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On a Likelihood Approach for Monte Carlo Integration
Zhigiang TAN

The use of estimating equations has been a common approach for constructing Monte Carlo estimators. Recently, Kong et al. proposed
a formulation of Monte Carlo integration as a statistical model, making explicit what information is ignored and what is retained about
the baseline measure. From simulated data, the baseline measure is estimated by maximum likelihood, and then integrals of interest are
estimated by substituting the estimated measure. For two different situations in which independent observations are simulated from multiple
distributions, we show that this likelihood approach achieves the lowest asymptotic variance possible by using estimating equations. In the
first situation, the normalizing constants of the design distributions are estimated, and Meng and Wong’s bridge sampling estimating equation
is considered. In the second situation, the values of the normalizing constants are known, thereby imposing linear constraints on the baseline
measure. Estimating equations including Hesterberg’s stratified importance sampling estimator. Veach and Guibas’s multiple importance

sampling estimator, and Owen and Zhou's method of control variates are considered.

KEY WORDS: Bridge sampling; Control variate; Importance sampling; Stratified sampling.

1. INTRODUCTION

Monte Carlo is a useful method for numerical integration.
Specifically, let 12 be a nonnegative measure on a state space X’
and consider evaluating the integral

Z=/ g(x)ydpg
(‘t’

for a real-valued function ¢ (x). We refer to j1o as the baseline
measure, typically counting measure or Lebesgue measure. It is
helpful to distinguish two different issues of design and estima-
tion in Monte Carlo integration.

First, various sampling designs have been proposed for
Monte Carlo integration. Importance sampling involves sim-
ulating observations from a single distribution. Generally,
bridge sampling or stratified mixture sampling involves sim-
ulating observations from multiple distributions (see Geyer
1994; Hesterberg 1995; Meng and Wong 1996: Owen and Zhou
2000). For 1 < j < m, let ¢;(x) be a nonnegative function
whose integral Z; is finite and positive with respect to jg. Then

q;j(x)
Zj

de = d;L()
is a probability distribution, and Z; is called the normalizing
constant for the sampler P;. For convenience, assume that for
each x, ¢g;(x) > 0 for at least one j; otherwise, we can re-
place X by the union of the supports of g;(x). Suppose that a
stream of n; independent observations {x;1, ..., xj,,} is avail-
able from P; by a simulation technique. Denote by {xj. ..., Xn}
the pooled sample of size n =", n;, and by Ps the distri-
bution 7! > i=yn;Pj. In asymptotic considerations, let each
n; tend to infinity such that n; /n is fixed.

The second issue of estimation is the one we are concerned
with in this article. For importance sampling (m = 1), the ra-
tio Z/Z, or Z relative to Z, can be estimated by

li q(x;) M
n

— qi(xi)
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At first sight, this estimator is constructed via the identity

z_p[an]
Z g1(x)

where E denotes expectation under P|. However, a statistician
would ask the fundamental question “what model underlies the
given estimator.” In the usual sense, there is no unknown quan-
tity, because the simulated data are generated from a process
completely controlled by the statistician.

Recently. the foregoing question was satisfactorily addressed
by a statistical formulation, making explicit what information is
ignored and what is retained about the baseline measure (Kong,
McCullagh, Meng, Nicolae, and Tan 2003). The baseline mea-
sure is estimated as a discrete measure by maximum likelihood,
and then integrals of interest are estimated as finite sums by sub-
stituting the estimated measure, The importance sampling esti-
mator (1) can be derived as the maximum likelihood estimator
(MLE) for the foregoing setting.

There appears to be only one estimating equation under im-
portance sampling where a single sampler is involved and no
additional analytical information is used. But the situation be-
comes more complicated if we apply multiple samplers and/or
allow extra analytical information. Generally, there is a class
of estimating equations to choose from. Whether the likelihood
approach achieves the lowest asymptotic variance possible by
using estimating equations given the same amount of informa-
tion remains an important question. We investigate two situa-
tions, denoted by (I) and (II).

