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We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics
simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood
function constructed as a product of the propagators provides a posterior distribution of the free coefficients
in the rate matrix determining the Markovian master equation. Extensions to non-Markovian dynamics are
discussed, using the trajectory “paths” as observations. The Markovian approach is illustrated for the filling
and emptying transitions of short carbon nanotubes dissolved in water. We show that accurate thermodynamic
and kinetic properties, such as free energy surfaces and kinetic rate coefficients, can be computed from coarse
master equations obtained through Bayesian inference.

1. Introduction

Molecular dynamics (MD) simulations on classical or quan-
tum mechanical energy surfaces can provide detailed insights
into molecular processes. However, large system sizes, long-
range interactions, and slow global dynamics combined with
the necessity to integrate accurately even the fastest motions
result in often severe time-scale limitations. As a consequence,
rare transitions are often poorly sampled or remain inaccessible
to conventional MD.! Formally, fast molecular motions can be
integrated out using the projection operator formalism.> How-
ever, an analytic construction of generalized Langevin equations
for specific dynamic variables in a complex molecular system
remains a challenge. The coarse molecular dynamics (CMD)
approach® provides a framework to extract the projected
dynamics on the fly from unbiased simulations of multiple
replicas. Running multiple MD simulations can result in a rapid
exploration of configuration space3™ and is a key element of
rate calculations using the reactive-flux method.'"~'3 In the
simplest CMD approach,® multiple unbiased and independent
simulation trajectories are initialized with prescribed coarse
variables (e.g., dihedral angles or the radius of gyration of a
polymer) and then run for a time long enough for the distribution
along the fast directions to saturate. From the observed collective
behavior, i.e., the drift and spread along the coarse variables
parametrizing the slow manifold, new initial conditions are
created depending on the objective (e.g., finding free energy
minima or saddle points). This approach immediately lends itself
to a probabilistic interpretation in which ensembles of inde-
pendent replica simulations sample local propagators.’> With
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similar techniques, a master equation can be constructed when
the simulator is not MD, but Monte Carlo.'* Such “master
equation” approaches can be used to estimate the long-time
dynamics, and several formalisms related to the one developed
here have been discussed.>~20

Here, we introduce a global Bayesian analysis of short
simulation runs that will allow us to infer the slow dynamics in
the projected coordinates. Likelihood-based and Bayesian ap-
proaches have also been used for the analysis of single-molecule
experiments?'?? and nonlinear dynamical systems.>3~%> We will
construct a coarse master equation represented by a rate matrix,
from which we estimate system properties and their statistical
uncertainties. From the estimated dynamics projected onto
coarse variables, we will obtain free energy surfaces and kinetic
rate coefficients.!! We will illustrate our general procedure by
analyzing molecular dynamics simulations of the filling and
emptying of a carbon nanotube in water.?

2. Theory

2.1. Master Equation. We start with Zwanzig’s development
of a generalized master equation for Newtonian dynamics in
configuration space.?” If the complete configuration space is
divided into N nonoverlapping cells that together span the whole
space, then the probability p(f) of being in cell 7 at time ¢ satisfies
a generalized master equation,

b0 == [yt Y Kyt—1) p(t) $))
J

where pi(f) = dp,(¢)/dt, and Kij(¢) is the transition memory kernel
given formally in terms of projections.”’” The absence of a
“random force” (i.e., an inhomogeneous term) in eq 1 requires
that nonequilibrium in the initial conditions (r = 0) is limited
to the partitioning of replicas between different cells j. For
replicas within a given cell j, the phase—space variables should
accordingly be drawn from an equilibrium distribution.?’
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Zwanzig’s generalized master equation, eq 1, forms the basis
for a propagator based approach to configurational dynamics.
Specifically, our goal is to estimate the elements Kj; of the
transition memory kernel from multiple MD simulations. For
simplicity, we will first assume that the memory is sufficiently
short such that after a brief initial simulation period we can
approximate eq 1 with a Markovian rate equation,

D= Y Rypi(1) )
J

where R; = 0 are the constant elements of a rate matrix R,
>iR;j = 0. Equation 2 can be solved formally in terms of a matrix
exponential,

P = Y €")p,0) 3)
J
From this relation we can identify the propagators,

p(idj0) = ™), )

where p(i t[j,0) is the conditional probability that a trajectory
starting from cell j is in cell i at time 7. The requirement of
equilibrium initial conditions within cell j is satisfied if one uses
all configurations in cell j during a long equilibrium run (or a
random subset thereof). If instead initial conditions are prepared
using short MD initialization runs,’ the biasing potential driving
the system into cell j should be flat within j, and the simulation
should be long enough to obtain a representative sample. To
correct for a nonuniform bias within cells, individual replica
runs can be given a weight proportional to the inverse Boltz-
mann factor of the initial biasing potential.

