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Existing optimal estimators of nonequilibrium path-ensemble averages are shown to fall within the
framework of extended bridge sampling. Using this framework, we derive a general minimal-
variance estimator that can combine nonequilibrium trajectory data sampled from multiple
path-ensembles to estimate arbitrary functions of nonequilibrium expectations. The framework is
also applied to obtain asymptotic variance estimates, which are a useful measure of statistical
uncertainty. In particular, we develop asymptotic variance estimates pertaining to Jarzynski’s
equality for free energies and the Hummer—Szabo expressions for the potential of mean force,
calculated from uni- or bidirectional path samples. These estimators are demonstrated on a model
single-molecule pulling experiment. In these simulations, the asymptotic variance expression is
found to accurately characterize the confidence intervals around estimators when the bias is small.
Hence, the confidence intervals are inaccurately described for unidirectional estimates with large
bias, but for this model it largely reflects the true error in a bidirectional estimator derived by Minh

and Adib. © 2009 American Institute of Physics. [doi:10.1063/1.3242285]

I. INTRODUCTION

Path-ensemble averages play a central role in nonequi-
librium statistical mechanics, akin to the role of configura-
tional ensemble averages in equilibrium statistical mechan-
ics. Expectations of various functionals over processes where
a system is driven out of equilibrium by a time-dependent
external potential have been shown to be related to equilib-
rium properties, including free energy differences' and ther-
modynamic expectations.3’4 The latter relationship, between
equilibrium and nonequilibrium expectations, has been ap-
plied to several specific cases, such as the potential of mean
force (PMF) along the pulling coordinate’ (or other ob-
served coordinates®) in single-molecule pulling experiments,
RNA folding free energies as a function of a control
parameter,9 the root mean square deviation from a reference
structure, '’ the potential energy distribution'” and average,11
and the thermodynamic length.12

Compared to equilibrium sampling, nonequilibrium pro-
cesses may be advantageous for traversing energetic barriers
and accessing larger regions of phase space per unit time.
This is useful, for example, in reducing the effects of experi-
mental apparatus drift or increasing the sampling of barrier-
crossing events. Thus, there has been interest in calculating
equilibrium properties from nonequilibrium trajectories col-
lected in simulations or laboratory experiments. Indeed,
single-molecule pulling data have been used to experimen-
tally verify relationships between equilibrium and nonequi-
librium qualltities.13’14
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While many estimators for free energy differences>!>™7

and equilibrium ensemble averages can be constructed from
nonequilibrium relationships, they will differ in the effi-
ciency with which they utilize finite data sets, leading to
varying amounts of statistical bias and uncertainty. Charac-
terization of this bias and uncertainty is helpful in comparing
the quality of different estimators'® and assessing the accu-
racy of a particular estimate. The statistical uncertainty of an
estimator is usually quantified by its variance in the
asymptotic, or large sample, limit, where estimates from in-
dependent repetitions of the experiment often approach a
normal distribution about the true value due to the central
limit theorem. It is an important goal to find an optimal es-
timator which minimizes this asymptotic variance.

Although numerical estimates of the asymptotic variance
may be provided by bootstrapping (e.g., Ref. 19), closed-
form expressions can provide computational advantages in
the calculation of confidence intervals, allow comparison of
asymptotic efﬁcien(:y,l&20 and facilitate the design of adap-
tive sampling strategies to target data collection in a manner
that most rapidly reduces statistical error.”’™ In the
asymptotic limit, the statistical error in functions of the esti-
mated parameters can be estimated by propagating this vari-
ance estimate via a first-order Taylor series expansion. While
this procedure is relatively straightforward for simple estima-
tors, it can be difficult for estimators that involve arbitrary
functions (e.g., nonlinear or implicit equations) of nonequi-
librium path-ensemble averages.