(I) For any function «(x) such that the integral far(x) X
qi1{x)g2(x) duo is finite and nonzero, we have the identity

22 _ Eilagan)] )
Z Exa(0)gi()]

Given draws x11, ..., X1, from Py and x21...., X2, from P,
the ratio Z>/Z can be estimated by

ny UYL e ga ()

ny ' a(ongr ()
which was termed “bridge sampling” by Meng and Wong
(1996). Note that multiplying o(x) by a constant gives rise to
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the same estimator. An optimal choice of @(x) minimizing the
asymptotic variance is

n1Zl_]
mZy g1 () +naZy gax)

which depends on the unknown ratio Z,/Z;. The iterative
bridge sampling estimator, defined as the unique limit of the
sequence

= (t+1)
VAYIA

T o (1)
_m : Y () ImZa/ 20 qixi) +naga(xi)]
o "o 55 (1) ’
My : S a1/ ImZa) 2y qi(x2i) + naga(xa)]

with a positive starting value Z/Z/\Zl (0), achieves the minimum
asymptotic variance (Meng and Wong 1996) and is in fact iden-
tical to the MLE under the full model of Kong et al. (2003).
We generalize these results to the situation where more than
two samplers are involved (Sec. 2).

(IT) Let g1(x),...,g(x) be real-valued functions whose
integrals are known with respect to pg. Without loss of
generality, let these integrals be 0. For an arbitrary vector

b=(b,.... by, we have the identity
z_, [qm — ng(x)]
Lo | T 5
Z) g1(x)
where g = (g1, ..., g) . Given draws x, ..., x, from Py, the

ratio Z/Z can be estimated by

_un ) —bTg(x).
n g

this is referred to as the method of control variates. The optimal
choice of b minimizing the variance is

B= va1r1‘l [E] covlT[i, E],
q1 q1 q1

where var; and cov; denote variance and covariance un-
der P;. The minimum variance is achieved asymptotically
by the regression estimator (Cochran 1977; Hammersley and
Handscomb 1964)

Zq(xl)_ﬂ g(x;) ’ (4)
n - q1(x;)

where B is estimated by

B:ﬁrll[g]covl[q g]
q1 q1 41

and var; and ¢ov| denote sample variance and covariance.
We show that the regression estimator is a first-order approx-
imation to the constrained MLE under the linear submodel of
Kong et al. (2003), and then generalize these results to the sit-
uation where more than one sampler is involved and control
variates are used (Sec. 3).
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2. FULL MODEL

Consider the setting where estimating the normalizing con-
stants is part of the inferential problem even though such esti-
mation is not necessary for simulation. A practical motivation is
that Markov chain Monte Carlo (MCMC) algorithms can be ap-
plied to simulate approximate observations from a distribution
without requiring the value of its normalizing constant. We con-
sider the setting where the values of the normalizing constants
are known in Section 3, but refer to Kong et al. (2003) and Tan
(2003a,b) for Markov chain schemes.

In the likelihood approach, we take the functions g;(x) as
given and consider a model for simulated observations (Kong
et al. 2003). Specifically, the model assumes that Xjlseees Xjn,
are independent and identically distributed as

q_;(’)du//q,;(ﬂdu,

where 1 is a nonnegative measure on X’ such that [ q;(x) du is
finite and positive for I < j < m. In the language of statistical
inference, p is a parameter and /¢ is the value by which the data
were generated. The parameter space consists of essentially all
nonnegative measures on X, and in this sense the model is
full. The model is formally equivalent to Vardi’s (1985) biased
sampling model, except the parameter space is not restricted to
probability measures.
Because of independence, the likelihood at w is the product

m nj

Hl——[[:qj(le)u'( ’\jl )//QJ(x)dH] (5)

j=li=1
Let P be the empirical distribution placing mass n~! at each of
the points x,...,. x,. Under Vardi’s (1985) conditions, there
exists a unique MLE £ up to a positive multiple. The mea-
sure 4 is supported on the points xj. .. ., xy and has mass
N nP({x})
a{xy = =, ~— ,
22y g
where Zj is the MLE of Z; and satisfies
I
B . q;(xi)
Z,-:/qj(x)duz — . (6)
' ; 22;1 nkzk ](Ik(xi)

Consequently, the integral Z is estimated up to the same posi-
tive multiple by
n

2=/q(x)d;1=2 )

i k=1 M2y qrixi)

Here we use /i rather than uqo for computational purposes,
even though the true value pg is known. For definiteness, let
Z1 be the reference value. Then we solve (6) with j =2, ..., m
for the rattos (Zz/Z|. ey 7/\21 ). and substitute these values
in (7) to obtain the ratio Z//\Zl Previously, the point estima-
tors (6) and (7) were suggested by Geyer (1994) and Meng and
Wong (1996), using entirely different arguments.