2.2. Likelihood Function. In the following, we will analyze
replica simulation runs using Bayesian inference to estimate the
rate matrix R. As will become clear, the same approach can be
used to obtain also a maximum-likelihood estimate of the rate
matrix.

According to the generalized master equation, eq 1, we set
up initial conditions for independent replica runs within cells j.
All other variables are drawn from equilibrium distributions.
During the subsequent MD simulations, some of the replicas
will cross into other cells i. Consider that we have made the
following observations in replica runs oo = 1, 2, .... At a time
1o after starting run o from cell jg, the system is found in cell
iq. Under the assumption of the kinetic model eq 2, the
likelihood of such an observation is p(iq.taljo.0) = [eXp(teR)]iyjq-
Given the model eq 2, the likelihood of a series of such
observations (assuming that they are independent!) is

L= Hp(iwta[ja,()) = H(e"‘k)i&ja ®)

In eq 5, we implicitly assume that the dynamics are Markovian
on the time scale #, of the observations. For non-Markovian
dynamics, our observations are the actual paths, observed at
discrete times along the simulation trajectories. The likelihood
of observing a path?® is given by a generalized path action
functional. For the discrete time steps of a simulation, the
probability to observe a particular path iy — i} — ... = i, is
given by a product

pliy—iy—..—i) =

piy) p(lig) p(islig—i)) === p(ilig=i, .., ) (6)

where p(ix|ig—i1—...~ix—1) is the conditional probability of
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reaching cell i for a given preceding path iy — i; — ... = ix—1.
The likelihood of observing a series of paths in independent
trajectories is then the product of the p(iy—=i;—...—iy).

2.3. Bayesian Analysis of Replica Simulations. Bayesian
Inference. Here, we restrict our analysis to the Markovian case.
By monitoring the dynamics of the individual replicas only after
a short relaxation time, we hope to avoid the initial non-
Markovian dynamics. With this assumption, we use a Bayesian
approach to obtain a posterior distribution of the model
parameters (here: the coefficients of the rate matrix R) from
the trajectory data through®

p(parameters|data) o« p(data|parameters) p(parameters) (7)

where p(data|parameters) = L is given by the likelihood function
of eq 5. In the following, we assume a uniform prior distribution
of the model parameters, p(parameters) = 1, such that

p(parameters|data) o L ®)

Note that the assumption of a uniform prior reflects a particular
choice of parameters, and correspondingly of an integration
measure in parameter space.

Rate Matrix. Equation 8 forms the basis for inferring the
unknown coefficients of the rate matrix R describing the coarse
projected dynamics in the Markovian limit. As an important
constraint, R must satisfy detailed balance, which reduces the
number of free parameters. If we divide the configuration space
into N cells i, the corresponding matrix R has dimensions N x
N. R can be expressed uniquely in terms of N — 1 equilibrium
probabilities P; (with 1 = P; > 0 and the Nth P; given by
normalization, Y;P; = 1) and N(N — 1)/2 rate coefficients:

R;>0 ifi>j

Ry={~ YR ifi=j )
(1)
RP/P; ifi<j

The total number of free coefficients in a general N x N rate
matrix R is thus (N + 2)(N — 1)/2. This number can be smaller
if the structure of the rate matrix is known. For one-dimensional
nonperiodic motion, for instance, R is tri-diagonal, resulting in
only 2N — 2 free coefficients.