Fortunately, the extended bridge sampling (EBS)
estimators,”***7% a class of equations for estimating the ra-
tios of normalizing constants, are known to have both
minimal-variance forms and associated asymptotic variance
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expressions. Recently, Shirts and Chodera?’ applied the EBS
formalism to generalize the Bennett acceptance ratio, " pro-
ducing an optimal estimator combining data from multiple
equilibrium states to compute free energy differences, ther-
modynamic expectations, and their associated uncertainties.
Here, we apply the EBS formalism to estimators utilizing
nonequilibrium trajectories. We first construct a general
minimal-variance path-average estimator that can use
samples collected from multiple nonequilibrium path en-
sembles. We then show that some existing path-average es-
timators using uni- and bidirectional data are special cases of
this general estimator, proving their optimality. This also al-
lows us to develop asymptotic variance expressions for esti-
mators based on Jarzynski’s equality"2 and the Hummer-
Szabo expressions for the PMF.>%* We then demonstrate
them on simulation data from a simple one-dimensional sys-
tem and comment on their applicability.

Il. EXTENDED BRIDGE SAMPLING

Suppose that we sample N; paths (trajectories) from each
of K path ensembles indexed by i=1,2,...,K. The path-
ensemble average of an arbitrary functional F[X] in path
ensemble i is defined by

<f>,EJdXF[X] plX], (1)

where p[X] is a probability density over trajectories,

pilX]=c;'q[X]; CFdeC]i[X], ()

with unnormalized density ¢[X]>0 and the normalization
constant ¢; (a path partition function). The above integrals, in
which dX is an infinitesimal path element, are taken over all
possible paths, X. EBS estimators provide a way of estimat-
ing ratios of normalization constants c;/c;, which will prove
useful in estimating free energies and thermodynamic
expectations.

To construct these estimators, we first note the impor-
tance sampling identity,

ciayq))i= [ J dx Qi[X]:| [dX a;[X] q{X]q][X]

Jax qiX]
JdX a;[X] q[X] g, X]
) U “ q"m} fax Xl
=Cj<aijqi>'9 3)

where j is another path-ensemble index, ;[ X] is an arbitrary
functional of X, and all normalization constants are nonzero.

Summing over the index j in Eq. (3) and using the
sample mean, I\F E 1, F1X;,]. as an estimator for (F),, we
obtain a set of K estimating equations, indexed by
i=1,...,K,
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K e N; K o N;
E ﬁl aij[Xin] f]j[Xm] = 2 1_\7L a'ij[Xjn] f]i[Xjn]’
Jj=1*%i n=1 j=1 "V n=1

(4)

whose solutions yield estimates ¢; for the normalization con-
stants c¢;, up to an irrelevant scalar multiple. Each path, X;,, is
indexed by the ensemble i from which it is sampled, and the
sample number n=1,2,...,N;. This coupled set of nonlinear
equations defines a family of estimators parametrized by the
choice of a;[X], all of which are asymptotlcally consistent,
but whose statlstlcal efficiencies will Vary
With the choice,

N; &'
o[ X]= —A% (5)
’ SN &gl xT

Eq. (4) simplifies to the optimal EBS estimator,

é%!ﬁ Nka[X‘]]_l. ©)

=1 | k=1 Ck Q[ ]n]

This choice for a,j[X] is optimal i m that the asymptotic vari-
ance of the ratios ¢;/¢; is minimal.***” These equations may
be solved by any approprlate algorithm, including a number
of efficient and stable methods suggested by Shirts and
Chodera.”’

The asymptotic covariance of Eq. (6) is estimated by

=M"(Iy,- MNM")*M, (7)

where the elements of @ are the covariances of the loga-
rithms of the estimated normalization constants, O
=cov(%., %), and %=In ¢,.%% The superscript (-++)* denotes
an appropriate generalized inverse, such as the Moore—
Penrose pseudoinverse, Iy is the NXN identity matrix
(where N=3K N, is the total number of samples), N
=diag(N;,N,,...,Ng) is the diagonal matrix of sample
sizes, and M is the N X K weight matrix with elements,

M=l (8)
iV 6l X

In this matrix, the distribution from which samples are drawn

from is irrelevant and X is only indexed by n=1,... ,N. We

note that the sum over each column, EnNle,ﬁ, is unity. (Ef-

ficient methods for computing O are discussed in Appendix

D of Ref. 27.)