A large sample theory can be established in a similar man-
ner as was done by Gill, Vardi, and Wellner (1988). Con-
sider the graph on the vertices 1,...,m such that » and ;
are connected by an edge if and only if po({x:gp(x) > 0} N
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{x:qj(x) > 0}) > 0. Assume that every pair of vertices is
connected by a path and that ¢(x)/q.(x) has finite variance
under Py, where g, (x) =n"! Z’j’-’zl nj(Z_,-/Zl)_lqj(x). In the
Appendix we show that the asymptotic variance matrix of
LZy=(Z2/Z),....Zn/Z\,Z/Z))" is

(O(wl])—A(l))-]/n—Z“)Z?—U/J?]. (8)

where Z(\) = (Z2/Z\,....Zm/Z\, Z/Z))",and Ay, and O,
are defined by the partitions

ny/n 0 011 o )
A= and 0= L)
( 0 Am) (01 Oq)
Here A is the diagonal matrix with (n;/n.na/n(Z>/Z1) 72, ...,
Nm/n(Zw/Z1)72,0) on the diagonal and O is the matrix
(Onj)1<h. j<m+1, where g, (1 (x) = g(x) and
o;,—/ gn(x)q;(x) d
! (=130 n i (Ze/ Z0) L gr ()]

* .

Note that (8) includes both the ratios (Z/z/\Zl. e, 27/71) and
the general ratio Z//\Zl and that it simplifies the corresponding
formula of Gill et al. (1988). The asymptotic variance matrix
of (Z/2f\Zl, e 27/\21) also has the form of (8) but with Zy,
replaced by (Z2/ 7, .... Zm/Zl)T and A (1) and Oy, replaced
by their leading principal submatrices of order m — 1.

2.1 Bridge Sampling

As an alternative, Meng and Wong’s (1996) bridge sam-
pling provides a class of estimating equations described in Sec-
tion 1(I) for m = 2. The iterative bridge sampling estimator (3)
solves the fixed-point equation

A

Z; n YN pap/m 2T g ) +n22{'qz(x“)]
Z nz_l p ql(mi)/[mzfl(h(xzi) +’7222_]‘[2(-\‘2i)]’

which is in fact equivalent to the likelihood equation (6) for
m = 2. In this case, the likelihood approach is successful in
identifying the optimal bridge sampling estimator in an auto-
matic manner.

The basic identity (2) can be used to construct a variety of
estimators if more than two normalizing constants are estimated
using draws from the corresponding distributions (m > 2). For
the simple case m = 3, there are at least three ways to estimate
the ratios (Z2/21. Z3/Z)):

1. Estimate Z7/Z using draws from P; and P;, and esti-
mate Z3/Z) using draws from Pj and Ps.

2. Estimate Z>/Z using draws from Py and P,, estimate
Z3/Z> using draws from P> and P3, and estimate Z3/ 7
as (£2/Z1)(Z3/ Z7).

3. Estimate Z3/Z| using draws from P; and P3, estimate
Z,/Z3 using draws from P> and Pz, and estimate Z,/Z;
as (Z3/ Z\)(Za2/ Z3).

The choice appears to be problem-specific among the three esti-
mators. For example, if P(, P>, and P3 are normal with mean 0,
1, and 2 and unit variance, then the second estimator is best.
In fact, when the optimal estimator (3) is used for single ratios,
the relative standard errors of estimators 1-3 are (.101, .221),

1029
(.101, .175), and (.195, .221) (n; = n> = n3 = 50). Moreover,
these estimators are special cases of the construction

Erlaz3qs + 2141 ]
—Ex[a3243])

—Ezlaqa] ) (22/21
Eszlazg: +az1q11 ) \ Z3/Z)

_ (EI[OIZWZ])
Eilazigs] )’
where a21 (x), a23(x), @31 (x), and a3»(x) are real-valued func-
tions, by taking

(a) ax3(x) =oa3(x) =0,
(b) o23(x) =az1(x) =0,
(¢) azn(x)=oa(x)=0.