Eigensystem Construction of Propagators. To obtain the
propagators entering the likelihood function, we could numeri-
cally integrate the first-order ordinary differential equations of
eq 2. Here, we instead use an eigenvalue technique. By
constructing R from equilibrium probabilities P; and the
elements R;; below the diagonal, we can use straightforward
diagonalization of real symmetric matrixes to calculate the
matrix exponential in eq 5. We first define a symmetric matrix
R,-j = P, V2R;PM2. Tts matrix U of real eigenvectors satisfies
RU = UA, where A = diag(1y,...,/x) is the diagonal matrix of
real eigenvalues. With UUT = UTU = 1 (where T denotes the
matrix transpose and 1 is the unity matrix), it follows that e’®
= UeMU” with e = diag(e*,....e~). The matrix exponen-
tial describing the propagators then becomes e® =
diag(P,"2,... Py'"?)e® diag(P,;~'2,...,Py~ 1) and can be calculated
by diagonalization of the real symmetric matrix R.

Monte Carlo Sampling of Rate Coefficients. To infer the
parameters of the coarse master equation, i.e., the rate coef-
ficients R;;, we will sample parameters according to eq 8 using
the Metropolis Monte Carlo algorithm 3 Random modifications
of the parameters of R (i.e., Rjj for i > jand P; for i > 1) will
be accepted and rejected according to the posterior distribution,
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eq 8, given by the likelihood function, eq 5. This procedure
allows us to sample parameter values consistent with the data.
In this Monte Carlo approach, the log-likelihood, —In L, serves
as an effective energy function in parameter space. From the
Monte Carlo sampling in parameter space, we obtain distribu-
tions of the rate coefficients R;;. Moreover, for the sampled
parameters, we can calculate system properties determined by
R, such as the difference in free energy, —In P;/P;, between
cells 7 and j, or the slowest rate of relaxation (i.e., the largest
nonzero eigenvalue of R). The distribution p(z|data) of a system
property T(R) can be calculated from the rate matrices R
obtained during the Monte Carlo sampling in parameter space,

p(tldata) = (37 — 7(R)]), (10)

where the average is over parameters in R weighted with the
likelihood function L according to eq 8. The distribution
p(z|data) provides us with “error bars” for the inferred value of
7. In addition to the average, T = f7p(r|data) dr, we will report
credibility intervals that cover the equivalent of 1 standard
deviations, as obtained from the points where the cumulative
distribution, P(r|data) = f*_p(z'|data) dz’, reaches 0.1587 and
1 — 0.1587, respectively.

2.4. Maximum-Likelihood Estimate. Using essentially the
same procedure as described above, we can also determine a
maximum-likelihood estimate of the rate-matrix R. In such an
approach, the rate coefficients R;; parametrizing the model are
varied to maximize the likelihood function L given in eq 5. To
find the maximum, we could adapt the Monte Carlo sampling
of the parameters described above to perform simulated an-
nealing.?! The sampling in parameter space is again performed
with a uniform prior, but now with an energy function, —(In
L)/T, scaled by a “temperature” T that is slowly reduced to zero.
Alternatively, one could also locate maxima of L with a gradient-
based approach, adapting expressions from quantum-mechanical
perturbation theory? for the derivatives of the propagators
p(it]j.0) with respect to the rate coefficients R;;.

2.5. Direct Estimate of the Transition Matrix. Instead of
first constructing a rate matrix R to obtain the transition matrix
through M(t) = p(it[j.0) = (e®);, we could estimate M;(r)
directly as the fraction of MD replica runs starting from cell j
at time O that end up in cell 7 at time 7. At equilibrium, the total
number of transitions from i to j, and from j to i is the same,
which can be used to enforce detailed balance. From the
transition matrix M(7), we can in turn estimate the limiting
distribution(s) P; as the eigenvector(s) corresponding to eigen-
value 1,

P,=YMpP, (11
Z b

If two or more eigenvalues are equal to 1, then the transition
matrix is not connected. If detailed balance is not satisfied (i.e.,
M;;P; = M;P)), the P; correspond to a steady state, not an
equilibrium distribution. To propagate the system by steps of
time ¢, we could repeatedly apply the transition matrix M(?).
This procedure would be the discrete analogue of the Chapman—
Kolmogorov iterations used to propagate the structure of a
peptide in dihedral-angle space.> We note that for short times ¢
(compared to the fastest relaxation time), we can approximate
e® ~ 1 + R, such that the off-diagonal rate-matrix elements
are given by the number of transitions per unit time,

R~ M)/t for iZ=jandr—0 (12)

This approximate relation can be used to estimate the rate matrix
R.
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2.6. Testing the Assumption of Markovian Dynamics.
Models with non-Markovian dynamics tend to be considerably
more complicated than the rate model eq 2. By comparing the
estimated rate matrices obtained at different observation intervals
At = t4, We can investigate the contributions of non-Markovian
effects. If the dynamics appear to be non-Markovian, one can
either expand the state space (by increasing the number of cells
and/or introducing new coarse variables) in the hope of obtaining
an overall more Markovian dynamics, or attempt to estimate
non-Markovian models such as eq 1.