For arbitrary functions of the logarithms of the normal-
ization constants, &(¥;,...,%) and A, ..., ),
asymptotic covariance cov(¢, fp) can be estimated from ©
according to

)

through first-order Taylor series expansion of ¢ and .

Downloaded 08 Jan 2010 to 169.229.195.176. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



134110-3 Nonequilibrium path-ensemble averages

lll. GENERAL PATH-ENSEMBLE AVERAGES

. . 27,29 . .

Following previous work, we estimate nonequilib-
rium expectations by defining additional path ensembles with
“unnormalized densities,”

47[X]= FIX1g[X]: cs = f dX q[X]. (10)

Using Egs. (1), (2), and (10), we can express nonequilibrium
expectations as a ratio of the appropriate normalization con-
stants, (F);=cy/c;. Notably, this can be estimated without
actually sampling path ensembles biased by some function of
FIX] (although it is sometimes possible to do so in computer
simulations®™”" via transition path samphng%2 ). If no paths

are drawn from the path ensemble corresponding to qr, (X1,

then Nz=0 and it is no longer required that g, [X]>0. 2027

For each defined path ensemble, the welght matrix M is
augmented by one column with elements,

FIX,] qlX,]
Mg =03 e (11)
PN X,
The estimator for the path-ensemble average, i}%(f},», can
be expressed in terms of weight matrix elements,

N
?}= E Mnif[Xn]v (12)

n=1

and its uncertainty estimated by

P(F) = ‘7—1'2(6]-‘1-?’- - Zé]-'ii +0,). (13)

IV. EXPERIMENTALLY RELEVANT PATH
ENSEMBLES

The above formalism is fully general, and may be ap-
plied to any situation where the ratio ¢[X]/q[X] can be
computed. For arbitrary path ensembles, unfortunately, cal-
culating this ratio is only possible in computer simulations
unless certain assumptions are made about the dynamics.34
In a few special path ensembles, however, we can use the
Crooks fluctuation theorem>>° to estimate this ratio, allow-
ing us to apply the EBS estimator to laboratory experiments.
We examine these here.

First, consider a forward process, in which a system,
initially in equilibrium, is propagated under some time-
dependent dynamics for a time 7, which may cause it to be
driven out of equilibrium. The time dependence of the evo-
lution law (e.g., Hamiltonian dynamics in a time-dependent
potential) is the same for all paths sampled from this
ensemble.

For a sample of paths only drawn from this ensemble,
the optimal EBS estimator of (F); reduces to the sample
mean estimator, which we call the unidirectional path-
ensemble average estimator,

J. Chem. Phys. 131, 134110 (2009)

——Ef[xfn (14)
fn 1

and the associated asymptotic variance from Eq. (9) reduces
to the variance of the sample mean (see Appendix A)

A(F) = [ NfE (FIX;] —?fﬁ] : (15)
n=1

The forward process has a unique counterpart known as
the reverse process. Here, the system moves via the opposite
protocol in thermodynamic state space; after initial configu-
rations are drawn from the final thermodynamic state of the
forward path ensemble, they are driven toward the initial
state. If the dynamical law satisfies detailed balance when the
control parameters are held constant at each fixed time ¢, the
path probabilities in the conjugate forward and reverse path
ensembles are related according to the Crooks fluctuation
theore:111,35’36

plX]_afXle, _

pIX1  qlX1¢s

in which X is the time reversal, or conjugate win,”” of X,
Af,=-In(c,/cy) is the dimensionless free energy difference
between thermodynamic states at times 0 and ¢ (with 7 being
the fixed total trajectory length), and w,[X] is the appropriate
dimensionless work. With Hamiltonian dynamics, for ex-
ample, this work is w[X]=B[(dt’ (?H/ ). For convenience,
we define the total dissipative work as Q[X]=w [X]-Af .
We will refer to data sets which only include realizations
from the forward path ensemble as “unidirectional,” and
those with paths from both path ensembles as “bidirec-
tional.” Notably, sampling paths from these conjugate en-
sembles and calculating the associated work w[X] are pos-
sible in single-molecule pulling experiments as well as
computer simulations (cf. Refs. 6 and 14). To combine bidi-
rectional data to estimate (F),, we apply the Crooks fluctua-
tion theorem™°® to Eq. (6) and divide by ¢, leading to

