics of a peptide
fragment studied below. Specifically, I simulate 1D diffusion along a coordinate Q = ψ on a
periodic free-energy surface, βF(ψ) = − cos(2ψ) + const., with free energy minima at ψ = 0
and ψ = ±π separated by barriers of height 2kBT . The position-dependent diffusion coefficient
D(ψ) = (2 + sinψ)D0 oscillates between D0 and 3D0, with D0 = 0.1 rad2 ps−1. To create a
diffusive equilibrium trajectory, I advance the angle ψ in finite time steps of %t = 0.001 ps
according to ψ(t + %t) = ψ(t) + {D′[ψ(t)] − βD[ψ(t)]F ′[ψ(t)]}%t + gt{2D[ψ(t)]%t}1/2, where
the gt are uncorrelated Gaussian random variables of mean zero and variance one, and primes
denote first derivatives with respect to ψ [17].

Along a 100 ns equilibrium trajectory, I save the angle ψ(t) every τ = 0.5 ps. From the
resulting time series of ψ values, I extract 0.5 ps transitions between cells defined as ψ-intervals
of uniform width %ψ = 2π/n for n = 12, 16, 24, 36 and 48. To reduce the dependence on the
number of bins n, I translate the initial point in a trajectory step to the centre of its interval, and
shift the final point accordingly. In this way, I collect the number Nij of transitions from cell j
to cell i. For a given model R, the logarithm of the likelihood then becomes a double sum over
cell indices,

ln L =
n∑

i=1

n∑

j=1

Nij ln(etR)ij. (15)

This likelihood function is used in the Bayesian estimate together with a uniform prior distribution
for the equilibrium free energies, −kBT ln Pi/%ψ, and rate coefficients, Rij (i > j). By sampling

New Journal of Physics 7 (2005) 34 (http://www.njp.org/)

http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

1

2

3

  

F
(ψ

)/
k B

T

 

0

0.1

0.2

0.3

-π 0 π

D
 (

ra
d2 /p

s)

ψ (rad)

Figure 1. Free energy (top) and diffusion coefficient (bottom) for diffusion
on a 1D periodic surface. The reference free energy βF(ψ) = − cos(2ψ) +
ln

∫ π

−π
ecos 2ψ′

dψ′ and the position-dependent diffusion coefficient D(ψ) =
0.1(2 + sinψ) rad2 ps−1 are shown as lines. Estimates obtained from a Bayesian
analysis with n = 24 grid points are shown as symbols. Error bars indicate a
credibility range of 68%.

the resulting posterior distribution of rate matrices, one obtains distributions of free energies,
−kBT ln Pi/%ψ, and local diffusion coefficients D(ψi) according to equation (9).

Figure 1 shows results for free energies and diffusion coefficients for n = 24 cells. One
finds that the Bayesian estimate accurately recovers the underlying free-energy surface. Small
deviations between the estimated and exact F(ψ) in figure 1 are caused by the insufficient
sampling of the 100 ns trajectory, with the minimum at ψ = ±π slightly more populated
during the simulation run. The Bayesian estimate of the position-dependent diffusion coefficient
also agrees well with the D(ψ) used in the simulation. Note that the t = 0.5 ps observation
time is comparable to the characteristic relaxation time in one of the free-energy wells,
[βF ′′(0)D(0)]−1 = 1.25 ps.At such a relatively long timescale, estimates of F(ψ) and D(ψ) from
the local average drift and spread of trajectories would require substantial curvature corrections.
Estimating the local diffusion coefficient as D(ψ0) ≈ var(ψ;ψ0, t)/2t from the variance of
trajectories starting from a fixed initial point ψ0 and evolving for time t = 0.5 ps results in over-
and under-estimates of D by about 30% at the barrier tops and free energy minima, respectively.

As shown in figure 2, the estimated diffusion coefficients approach their reference value
D(ψ) with an error that depends quadratically on the bin width. The discretization of the
Smoluchowski diffusion equation, equation (7), uses centred finite differences [9] with errors of
the order of %ψ2. For n = 24 grid points, the estimated diffusion coefficients deviate by up to
about 10% from the corresponding reference values. Overall, the results for the 1D test system
show that the Bayesian analysis can produce accurate free energies and diffusion coefficients.