2.7. On-the-Fly Construction of Coarse Master Equation.
Above, we implicitly assumed that all necessary MD simulations
were performed up front to construct the coarse master equation.
In many practical situations, for instance, the folding of a
protein, that may not be possible. Instead, one can perform the
MD simulations on demand. In such an approach, one fills in
elements of the transition matrix as new cells are visited. Assume
that we have already obtained propagators p(i t|j,0) for cell j €
J = {ji1, j2, --r ju}. If One of the replicas crosses into a cell i
from which no runs have yet been started, i & J, we can next
initiate simulations in cell i. The decision to initiate runs from
i may also be based on the number of times i has been reached
by simulations starting from j € J, and the presumed relevance
of i in the overall dynamics. As new cells are added, the
dimension of the coarse master equation expands. If one can
expect smoothness along the coarse coordinates, we can also
attempt to interpolate the rate matrix elements,’® or use an
appropriate prior in the Bayesian formalism.3?

3. Results

We have applied the Bayesian formalism to estimate the
coarse master equation for the filling and emptying of short
carbon nanotubes in a bath of water molecules. This system
has been studied extensively by MD simulations®** and has been
shown to be representable by a lattice fluid model.*® MD
simulations showed that a narrow (~0.8 nm carbon—carbon
diameter) tube at ambient conditions (300 K temperature and 1
bar pressure) filled with water molecules forming a hydrogen-
bonded wire.203* When the carbon—water attractive interactions
were reduced, the system fluctuated between filled and empty
states on a time scale of 0.1—1 ns for a tube of about 1.5 nm
length.

Here, we use the number of water molecules n(z) inside a
nanotube surrounded by a water bath as a coarse observation
variable for the filling process. A continuous occupancy number
is defined as ncont = 2?/:“"1“‘ f (ri,zi), where the sum extends over
the Ny, water molecules of the MD system with r; and z; being
their radial and axial positions in the cylinder coordinate system
(relative to the tube center) defined by instantaneous position
and orientation of the freely moving nanotube. The weight
function is given by f (r,z) = exp[—(2z/L)° — (¥/R)®] where L
= 1.35 nm and R = 0.405 nm are the length and radius of the
pore, respectively. To discretize, we round r¢on to the nearest
integer n, which is our coarse observation variable.

Nanotube Filling with Water from Equilibrium MD. In a
first illustrative example, we derive a coarse master equation
from the n(#) data of a long (47 ns) equilibrium run of a nanotube
with modified carbon—water interactions.?® Specifically, we
count the number of transitions of n from one value to another
within consecutive time intervals of a given length of Az =1,
2,4, 8, and 16 ps. For the coarse master equation, we used
both the complete rate matrix (20 free coefficients for n = 0,
1, ...,5) and the reduced sequential model with transitions only
between n and n £ 1 (10 coefficients). The results for the full
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Figure 1. Free energy, —In P,, and kinetics (inset) of water occupancy
fluctuations in a carbon nanotube with “modified” carbon—water
interactions corresponding to A &~ 0.752.263* The solid line shows the
result of a 47 ns equilibrium simulation. The shaded gray area bounded
by dashed lines corresponds to one standard deviation of the mean
estimated from block averages. The symbols are the results of Bayesian
inference using the kinetic model of eq 2 for sampling intervals of Az
=1,2,4,8, and 16 ps. The error bar (shown representatively for Az
= 16 ps) is the credibility range corresponding to £1 standard deviation
(~68% credibility). The inset shows the relaxation time 7 of the water
occupancy number n. The solid line was obtained by integrating the
normalized autocorrelation function of n from the 47 ns equilibrium
run up to the point where it crosses the zero axis for the first time. The
gray area bounded by dashed lines corresponds to =+1 standard
deviations estimated from block averages. The symbols are the
relaxation times corresponding to the slowest decaying mode in the
kinetic model eq 2, estimated for different sampling intervals At. Error
bars correspond to 68% credibility intervals.