Ny N,
]__ Ef Jf[an] + f[Xm]

1=t Nyt Ny e M5l 001 Nyt N, e %]

eWT[X]_AfT = eﬂ[X] , (16)

(17)

which is bidirectional path-average estimator of Minh and
Adib,28 derived here by a different route which demonstrates
its optimality. (The asymptotic variance estimator for this
equation is written in a closed form in Appendix B.) In these
bidirectional expressions, samples drawn from the reverse
path ensemble are time reversed to obtain the paths X,,,. The
dissipated work estimate, Q[X]=w [X]-Af,, requires an
estimate of Af.. A method for obtaining this estimate will be
described next.

V. FREE ENERGY
Jarzynski’s equality, 12

e M= (™), (18)

relates nonequilibrium work and free energy differences. To
facilitate the use of EBS in Jarzynski’s equality, we define a
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path ensemble by choosing F[X]=¢ X in Eq. (10), leading
to

a,[X]= e X fx]; ¢, = f dX e Mg fx].  (19)

When only unidirectional data is available, the optimal
EBS estimator for Jarzynski’s equality is

N

N 1 A
e M= — > gilXp] (20)
Nf n=1

and its asymptotic variance is straightforwardly given by er-
ror propagation.38 Estimators’ '’ and asymptotic
variances®>* have also been developed for unidirectional
importance sampling forms of the equality.

When bidirectional data is available, the same choice of

FIX] in Eq. (17) gives the estimator

N,

. f
Vi S

= + Py .
e A S A

e_WI[Xf'l] Nr e_wl[Xrn]

(21)

In this equation, choosing =0 or t=7 leads to an implicit

function mathematically equivalent to the Bennett
. 3,15 . . 2841

acceptance ratio method, as previously explained.

The asymptotic variance of A f, is calculated by augmenting
the matrices M and © and using ¢= y=Af;=-In(c, /cf) in
Eq. (9), such that

?(Af)=0,, -20, +0. (22)

VI. POTENTIAL OF MEAN FORCE

Building on Jarzynski’s equality, Hummer and Szabo de-
veloped expressions for the PME’* the free energy as a
function of a order parameter rather than a thermodynamic
state, which may be used to interpret single-molecule pulling
experiments. In these experiments, a molecule is mechani-
cally stretched by a force-transducing apparatus, such as a
laser optical trap or atomic force microscope tip (cf. Ref. 6).
The Hamiltonian governing the time evolution in these ex-
periments, H(x;t)=Hy(x)+V(z(x);1), is assumed to contain
both a term corresponding to the unperturbed system, H(x),
and a time-dependent (typically harmonic) external bias po-
tential imposed by the apparatus, V(z;¢), which acts along a
pulling coordinate, z(x). As the coordinate z,=z(x(¢)) is ob-
served at fixed intervals A¢ over the course of the experi-
ment, we will henceforth use r=0,1,...,T as an integer time
index. We calculate the work with a discrete sum as w;,
=Ef1:l[vn(zn) - Vn—l(zn):]a where Vn(z) = V(ZJIAt)

While the expressions in Sec. V provide an estimate of
relative free energies of the equilibrium thermodynamic
states defined by H(x;1), they are not immediately useful as
an estimate for the PMF along 204 By applying the non-
equilibrium estimator for thermodynamic expectations,3’4 it
was shown that the PMF in the absence of an external po-
tential is given bys’6

J. Chem. Phys. 131, 134110 (2009)

780 = (8(z - z ey eV, (23)

where the dimensionless PMF, gy(z), is defined in relation to
the normalized density as go(z)=—In po(z)—dg. In this
equation, Jg is a time-independent constant, e %
=[dx e H&0) [dx ¢=Hox) 6

This theorem [Eq. (23)] can be used to develop estima-
tors for the PMF by replacing the delta function using a
kernel function of finite width, such as

AZ,1 -2z 5

he-z)=1, (24)

else.

The width Az must be small so that ¢"%) does not vary
substantially across it.