3.2. Alanine dipeptide in water

In the previous example, the underlying dynamics was diffusive by construction. In the following,
I will use MD simulations of a small peptide fragment in water, and approximate its dihedral-
angle dynamics by Smoluchowski diffusion. To estimate the free-energy surface and diffusion
coefficient of the hydrated alanine dipeptide along the Q = ψ dihedral angle, I again use the
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Figure 2. Dependence of the estimated local diffusion coefficient at ψ = 0 on
the number of grid points (top scale) and the square of the bin width (bottom
scale). The target value is D(0) = 0.2 rad2 ps−1. The solid line shows a linear fit
of the estimated values with respect to the squared bin width, %ψ2 = (2π/n)2.

Bayesian analysis with a uniform prior. Figure 3 compares the results for F(ψ) from the Bayesian
analysis of the replica runs of [15] to a long equilibrium MD simulation in explicit solvent. In
a previous analysis [15], a related Chapman–Kolmogorov approach had been used in which
local short-time propagators were calculated, but without imposing detailed balance on the
coarse master equation. Without detailed balance, one obtains a steady state rather than an
equilibrium solution. I find here that the Bayesian re-analysis, with detailed balance imposed,
leads to improved estimates of the free-energy profile.

The Bayesian approach also produces a self-consistent estimate of the position-dependent
diffusion coefficient D(ψ), as shown in the centre panel of figure 3. For reference, a local
diffusion coefficient calculated for harmonically biased equilibrium MD is included.As described
in appendix A, the formalism of [7] was used to estimate D(ψ) from the biased run. With the
same data, I also used the analytical limit, equation (1) (see appendix A). As shown in the centre
panel of figure 3, the results from the Bayesian analysis are in excellent agreement with the two
estimates from the biased MD run. However, as discussed in appendix A, the two estimates from
biased MD are subject to possible substantial systematic errors due to the particular choice of
extrapolation schemes and integration cutoffs. The value of D(ψ) near the global free energy
minimum at ψ ≈ −0.3 rad is also in good agreement with a previous estimate of 0.15 rad2 ps−1

based on the equilibrium relaxation time [15].
In the bottom panel of figure 3, I show results for the diffusion coefficient estimated with

a prior imposing ‘smoothness’. In equation (14), γ was set to 0.05 rad2 ps−1 for n = 24 cells.
The results for the free-energy profile are essentially unchanged (not shown). The local diffusion
coefficients also show no substantial changes, except for the removal of ‘outliers’ of D(ψ) in the
relatively poorly sampled barrier regions.

4. Conclusions

The objective of this paper was to extract diffusion coefficients and free energies along complex
reaction coordinates self-consistently from many-particle molecular dynamics simulations.
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Figure 3. Free energy F(ψ) and effective diffusion coefficient D(ψ) of alanine
dipeptide in a box of water as a function of the ψ dihedral angle. (a) Free energy:
the solid line is the result of a ∼7 ns equilibrium MD run [15]. +, results from a
Bayesian analysis with a uniform prior of 50×56 replica runs of 0.5 ps length;
!, Bayesian results for 0.5 ps propagators obtained from the ∼7 ns equilibrium
MD run. (b) Diffusion coefficient: the position-dependent diffusion coefficients
D(ψ) obtained from the Bayesian analysis are shown with the same symbols
as in panel (a). The × and -. show the diffusion coefficients estimated for
ψ ≈ −0.3 rad from a 240 ps simulation with a harmonic bias using equations (1)
and (A.3), respectively. (c) Diffusion coefficients estimated with a smoothening
prior, equation (14), for γ = 0.05 rad2 ps−1. Symbols as in panel (b). In all panels,
error bars indicate a credibility range of ∼68% (corresponding to ±1 SD for a
Gaussian).

The problem was approached by coarse-graining in space and time. Conformation space is
divided into cells and MD trajectories are monitored at finite time intervals to identify transitions
between cells. A model of diffusive dynamics is similarly coarse-grained in space, leading to
coupled rate equations [9], and ‘matched’ to the observed dynamics with a Bayesian approach.
The Bayesian formalism produces estimates of the underlying position-dependent free energies
and diffusion coefficients, as well as their uncertainties. The approach is presented for diffusion
along a 1D coordinate, but generalizations to higher dimensions are straightforward, following
the spatial discretization procedure of Bicout and Szabo [9]. Estimates of F(Q) and D(Q) for a
multidimensional coordinate Q will require trajectory data for a large number of initial conditions.
However, the number of parameters can be effectively reduced if the free-energy surface or the
diffusion coefficients are smooth functions of position.