and reduced model are almost identical, and the rate coefficients
between nonnearest neighbors are found to be vanishingly small.
In Figure 1, we compare the free energy profiles from the
equilibrium simulation to those calculated for the model given
by the rate equations, eq 2, using Bayesian inference. We find
that the free energy profile is accurately reproduced by the model
even at the shortest sampling interval of 1 ps. For sampling
intervals of At > 4 ps, the relaxation time 7 of the occupancy
number n is consistent with that estimated directly from the
equilibrium run. We note that using the short-time approxima-
tion, eq 12, to estimate rate matrices from the long equilibrium
MD run leads to very similar equilibrium populations and
relaxation times. The increase of the inferred 7 in Figure 1 with
the length of the sampling interval Az indicates that the estimated
relaxation rate is more sensitive to effects of non-Markovian
dynamics than the underlying free energy surface, which is
practically independent of the sampling time. This sensitivity
of time constants, but not equilibrium constants, is expected
because a significant part of the non-Markovian dynamics can
be attributed to “mis-assigning” states. For instance, the coarse
variable n shows rapid fluctuations +1 that are caused by
structural rearrangements of the water chain inside the nanotube
and may not reflect an actual filling or emptying transition. Such
correlated fluctuations result in an overestimate of the rate
coefficients connecting neighboring states at small Atz.
Nanotube Filling with Water from CMD Replica Runs.
The preceding example shows that we can use Bayesian
inference to estimate a coarse master equation from a long
equilibrium run. In the following, we will show that a Bayesian
analysis of CMD simulations® will allow us to estimate the
underlying slow dynamics, represented by a coarse master
equation, from multiple short runs initialized at different values
of the coarse variables. To illustrate this approach, we have used
the same system, a nanotube in water. Initial conditions for
different values of the water occupancy number n were created
by adding a harmonic biasing potential x(n — 19)*/2 to the MD
Hamiltonian. This biasing potential drives the system near target
occupancies ng. We have studied four systems with different
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Figure 2. Free energy of water occupancy fluctuations in carbon
nanotubes. Results for the free energy difference relative to the empty
state, —In(P,/Py), are shown for different strengths of the carbon—water
Lennard-Jones attractive interactions (A = 0.7, 0.75, 0.785 from top to
bottom). For A = 1 (bottom), the free energy difference relative to the
filled state, —In(P,/Ps), is shown. Solid lines (as guides to the eye)
indicate the results from a multiple-histogram analysis®® of three
equilibrium simulation runs (65.5 ns at 1 = 1,47 ns at A ~ 0.752, and
19.5 ns at A = 0.785). Symbols are the results of the Bayesian analysis
(25 x 6 runs of 5 ps length per A value). Error bars indicate 68%
credibility ranges. The inset in the bottom panel shows the profile in
the thermally accessible range (n = 4, 5) for A = 1.

nanotube-water interaction potentials, measured by a factor 1
that scales the r—© carbon—water attractive Lennard-Jones
interaction of the unmodified system.>* We have found previ-
ously?* that for A ~ 0.75 and below, the nanotube surrounded
by water remains mostly empty; for higher 4 values, the water-
filled state of the tube is preferred. For 4 near 0.7—0.8, the tube
fluctuates between a filled and empty state on the nanosecond
time scale of the simulations.?®3 Initial configurations for the
replica simulations were created by running 15 ps long MD
simulations biased toward to the target occupancy. We assigned
five sets each of random Maxwell—Boltzmann velocities to five
structures saved during the last 5 ps of the biased runs. From
each of the 25 resulting initial configurations near the target
occupancy, we initiated MD runs of 5 ps length, comparable to
the characteristic times for filling and emptying transitions.3*
With six occupancy states (n =0, 1, ..., 5), the combined length
of the replica simulations at a given 4 value is about 6 x 15 ps
for equilibration, and 6 x 25 x 5 ps for production, or 0.84 ns
total, which is ~150 times less than the combined equilibrium
runs.