As this theorem is valid at all times, it is possible to
obtain an asymptotically unbiased density estimate p, from
each time slice. It is far more efficient, however, to estimate
the PMF using all recorded time slices. While any linear
combination of time slices will lead to a valid estimate, cer-
tain choices will be more statistically efficient (leading to
lower variance) than others. One way to combine time slices
is to use the asymptotic covariance matrix in the method of
control variates,” leading to a generalized least-squares op-
timal estimate of the PMF. Unfortunately, we empirically
found this approach to be numerically unstable. A more nu-
merically stable approach, which was proposed by Hummer
and Szabo,”® is based on the weighted histogram analysis
method,43’44 which was generalized t0,45’47

5(2) = 2m(2)pi(2) .
bo 2 ul2) |

While this weighting scheme is optimal, in a minimal-
variance sense, for independent samples from multiple equi-
librium distributions, these assumptions do not hold for time
slices from nonequilibrium trajectories. However, Oberhofer
and Dellago did not observe substantial improvement in
PMF estimates when using other time-slice weighting
schemes.*®
By defining the path ensemble,

p1,(z) = VAT, (25)

qzt[X] = 5(Z - Zz)e_wt[x]qf[x]; Czt = f dX qz,[X], (26)

and making use of Jarzynski’s equality [Eq. (18)] for e‘Aft,
we can write Hummer and Szabo’s PMF estimator as

El(ézt/éwt)

e-é’o(z) ="t
3V e, )

(27)

which can be readily analyzed in terms of EBS. While Hum-
mer and Szabo proposed using the unidirectional path aver-
age estimator [Eq. (14)] to estimate the expectations in Eq.
(27), Minh and Adib later applied a bidirectional estimator
[Eq. (17)], leading to significantly improved statistical
properties.

The asymptotic variance of these estimators can be de-
termined by choosing ¢==py(z) in Eq. (9). For the bidi-
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FIG. 1. Comparison of estimators for Af,. This figure is similar to Fig. 1 of
Ref. 28, except that error bars are now included and the sample size is
halved. The unidirectional estimator [Eq. (20)] is applied to 250 forward
(rightward triangles) or reverse (leftward triangles, time reversed) sampled
paths, and the bidirectional estimator [Eq. (21)] to 125 paths in each direc-
tion (upward triangles). The exact Af, is shown as a solid line. Error bars
(sometimes smaller than the markers) denote one standard deviation of Af',,
estimated using the expressions presented here. The vertical dashed lines are
at the times considered in Fig. 4.

rectional estimator, the matrices M and ® will contain one
column each for the f and r path ensembles, and 7+1 col-
umns each for the path ensembles associated with {w,}_, and
{z}L,- The relevant partial derivatives are

apy(z)

PO - po(2), (28)
&’)/f

dpo(2) __ L& N N oV EL (29)
ﬁ‘yﬂ)t D CWt Dz th ’

dpo(z) 16

=——, 30
dy, De,, G0

where y;=In ¢;, N =2/(c,/c,) is the numerator of Eq. (27),
and D:E,e‘v(z")(cf/ ¢,,) 1s its denominator. These lead to an
estimate for o2(p(z)). Finally, the asymptotic variance in the
PMF is given by the error propagation formula, 02(gy(z))
~ 0*(po(2))/ Po(2)*.

Vil. ILLUSTRATIVE EXAMPLE

We demonstrate these results with Brownian dynamics
simulations on a one-dimensional potential with Uy(z)
=(5z2°=10z+3)z, which were run as previously described.”®
A time-dependent external perturbation, V(z;1)=k,(z
—7(1))?/2, with k=15 is applied, such that the total potential
is U(z;1)=Uy(z)+V(z;1). After 100 steps of equilibration at
the initial Z(¢), z(¢) is linearly moved over 750 steps from
—1.5 to 1.5 in forward processes and 1.5 to —1.5 in the
reverse. The position at each time step is calculated using the
equation z,=z,_;—(dU(x,_,)/dx)DAt+(2DAf)'"R,, where the
diffusion coefficient is D=1, the time step is Az=0.001, and
R,~N(0,1) is a random number from the standard normal
distribution.