Generally, let ayj(x) be (m — 1)? real-valued functions for
h#j,2<h<m, 1 <j<m. The basic identity (2) implies
that B(Z2/Zy.....Zn/Z)) T =b, where

b —b23 —boy,
B —1?32 5?3 "b.3m
*me _bm3 bmm
and
1)21
b3
bml
with
m
b= Enlanjgjl. 2<h=m,

J=1.j#h

bnj = Ejlanjqnl, h#j,1<j<m.

Then an extended bridge sampling estimator is B~'b, where
B and b are sample counterparts of B and b with the jth
sample average Ej in place of E; (Meng and Wong 1996).
It is interesting to ask whether the MLE (6) is asymptotically
efficient among extended bridge sampling estimators, regard-
less of problem-specific details. We give a positive answer in
Theorem 1, which is proved in the Appendix. For the ear-
lier example, the relative standard errors of (Z/Q/\Z], Z";/\Zl)
are (.093,.168) and are smaller than the corresponding ones
of estimators 1-3.

Theorem 1. Assume that B is nonsingular and that
varp[apjq;] and varj[ayjgp] are finite for h # j, 2 < h < m,
1 < j < m. Then the bridge sampling estimator B~ !b is consis-
tent and asymptotically normal. The asymptotic variance matrix
has a minimum (in the order on positive definite matrices) at

-1
n_,'Zj
S e Z qrx)

The MLE (6) achieves the minimum asymptotic variance.

apj(x) =

In the Appendix we also prove that the MLE Z//_\Zl from (7)
has no greater asymptotic variance than not only the estimator

n

q(x;)

m R | ? 9
o1 2am M (Zi/Zy) qi(xi)
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but also any estimator of the form

Z/j7/Z1 . q(x;;)
> St pur

j=l1 I =g

(10)

——

where (Z2/Z),...,Z,/Zy) is a bridge sampling estimator, and
A(x)}, ..., Am(x) are real-valued functions such that A (x) =
if gj(x) =0 and Z;’;, 4j(x) =1 on X. These optimality re-
sults lend strong support to the appropriateness of Kong et al.’s
formulation. The MLEs (6) and (7) use draws from multiple
distributions in an efficient manner, and so we do not need to
worry about choices such as estimators 1--3.

3. LINEAR SUBMODEL

First, consider the setting in Section 1(Il). Recall that x« is a
point in the parameter space and pq is the true value. Because
the integral of g;(x) is O with respect to pg for 1 < j </, or,
equivalently, u¢ satisfies

/g_,-(x)duo =0,

we constrain the parameter space to those measures y satisfying
the similar equation

/gj(x)d,u, =(.

The submodel with this reduced parameter space is called a lin-
ear submodel (Kong et al. 2003). The baseline measure is then
estimated by maximum likelihood subject to the linear con-
straints (Thm. 2). The effect of variance reduction is such that
the resulting estimator (14) has zero variance if g(x) is a lin-
ear combination of g;(x),..., g(x) and g;(x) with arbitrary
combination coefficients. We show that the classical regression
estimator (4) is a first-order approximation to the likelihood es-
timator (14) in Theorem 3.

Next, consider the setting where the values of the normaliz-
ing constants Zi, ..., , Z; are known for multiple distributions
Py, Py By rescahng, assume that these values are all equal.
Accordingly, we consider the submodel in which [¢;(x)du
are equal for 1 < j < m, and solve the corresponding maxi-
mum likelihood problem (Thm. 4). A substantial variance re-
duction can be achieved if ¢ (x) is matched sufficiently well by
some linear combination of ¢|(x), ..., gm(x). Theorem 6 im-
plies that the resulting estimator (16) is more efficient than not
only Hesterberg’s (1995) stratified importance sampling esti-
mator

q(xi)

]7 \1igi(xi)

(1n
Z 2

but also Veach and Guibas’s (1995) multiple importance sam-
pling estimator

m nj

q( /l)
i 12
E . E Aj(xj) = s (12)

where Aj(x)..... Am(x) are real-valued functions such that
Litx) =0if g;j(x) =0 and Z/ [ Aj(x)=1on A. By the
method of control variates, Owen and Zhou (2000) derived the
regression estimator (17) under unstratified sampling, where
the mixture proportions are randomn, and extended it directly to
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current stratified sampling. They raised the question of whether
an improved regression estimator exists due to stratification.
We show that the regression estimator (17) is a first-order ap-
proximation to the likelihood estimator (16) in Theorem 5, and
give a negative answer to their question in Theorem 6(a).