In Figure 2, we compare the free energy profiles for water
occupancy fluctuations at different values of A obtained from
multiple short replica runs to those estimated perturbatively from
a combined analysis of three long equilibrium runs (132 ns total).
For the perturbative analysis of the equilibrium MD, we used a
weighted histogram analysis*® to match the distributions of n
obtained for different A values. From three equilibrium simula-
tions with different water—carbon Lennard-Jones interactions
corresponding to states in which the tube is predominantly
empty, filled, and half-filled/half-empty, respectively, we col-
lected joint histograms of the water occupancy, the sum ;i ~°
determining attractive Lennard-Jones interactions between water
oxygen atoms i and nanotube carbon atoms j at distance r,
and the corresponding sum Y, 7, !? for repulsive Lennard-Jones
interactions. The 3-dimensional histograms were matched using
the weighted histogram method.*® From the resulting “density



Downloaded by FREIE UNIV BERLIN on August 27, 2009 | http://pubs.acs.org

Publication Date (Web): January 25, 2005 | doi: 10.1021/jp046448u

Coarse Master Equation from Bayesian Analysis

TABLE 1: Relaxation Time 7 = [;C(¢) d¢ of the Number n
of Water Molecules Inside a Nanotube for Different
Water—Carbon Interaction Strengths 4, Where C(f) = (dn()
on(0))/(on?) Is the Normalized Autocorrelation Function of

on() = n(t) — (n(t))*

A Teq (PS) 7 (ps) range (ps)
0.75 199 + 35 146 84—252
0.785 191 + 40 173 93—322

2 The second column lists reference values from long equilibrium
runs with one standard deviation estimated from block averages. The
third column lists the average value of 7 obtained from the Bayesian
analysis of the 5 ps replica runs, calculated as minus the reciprocal of
the smallest nonzero eigenvalue of R. The fourth column is the 68%
credibility range of 7.
of states” (for the occupancy numbers and attractive/repulsive
nanotube-water interactions) we estimated the occupancy dis-
tributions for different values of A. Overall, the agreement of
the free energies of occupancy fluctuations from the equilibrium
runs (132 ns total) and the Bayesian analysis of 5 ps CMD runs
is good. The Bayesian approach reproduces the character of the
free-energy surfaces (bistable for A =0.7,0.75, and 0.785; single
well for A = 1). Moreover, for the bistable systems (1 = 0.7,
0.75, and 0.785), the barrier height between the filled and empty
states is reproduced with deviations of about 1—2 kgT, where
kg is Boltzmann’s constant and 7= 300 K is the temperature.
The largest deviations occur for the single-well system (1 =
1), where the Bayesian analysis predicts the empty state at a
very high (unfavorable) free energy of ~88 kgT. However, the
credibility ranges are also large, and the calculated equilibrium
free energies are within the ~95% credibility range, 29—121
kT, corresponding to £2 standard deviations; not shown) of
the estimated values. This means the relatively large errors in
the estimated free energies for the highly unlikely empty state
at A = 1 are reflected in a large estimated uncertainty. The
reason for these large uncertainties is the sharp decrease in free
energy for increasing n, such that few replica simulations made
transitions to n values smaller than at their starting points.

From the Bayesian analysis of the replica runs, we can also
estimate the relaxation time as the time constant of the slowest
decaying mode in R. Results are summarized in Table 1. For
the bistable state A = 0.75, we find a characteristic time of T =
146 ps with a 68% credibility range of 84—252 ps. From the
time integral of the autocorrelation function of a 47 ns
equilibrium run at 4 ~ 0.752,263* we obtain 7.q = 199 =+ 35 ps,
in good agreement with the Bayesian estimate from 5 ps replica
runs. For 4 = 0.785, the corresponding values are T = 173 ps
with a 93—322 ps credibility interval from the Bayesian analysis,
in excellent agreement with 7oq = 191 & 40 ps from a 19.5 ns
equilibrium run.

4. Conclusions

We have shown how observations from long equilibrium runs
can be used to construct a coarse master equation. With the
same formalism, we were also able to extract a master equation
from multiple short MD runs, given a coarse observation
variable for which the dynamics is sufficiently Markovian on
the time scale of the replica runs. In our approach, a model of
the underlying dynamics is assumed, motivated by the coarse
dynamics derived from a projection operator approach,?’ and
the parameters of that model are then estimated from explicit
MD simulations using a Bayesian analysis. Here, we consistently
used uniform prior distributions. However, a Bayesian approach
easily accommodates additional information. In an extension
of this work, position-dependent diffusion coefficients have been
estimated,*® with a nonuniform prior imposing smoothness.
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The accurate construction of coarse master equations enables
both equilibrium and kinetics analyses of molecular systems.
By partitioning configuration space into cells, one can connect
the relatively fast cell-to-cell transition dynamics to the global
and slow configurational dynamics. In practical applications,
one may not be able to include all relevant configurational states
a priori. However, the approach is flexible enough that new
configurational cells can be added on the fly, expanding the
dimension of the coarse master equation as new cells are
included.