As previously noted, unidirectional sampling
leads to significant apparent bias in estimates of Af, (Fig. 1).
In addition to the increased bias as the system is driven fur-
ther from equilibrium, we further observe that the estimated
variance also increases. Bidirectional sampling, on the other

28,49-51

J. Chem. Phys. 131, 134110 (2009)

(b) Bidirectional

-1 0 1
Position

FIG. 2. Comparison of PMF estimators. This figure is similar to Fig. 2 of
Ref. 28, except that error bars are now included and the sample size is
halved. In the left panel, the unidirectional Hummer and Szabo estimator is
applied to (a) 250 forward (rightward triangles) or 250 reverse (leftward
triangles) sampled paths. In the right panel, the bidirectional estimator is
applied to 125 sampled paths in each direction (upward triangles). The exact
PMF is shown as a solid line in both panels. Error bars (sometimes smaller
than the markers) denote one standard deviation of Agy(z), estimated using
the expressions presented here. The vertical dashed lines are at the positions
considered in Fig. 4.

. . . . . . 28
hand, leads to a significant reduction in bias and variance,

such that free energy estimate is within error bars of the
actual free energy. Because Af, represents the estimated free

energy difference with respect to 7, the estimated ol(Aﬁt)
increases with ¢, becoming equal to the well-known Bennett
acceptance ratio asymptotic variance estimate>*! when r=17.

Similar trends are observed with the Hummer—Szabo
PMF estimates (Fig. 2). For unidirectional sampling, the
finite-sampling bias and estimated variance increases when
the PMF is far from the region sampled by the initial state.
With bidirectional sampling, the bias is significantly reduced;
the PMF estimate is largely within error bars of the actual
PMF.

To analyze these trends more quantitatively, we repeated
the experiment 1000 times. For both Af, and g((z), we cal-

culated the bias as 5(7-}) =(1/ S)Ele(?f,s—(]-'}) and the stan-
dard deviation as 6(7—}): \/ (1/8)=5 (7-}’3—(.7:})2, where S

s=1
=1000 is the number of replicates. The results from these
more extensive simulations support our described trends
(Fig. 3). For unidirectional sampling, the bias in both Af, and

go(x) appear to significantly increase around the barrier

0.6
Time (s)

Position

FIG. 3. Ratio of estimator bias to standard deviation. This ratio is calculated
for the (a) free energy and (b) PMF, using 1000 independent estimates. Each
estimate is obtained and the type of path sample is indicated as in Figs. 1
and 2. The vertical dashed lines are at the times/positions considered
in Fig. 4.
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Observed fraction

0 0.5 1 0 05 1
Predicted fraction

FIG. 4. Validation of asymptotic variance estimators. Predicted vs observed
fraction of 1000 independent estimates that are within an interval of the true
value for [(a)—(c)] Af, and [(d)—(f)] go(z) at the indicated times or positions.
Each estimate is obtained and the type of path sample is indicated as in Figs.
1 and 2. Error bars on these fractions are 95% confidence intervals calcu-
lated using a Bayesian scheme described in Appendix B of Chodera et al.
(Ref. 62) except that, for numerical reasons, the confidence interval was
estimated from the variance of the beta distribution assuming approximate
normality, rather than from the inverse beta cumulative distribution function.

crossing. In the bidirectional free energy estimate, however,
the bias is small relative to the variance at all times. Notably,
in the bidirectional PMF estimate, there is a small spike in
the bias near the barrier, potentially due to reduced sampling
in the region.

While in the large sample limit, the bias in the unidirec-
tional estimate is expected to be small compared to the
variance,50 our distribution of unidirectional e/t estimates
is significantly skewed and does not resemble a Gaussian
distribution expected by the central limit theorem (data not
shown). Hence, the asymptotic limit has not been reached
and the large relative bias is caused by insufficient sampling
of rare events with low work values that dominate the expo-
nential average.37 Larger sample sizes would be necessary
for the distribution of estimates to be normally distributed
and for the error to be dominated by the variance (which we
estimate here) rather than the bias.