3.1 lllustration

Betore developing the main results, we illustrate different de-
signs and estimators by the following example. The state space
is R'Y, and the baseline measure is Lebesgue measure. The in-
tegrand is

10
g(x) = 8H¢(m+ 2] w9,
Jj=1 J=1
where ¢(-) 1s the standard normal density and ¥(-; 4) is the
t density with 4 degrees of freedom. Let

10
a)=]]ve:n
j=t
and
10
@0 =[],
j=1
so that Py is a product of univariate Cauchy distributions and
P; is a product of univariate normal distributions. The impor-
tance sampling estimator using the design density g2 (x) has in-

finite variance, even though g»(x) is nearly proportional to ¢ (x)
in the center. As a remedy, we consider

(a) design density g (x) with n draws, or
(b) two design densities ¢j(x) and ¢2(x),
n/2 draws.

each with

The fact that the integral of g)(x) = ¢2(x) — g1(x) is O can be
used for variance reduction. The results are summarized in Ta-
ble [. The likelihood estimator has mean squared error (MSE)
reduced by a factor of (.162/.00931)? ~ 303 compared with the
importance sampling (IS) estimator under the design (a), and by
a factor of (.0175/.00881)% & 4 compared with the stratified 1S
estimator under the design (b). The regression estimator yields
similar MSE as the likelihood estimator under each design. The
two-sampler design leads to more accurate estimates than the
one-sampler design.

3.2 Importance Sampling

For importance sampling (m = 1), all observations x|, ..., x,
are simulated from Pj. Let g|(x),..., g1(x) be real-valued
functions whose integrals are O with respect to (1o. We consider
the submodel with parameter space

{#Z/S’j(x)dﬂ:()for 1< g[}_

The likelihood (5) becomes

n

I [cn (x,-)u({x,‘))/ / a1(x) du}.

i=1
Unlike for the full model, the measure maximizing the like-
lihood for the submodel may not exist, or it may place mass
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Table 1. Comparison of Designs and Estimators

One-sampler design

Two-sampler design

1S Regression Likelihood IS Regression Likelihood
Sgrt MSE 162 .00942 .00931 .0175 .00881 .00881
Std Err 162 .00919 .00920 0174 .00885 .00884

NOTE: Sqrt MSE is vmean squared error of the point estimates and Std Err is vmean of the variance estimates from 10,000

repeated simulations of size n = 500.

outside the sample. The Appendix provides two examples to il-
lustrate such possibilities. Alternatively, we maximize the like-
lihood with restriction to measures supported on the sample.
Owen (2001, sec. 2.4) presented a related argument in the con-
struction of the profile empirical likelihood.

Specifically, let w; = u({x,-})/fql(x)a’u, and restrict our
attention to measures [ placing zero mass outside the sample
and belonging to the reduced parameter space. The constrained
maximum likelihood problem becomes

n
maxg log w;

i=l

(13)

for (wy, ..., w,) in the constraint set A, such that w; > 0 for
l<i<n Y ,wqix)=1,and 37 wig;j(x;) =0 for
| < j < /. Recall that g is the column vector (g],....,g1)T.
Theorem 2 says that the constrained maximum likelihood prob-
lem (13) can be solved by maximizing the concave function

I n
en(8) =~ loglqi(x) + ¢ "gx)]

i=1

on the set E, such that ¢1(x;) + ch(x,-) is positive for
1 <i <n.Compared with a Lagrange multiplier argument, this
result is more complete in providing a necessary and sufficient
condition for solving the problem (13). A proof is given in
the Appendix.

Theorem 2. Assume that q(x1), ..., g1(x,) are positive and
that the matrix with columns g(x1), ..., g(x,) has rank [. Then
the following statements are equivalent:

(a) The set Z, is bounded.

{(b) The function #,, has a maximumon &,,.

(c) The constraint set A, contains at least one point such that
w; > O forall /.

(d) The problem (13) has a solution such that w; > 0 for
all i.