In a first test of the Bayesian approach for a long equilibrium
run of filling-emptying transitions of a nanotube in water, we
obtained accurate free energies already at very short observation
intervals of ~1 ps. At observation intervals of At > 4 ps, we
also obtained accurate relaxation times for the global filling-
emptying transition (~200 ps). We also showed that a Bayesian
analysis of multiple short MD runs initiated at different tube
occupancies n gave good free energies and rates of filling and
emptying.

In all examples, we assumed that initial non-Markovian
behavior is already integrated out at the observation time Af,
allowing us to use a Markovian model for the dynamics, eq 2.
If non-Markovian effects are relevant, estimates of the rate
matrix will depend on the time At = #, at which we observe
the replica simulations. Comparing rate matrixes R estimated
at different time intervals Az provides information about the
neglected non-Markovian dynamics. Non-Markovian effects can
be suppressed or eliminated by expanding the state space, and
by using better coarse variables, obtained, for instance, via
nonlinear principal component analysis*’3® or path sampling
approaches.'® Alternatively, one can use non-Markovian
models with corresponding path probabilities, eq 6.

The goal here was to estimate a coarse master equation
described by a rate matrix. Implicitly, we assumed that the
transitions between different states are sufficiently fast such that
they can be sampled directly, either in long equilibrium
simulations or in replica simulations initialized in the various
states. In both cases, rate coefficients R;; for transitions from
one state j to many states i are probed simultaneously. However,
if some of the transitions are inherently slow, then one may
need either a partitioning into finer states, for instance, by
introducing a continuous reaction coordinate,’ or Bayesian
estimates augmented by direct calculations of rate coefficients
using, e.g., reactive flux calculations'~!3 or transition-path
sampling methods.*0~4?

In conclusion, we want to address the interesting point of
why it is at all possible to estimate the large number of
coefficients in a multistate rate matrix. The success of the
Bayesian approach can be rationalized by the fact that we have
data for multiple different initial conditions, each probing a
“column” of the rate matrix. As a matter of fact, the CMD
approach’# is ideally suited to reduce uncertainties in the
estimated rate coefficients by selectively initiating new replica
runs at states with the largest estimated errors. Studying systems
with much larger numbers of states than the ones considered
here should thus be possible.

Acknowledgment. G.H. thanks Dr. Attila Szabo and Dr.
Alexander Berezhkovskii for many stimulating discussions. S.S.
and .G K. acknowledge support through AFOSR and NSF/ITR
grants.

References and Notes

(1) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L. Annu.
Rev. Phys. Chem. 2002, 53, 291.



Downloaded by FREIE UNIV BERLIN on August 27, 2009 | http://pubs.acs.org

Publication Date (Web): January 25, 2005 | doi: 10.1021/jp046448u

6484 J. Phys. Chem. B, Vol. 109, No. 14, 2005

(2) Zwanzig, R. Nonequilibrium Statistical Mechanics; Oxford Uni-
versity Press: New York, 2001.

(3) Hummer, G.; Kevrekidis, I. G. J. Chem. Phys. 2003, 118, 10762.

(4) Grubmiiller, H. Phys. Rev. E 1995, 52, 2893.

(5) Keasar, C.; Elber, R.; Skolnick, J. Folding Design 1997, 2, 247.

(6) Huber, T.; van Gunsteren, W. F.J. Phys. Chem. A 1998, 102, 5937.

(7) Voter, A. F. Phys. Rev. B 1998, 57, R13985.

(8) Yeh, I. C.; Hummer, G. J. Am. Chem. Soc. 2002, 124, 6563.

(9) Snow, C.D.; Nguyen, N.; Pande, V. S.; Gruebele, M. Nature 2002,
420, 102.