The accuracy of variance estimates may be assessed by
comparing predicted and observed confidence intervals. If
the estimates are indeed normally distributed about the true
value, about 68% of estimates from many independent rep-
licates of the experiment should be within one standard de-
viation of the true value, 95% within two, and so forth. Fig-
ure 4 compares confidence intervals predicted using the
described asymptotic variance estimators and the actual frac-
tion of estimates within the interval.

We observe that the accuracy of our asymptotic variance
estimate in characterizing the confidence interval largely de-

pends on the presence of bias. In the bidirectional Af‘, esti-

J. Chem. Phys. 131, 134110 (2009)

mate, where there is little bias, the asymptotic variance esti-

mate works very well. For the unidirectional A f‘, estimates, it
works well near the initial state but underestimates the error
as the system is driven further away from equilibrium, con-
curring with the bias trend. In the bidirectional PMF esti-
mate, the asymptotic variance estimate accurately describes
the confidence interval except near the barrier, where it
slightly underestimates the uncertainty, probably due to the
small spike in bias.

In the regime where the bias is much smaller than the

variance, B< &, the asymptotic variance estimate provides a
good estimate of the actual statistical error in the estimate.
This also permits us to model the posterior distribution of
quantity being estimated as a multivariate normal distribu-

tion with mean F and covariance ©. Doing so provides a
route to combining estimates from independent data sets col-
lected from different path ensembles—such as different pull-
ing speeds or from equilibrium and nonequilibrium path
ensembles—without knowledge of path probability ratios.
This is achieved by maximizing the product of these poste-
rior distributions in a manner similar to the Bayesian ap-
proach for estimating Af, described in Ref. 17.

VIil. DISCUSSION

In addition to the described experimentally relevant ap-
plications, we anticipate the use of our estimator in conjunc-
tion with a number of computational techniques. Recent
work sugge:sted30’3l’40’52’53 that the convergence of Jarzyns-
ki’s equality may be improved by sampling from an alternate
path ensemble, biased according to the work. Unfortunately,
the optimal bias for this path ensemble includes the free en-
ergy itself,” limiting its practicality. However, an iterative
procedure in which progressively improving free energy es-
timates are used in successive biased path ensembles is fea-
sible, and our estimator provides a way to combine all of the
data. Free energy estimates may also be improved by opti-
mizing the switching protocol in thermodynamic state space
to minimize the dissipated work.”*~®" When the optimal pro-
tocol is known,sgf61 the bidirectional form of our estimator is
likely to improve free energy estimates over a unidirectional
procedure. In the general case, protocol optimization may
require an iterative procedure for which our estimator can
also be used to combine the data.

Lastly, while we emphasized the use of EBS in nonequi-
librium path-ensemble averages, the formalism described in
Secs. II and III is equally applicable to other path ensembles.
Given the explosion in popularity of transition path
sampling,32’33 in which novel path ensembles can be de-
signed and sampled from, our estimator should find use in
some of its applications.
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APPENDIX A: CLOSED-FORM EXPRESSION FOR THE
ASYMPTOTIC VARIANCE, GIVEN UNIDIRECTIONAL
DATA

In this appendix, we show that given unidirectional data,
the optimal EBS estimate is the sample mean and its vari-
ance simplifies to the variance of a sample mean. First, con-
sider the application of the optimal EBS estimator, Eq. (6), to
estimating a nonequilibrium path-ensemble average from a
unidirectional data set,

N, _
f?f.=2f [&E’[—X’il 1, (A1)
P L ¢ ar Xl
Nf A
_s Xnléy (A2)

n=1 Nf

Dividing both sides by ¢, we obtain the sample mean esti-
mator,

1Y

F =
f Nf “~

(A3)

We shall now simplify the asymptotic variance estimate
by closely following the procedure of Shirts and Chodera.”’
When M has full column rank, O can be written as (Eq. D7
of Ref. 27)

O=[(M"™M)"' =N +b1,15]", (A4)

where b is an arbitrary multiplicative factor and 1 is a 1
X K matrix of ones.
The weight matrix M consists of two columns,