If ¢ is a maximizer of £, on E,, then the constrained MLE is

. P({x})
ul{x}) x T
q1(x) + & glx)

The foregoing computational recipe has an interesting in-
terpretation. For example, if g;(x) = ¢;+1(x) — q1(x), where
gj+1(x) is a nonnegative function whose integral equals Z,
with respect to po for 1 < j <, consider the mixture model
with components g1 (x), g2(x), ..., gi+1(x). Then £, is tpe log-
likelihood function of the data xi. ..., x,, and g; (x) + £ " g(x)
is the estimated density by maximum likelihood. It is not nec-
essary that the mixture coefficients lie between 0 and 1, as long
as q(x;) + &Tg(n) is positive forall 1 <i <n.

After the baseline measure is estimated, the ratio Z/Z; is
estimated by
1 n ()C'
= *q);- (14)
o= qi(xi) + ¢ glx)
In comparison with the estimator (1), the design density g (x)
is adjusted to be g (x) + ¢ "g(x), estimated from the data. The
submodel estimator has zero variance if ¢ (x) is a linear combi-
nation of g1(x), ..., g/(x) and g, (x), because

| n
2

=1

gj(xi) _
q1(xi) + ETglx)

by the fact that i belongs to the reduced parameter space.
We give the large sample properties in Theorem 3, which is
proved in the Appendix. Although this result is not the most
general one, it is sufficient for many importance sampling ap-
plications where the design density ¢ (x) dominates all of the
functions g;(x) on &',

Theorem 3. Assume that gj(x),..., g/(x) are linearly in-
dependent, g;(x)/qi(x) is bounded on & for 1 < j </, and
q(x)/g1(x) has finite variance under P;. Then the estima-
tor (14) is consistent and asymptotically normal with variance

_1{ . [q]
n vary| —
q1
— COV| [i, E:I varf’ [_g_:| cov?[i. Ej“
q1 g1 q1 q1 qi

=n! vari I:qm(X) — ﬁTg(x):l
g1(x) '

The difference between the regression estimator (4) and the
likelihood estimator (14) is o, (n~1/?).

Glynn and Szechtman (2000) also noted that the regression
estimator is equivalent to the constrained MLE to first order,
and gave a proof under the weaker condition that g;(x)/q(x)
has finite fourth moment under P for 1 < j < /. Although
the basic ideas are similar, they are interested in estimating ex-
pected values on a probability space. In comparison, our work
is motivated by estimating integrals with respect to a baseline
measure, say counting measure or Lebesgue measure. We now
generalize our development to multiple samplers.

3.3 Stratified Sampling

Consider the setting where observations are simulated from
multiple distributions Py, ..., P, and the values of the nor-
malizing constants 71, ..., Z, are known. Assume that these
values are equal to Z,, typically 1. In the previous notation,
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g« (x) is the function n~! Z’,” 1 1;q;(x) and P, is the corre-
sponding distribution n ="' 3" n; P;.

Instead of the full model, we conqlder the submodel with pa-
rameter space

‘W/qj'(-’f)du are equal for I < j Sml’
which can be rewritten as
{liifg,/(-\')duz()forl <j<m- 1},

where g;(x) = ¢;4+1(x)—g) (x). For y in the reduced parameter
space, the likelihood (5) is proportional to

H#({Xi})//q*(X)du.
i=1

Theorem 2 can be used to find the constrained MLE. Specifi-
cally, let w; = u({x,-})/f g«{(x)d . and consider the problem

(15)

for (wy,.... w,) in the constraint set A, such that w; > 0 for
L <i<n Y wg.(x;)) =1, and 3!  wigj(x;) =0 for
1 </ <m—1.Define

l h L
ald) = > tog[gatxi) + ¢ Tglxn)]

i=]

on the set Z, such that g.(x;) + l;Tg(xi) is positive for
1 <i<n.

Theorem 4. Assume that g.(x1), ..., g«(x,;) are positive and
that the matrix with columns g(xy),.... g(x,) hasrank m — 1.
Then the following statements are equivalent:

(a) The set Z,, is bounded.

(b) The function ¢,, has a maximum on &,,.

{¢) The constraint set A, contains at least one point such that
w; > 0 foralli.

(d) The problem (15) has a solution such that w; > 0 for
allj.

Iff is a maximizer of £,, on &, then the constrained MLE is
P({xh
g (x) + &7 g(x)

It appears that the likelihood approach fits the mixture model
with components ¢ {(x). g2(x), ..., . Gm(x)to the dataxj,..., Xn
and then uses the estimated density q*(\) + ¢ Tg(x) with coef—
ficients n/n — Z'l" 11 Jjona/n+ T, and ny/n + Tmi.