(10) Chandler, D. Introduction to Modern Statistical Mechanics; Oxford
Unversity Press: New York, 1987, Chapter 8.3.

(11) Chandler, D. J. Chem. Phys. 1978, 68, 2959.

(12) Montgomery, J. A., Jr.; Chandler, D.; Berne, B. J. J. Chem. Phys.
1979, 70, 4056.

(13) Berne, B.J.; Borkovec, M.; Straub, J. E. J. Phys. Chem. 1988, 92,
3711.

(14) Kopelevich, D. I.; Panagiotopoulos, A. Z.; Kevrekidis, I. G.J. Chem.
Phys. 2005, in press.

(15) Schiitte, C.; Fischer, A.; Huisinga, W.; Deuflhard, P. J. Comput.
Phys. 1999, 151, 146.

(16) Swope, W. C.; Pitera, J. W.; Suits, F. J. Phys. Chem. B 2004, 108,
6571.

(17) Swope, W. C.; Pitera, J. W.; Suits, F.; Pitman, M.; Eleftheriou,
M.; Fitch, B. G.; Germain, R. S.; Rayshubski, A.; Ward, T. J. C.; Zhestkov,
Y.; Zhou, R. J. Phys. Chem. B 2004, 108, 6582.

(18) Chekmarev, D. S.; Ishida, T.; Levy, R. M. Submitted for publication.

(19) de Groot, B. L.; Daura, X.; Mark, A. E.; Grubmiiller, H. J. Mol.
Biol. 2001, 309, 299.

(20) Becker, O. M.; Karplus, M. J. Chem. Phys. 1997, 106, 1495.

(21) Andrec, M.; Levy, R. M; Talaga, D. S. J. Phys. Chem. A 2003,
107, 7454.

(22) Kou, S. C.; Xie, X. S.; Liu, J. S. Appl. Stat. 2005, 54, 1.

(23) McSharry, P. E.; Smith, L. A. Phys. Rev. Lett. 1999, 83, 4285.

(24) Meyer, R.; Christensen, N. Phys. Rev. E 2000, 62, 3535.

Sriraman et al.

(25) Smelyanskiy, V. N.; Timucin, D. A.; Bandrivskyy, A.; Luchinsky,
D. G. Available at arxiv.org:physics/0310062.

(26) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,
188.

(27) Zwanzig, R. J. Stat. Phys. 1983, 30, 255.

(28) Dellago, C.; Bolhuis, P. G.; Csajka, F. S.; Chandler, D. J. Chem.
Phys. 1998, 108, 1964.

(29) O’Hagan, A. Kendall’s Advanced Theory of Statistics. Bayesian
Inference; John Wiley & Sons: New York, 1994; Vol. 2B.

(30) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.
H.; Teller, E. J. Chem. Phys. 1953, 21, 1087.

(31) Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220,
671.

(32) Messiah, A. Quantum Mechanics; Dover Publications: Mineola,
NY, 1999.

(33) Hummer, G. New J. Phys. 2005, in press.

(34) Waghe, A.; Rasaiah, J. C.; Hummer, G. J. Chem. Phys. 2002, 117,
10789.

(35) Maibaum, L.; Chandler, D. J. Phys. Chem. B 2003, 107, 1189.

(36) Ferrenberg, A. M.; Swendsen, R. H. Phys. Rev. Lett. 1989, 63,
1195.

(37) Belkin, M.; Niyogi, P. Neural Comput. 2003, 15, 1373.

(38) Coifman, R. R.; Lafon, S.; Lee, A. B.; Maggioni, M.; Nadler, B.;
Warner, F.; Zucker, S. Proc. Natl. Acad. Sci. U.S.A., submitted for
publication.

(39) Bolhuis, P. G.; Dellago, C.; Chandler, D. Proc. Natl. Acad. Sci.
U.S.A. 2000, 97, 5877.

(40) Dellago, C.; Bolhuis, P. G.; Chandler, D. J. Chem. Phys. 1999,
110, 6617.

(41) van Erp, T. S.; Moroni, D.; Bolhuis, P. G. J. Chem. Phys. 2003,
118,7762.

(42) Hummer, G. J. Chem. Phys. 2004, 120, 516.

(43) Kevrekidis, I. G.; Gear, C. W.; Hummer, G. AIChE J. 2004, 50,
1346.