To connect the diffusive model to the observed simulation data, a likelihood function is
constructed. The likelihoodL is defined as the probability of observing a set of transitions between
conformation-space cells found in the MD simulations under the assumption of a diffusive model.
Turning the likelihood around according to the Bayes theorem, one obtains a distribution of the
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model parameters given the trajectory data. A ‘prior’ entering into the distribution of parameters
is assumed to be uniform, but priors imposing smoothness on the estimated free energies and
diffusion coefficients are also considered.

Approaches related to the one presented here have been used to estimate molecular rate
processes from single-molecule photon-count statistics [19, 20]. Likelihood functions have also
been developed for the analysis of dynamical systems [21], and have been used for Bayesian
inference [22, 23]. However, the applicability of Bayesian approaches in the context of dynamical
systems is still a matter of debate [24]. Clearly, with poorly chosen priors, or inappropriate models,
a Bayesian approach is unlikely to lead to reliable results. Alternative approaches applied in the
analysis of dynamical systems, for instance, directly relate the local average drift and the spread
of trajectories at short times to the gradient of the free-energy surface and diffusion coefficient
[25]–[27]. In the context of coarse molecular dynamics simulations, such expressions based on
the short-time expansion of propagators have been used to estimate free energies and diffusion
coefficients [15, 28].

Here, I obtained accurate estimates of the underlying free-energy surface and of local
diffusion coefficients both for a simple 1D model, and for the dihedral-angle dynamics of a
peptide fragment in explicit water. The diffusion coefficients agree well with those obtained by
analysing a harmonically biased run using the method of Woolf and Roux [7] and the analytic
limit of their formula (see appendix A). Compared to the previous estimate of the diffusion
coefficient from the relaxation dynamics in a free-energy minimum [15], I found a slight speedup
of the diffusion (∼0.2 versus 0.15 rad2 ps−1). A relevant question is whether diffusive dynamics
is useful to describe complex motions in a molecular system, such as peptide conformational
changes. For alanine dipeptide in water, Bolhuis et al [29] used commitment probabilities to show
that the ψ dihedral angle should be a relatively poor reaction coordinate for the α-to-extended
transition. Nevertheless, with the diffusion coefficients estimated here, I expect a mean life time
of ∼450 ps in the α-helical minimum. That value is bracketed by the two estimates from explicit
MD simulations (∼400 ps from a 7-ns run with 607 water molecules, and ∼800 ps from a 24-ns
run with 265 water molecules). Even though this result suggests that diffusive dynamics, as
estimated after coarse-graining in time, is useful here, it is essential to examine the system for
significant deviations of the observed dynamics from the underlying model.
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Appendix A. Diffusion coefficient from autocorrelation functions of harmonically
restrained systems

From MD simulations with a harmonic biasing potential on the reaction coordinate Q, Woolf
and Roux [7] estimated both free energies and diffusion coefficients. Their expression for the
position-dependent diffusion coefficient uses the autocorrelation function of the ‘velocity’ Q̇
along the reaction coordinate,

Cv(t; Qi) = 〈Q̇(t)Q̇(0)〉i, (A.1)
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where the harmonic bias restrains Q near Qi. In terms of a Laplace transform, Ĉv(s; Qi) =∫ ∞
0 e−stCv(t; Qi) dt, Woolf and Roux arrive at the following expression [7]:

D(s; Qi) = − Ĉv(s; Qi)〈δQ2〉i〈Q̇2〉i

Ĉv(s; Qi)[s〈δQ2〉i + 〈Q̇2〉i/s] − 〈δQ2〉i〈Q̇2〉i

, (A.2)

where δQ = Q − 〈Q〉i. This expression was obtained by integrating the memory function to
estimate a friction coefficient in the presence of a harmonic potential. The local diffusion
coefficient is then obtained by extrapolating D(s) to s → 0:

D(Qi) = lim
s→0

D(s; Qi). (A.3)

One cannot immediately take this limit because, ideally, Cv(s; Qi) = 0 for the harmonically
restrained system and perfect sampling. Instead, a numerical extrapolation procedure is used in
which D(s; Qi) is plotted as a function of s and extrapolated from some chosen range in s to
s = 0.