_GafXnl L

nf= 7 A = (AS)
Ny &7'qf X)) Ny
A1
B Cff»qf/[an] _ ]:[an] (A6)
nF,— A1 - =
TONp G gdXpl  NeFy
obtained by applying Egs. (8) and (11). This leads to,
N N
f f a; a
MTM= | Nf 5 :|: 11 12:|- (A7)
N, En':1 Mn]:f a dxp
The matrix MM has the determinant
1S,
= M 5, A8
Ny ,;_1 N "

which allows us to write the inverse covariance matrix as

J. Chem. Phys. 131, 134110 (2009)

@—Nﬁb —@+b
A D : D
0 = (A9)
a
-4y @+b
D D

By applying the same steps as Appendix E of Shirts and
Chodera,27 we then obtain the determinant

o=

5 (A10)

where a=a,=a,;. We then obtain the asymptotic covariance
estimate

ap a
—+b —=-b
~ D | D D
0O=— (A1)
4ab| a as
—=-b ——T-Ni+b
D D

To estimate the variance, we apply Eq. (13), leading to

P (FD) = F(Opr, 20 1+ Op), (A12)
Nf 1
=f2<2 M? —), (A13)
4 n=1 ]:f N
= > Xl - 7 (A14)
n=1 N]% Nf’
1] % , [1 % ?
=" 5 f[Xn] =\ f[th] s
Ne| Ny 77 N
(A15)
1 [ 1 Nf
=—| = 2 (FX]-F)*|. (A16)
Ne[ Ny oz ! g

which is the variance of a sample mean estimate.

APPENDIX B: CLOSED-FORM EXPRESSION FOR THE
ASYMPTOTIC VARIANCE, GIVEN BIDIRECTIONAL
DATA

In this appendix, we obtain a closed-form expression for
the asymptotic variance of the optimal EBS estimate for 7—},
given bidirectional data. We will follow a similar procedure
as in Appendix A. For the bidirectional case, the weight ma-
trix M consists of three columns, M=[mm my ], where m;
is a column matrix of weights from Egs. (8) and (11) corre-
sponding to path ensemble i. The elements of M are

_ &'qfX,]
nf — N 1 1 ~
fo Qf[xn] +Nr Cy qr[Xn]
1

o N\t
Ty, i e By

M
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_ A_lqr[xfn]
N é'qfX, ]+ N, &'q[X,]
__
- Nf eﬁ[xﬂ] +Nr
=N,'e(-L,), (B2)
2
EE(Ln) NfNr E(Ln) 6(_ Ln)
N
M™ = e(L,)e(-L, e(-L,)?
ngN,()( ) Nz( n)
1 X 1
—z<f£]>e(Ln)2 (ﬂ ])e(L)e( L,
| N\ Ty NN\ F;

Using the determinant,
2 2 2
D==agpjy+ 205785y 5, = dyglr, = pr e + 7,70yt

we write the inverse covariance matrix estimator as

J. Chem. Phys. 131, 134110 (2009)
M, 5= ( ( )N;‘e(Ln),

(B3)
where € is defined as the Fermi function, €(L,)=

FX]
Fy

FIX]
Fy

) 1
Ni+N,e -0Lx,]

1/1+e7tn,

and we define L,=W[X,]-A f,+ln(Nf/ N,). This allows us to
write MM as

2( )e(LnV
f

.7. ) E(Ln) 6(_ Ln)

NfN (B4)

FX]

2
7 ) eL,)’?

N%
(BS)

afrar]:f - af]:farr +b

2
Ayt AFFAr CNesb —aFFaptarrdrr,
D / D
2
A —arFaptaprdr, —dgr tarrasg
0= [l 7 ey VS
D D
aprdrr, af]-‘fa lefﬂlfr—af;‘arfE
D D

By applying the same steps as Appendix E of Shirts and
Chodera,27 we obtain the determinant

9b(a%, Nf+ af, a,, Nf)
D .

67| = (B7)

Applying Eq. (13) to © and simplifying, it can be shown
that the variance estimate is

P(FP = Fi(O5,-205,+0p), (B8)

_4FF Apr— dprfp— dpr ey, t dgp dry,

B9
afr(afr N)‘ +a,, Nr) ( )
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