However, it turns out that one can simplify the expressions given above, and bring them in a
more familiar form, by using the autocorrelation function of the position instead of the velocity.
With δQ(t) − δQ(0) =

∫ t

0 Q̇(t′) dt′ one obtains

∂

∂t
〈[δQ(t) − δQ(0)]2〉 = 2

∫ t

0
〈Q̇(t′)Q̇(0)〉 dt′ (A.4)

and thus

∂

∂t
CQ(t; Qi) = −

∫ t

0
Cv(t

′; Qi) dt′, (A.5)

where

CQ(t; Qi) ≡ 〈δQ(t)δQ(0)〉i (A.6)

is the autocorrelation function of the reaction coordinate (with the average removed) in biasing
window i. Laplace transformation of equation (A.5) produces

Ĉv(s; Qi) = s〈δQ2〉i − s2ĈQ(s; Qi), (A.7)

where I used that CQ(0; Qi) = 〈δQ2〉i. Substitution of equation (A.5) in equation (A.3) results
in

D(s; Qi) = 〈δQ2〉i〈Q̇2〉i[〈δQ2〉i − sĈQ(s; Qi)]

ĈQ(s; Qi)[s2〈δQ2〉i + 〈Q̇2〉i] − s〈δQ2〉i
2 . (A.8)

With CQ(s = 0; Qi) finite and the divergence of equation (A.2) removed, one can now take the
limit s → 0:

D(Qi) ≡ lim
s→0

D(s; Qi) = 〈δQ2〉i
2

ĈQ(0; Qi)
= 〈δQ2〉i

τi

, (A.9)
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Figure A.1. Estimating diffusion coefficients from (a) the Laplace transform,
equation (A.2) and (b) equation (1) as a function of the cutoff time t up to which
the positional autocorrelation function was integrated to estimate the correlation
time τ. Thick lines show results obtained by analysing a 240 ps biased MD run.
Thin lines are the results obtained by using the same run, but subdivided into five
blocks that were analysed separately. The open square in panel (a) indicates the
value of D obtained by extrapolating to s = 0 with a quadratic fit. The cross in
panel (b) is the value of D obtained by integration up to 3 ps. Those two values are
included in figure 3. The insets in (a) and (b) show the normalized autocorrelation
functions of the dihedral angle ψ and its velocity ψ̇.

where τi is the correlation time of the reaction coordinate in biasing window i,

τi =
∫ ∞

0 〈δQ(t)δQ(0)〉i dt

〈δQ2〉i

. (A.10)

Equation (A.9) is exact for an overdamped harmonic oscillator, and has been used, for instance,
to estimate diffusion coefficients in protein [10] and peptide folding [11].

Figure A.1 illustrates difficulties faced when estimating local diffusion coefficients from
the autocorrelation functions calculated in harmonically biased simulations. A 240 ps MD
simulation of alanine dipeptide in water was run as in [15], but with a harmonic restraint
potential k(ψ − ψ0)

2/2 added to keep ψ near ψ0 ≈ −0.3 rad. With a spring constant of k =
100 kcal mol−1 rad−2, S.D.∼0.074 rad forψ.As shown in figureA.1, the resulting autocorrelation
functions of position (ψ) and velocity (ψ̇) are highly oscillatory, making estimation of the
correlation time in equations (1) and (A.9), and of D(s) in equation (A.8) difficult. The resulting
estimates of D from var(ψ)/τ thus depend on the time range used to estimate τ. Equivalently, the
estimated limit of D(s) for s → 0 depends on the range of s used in the extrapolation (with large
s values giving high weight to the short-time correlations). Moreover, a singularity, caused by the
numerical instability of equation (A.2), makes the result dependent on the chosen extrapolation
method. Here, I used a quadratic fit for 3 < s < 10 ps−1. But despite these difficulties, both
methods produced D(ψ) values near those estimated with the Bayesian approach.
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