After the baseline measure is estimated, the ratio Z/Z, is esti-
mated by

faix}) o

Iy gl (16)
n= ga () + ¢ Tl

which has zero variance if ¢(x) is a linear combination of
gi{x)...., ¢ (x). Owen and Zhou’s (2000) regression estima-
tor is
_ZCI(’CI)“ﬂ g(x) a7
n

i=1
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where g = var,' [q%]c'(\ﬁ/;r[:—*, (;%], and var, and ¢ov. denote
pooled-sample variance and covariance under P. Note that
8j(x)/q«(x) is automatically boundedon X for1 < j <m — 1.
The proof of the following theorem is similar to that of
Theorem 3, even though here xi....,x, are not identically
distributed.

Theorem 5. Assume that ¢(x), ..., gy (x) are linearly in-
dependent and that ¢ (x)/g.(x) has finite variance under P..
Then the estimator (16) is consistent and asymptotically nor-
mal with variance

iy e —BTgw)
n Z " Vdrj[_‘-—

gs(x)

o [q< ) — B gx)
=n vary | —m——

G (x) ] (1%

where B = var, '[ 8 ]LOVT[ "*. 21, and var, and cov, denote
variance and covarlance under P.. The difference between
the regression estimator (17) and the likelihood estimator (16)
is ()p(n’]/z).

It is incorrect to say that the asymptotic variance of the
regression estimator (17) is smaller than (18) by invoking
stratification. The equality (18) follows from the fact that the

stratum means E;[(g(x) — ﬂTg(x))/q*(x)] are equal to each
other, because

/ g(x) — ﬂTg(x)(
Gs(x)
The asymptotic variance can be estimated by

¢j(x) —q1(x))duo=0

m

RT
| Z‘l_j~ q_ﬂ g

qx*

where var; denotes jth sample variance, or by

aT
n~ ' Var, |:—~q A g].
qx
The latter variance estimate is larger unless the sample means
of (g(x) — ﬁTg(x))/q*(x) are equal. But such a difference is
asymptotically negligible.

We conclude this section with the results that the likeli-
hood estimator (16) or, equivalently, the regression estima-
tor (17) achieves asymptotic efficiency among two classes of
estimators constructed by different arguments. Special cases are
Hesterberg’s (1995) stratified importance sampling estimator
and Veach and Guibas’s (1995) multiple importance sampling
estimator. Theorem 6(a) says, somehow surprisingly, that the
optimal choice of b is always # whether the draws are identi-
cally distributed from P, or are stratified. A proof is given in
the Appendix.

Theorem 6. (a) For an arbitrary vector b, the estimator

m ij

ZZCI(XN)

jltl

ng(in)
()‘jl)

is unbiased. The variance has a minimum at b = 8. The
likelihood estimator (16) achieves the minimum variance
asymptotically.
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(b) Let A1(x),..., Am(x) be real-valued functions and let
¢1(x),...,¢cn(x) be vector-valued functions such that
A0 =0if ;) =0, 37 Aj(x) =1, and 377, Aj(x) x
¢;(x) =bon & for an arbitrary vector b. Then the estimator

Z

is unbiased. The variance has a minimum at A ;(x) =n;q;{x)/
(ng.(x)yand ¢;(x) = B. The likelihood estimator (16) achieves
the minimum variance asymptotically.

4. SUMMARY

nj

2 2jlxji)

i=1

- CJT(in)g(xj‘i)
q;(x;i)

Q(X‘/i)

For two different situations where independent observations
are simulated from multiple distributions, we show that the like-
lihood approach of Kong et al. (2003) achieves the lowest as-
ymptotic variance possible by using estimating equations for
Monte Carlo integration. In the first situation, the normalizing
constants of the design distributions are analytically intractable
and must be estimated. In the second situation, the values of
the normalizing constants are known, thereby imposing linear
constraints on the baseline measure.

Our results deal with optimal estimation using available
draws. There remains the design issue of choosing samplers.
For importance sampling, a good sampler is such that its den-
sity is approximately proportional to |g(x)| and the required
simulation is fast. It is important to find a balance between
these conflicting criteria by exploiting the structure of a prob-
lem in practice. Similar considerations hold when searching for
multiple samplers, but it becomes possible to choose individual
samplers to meet different needs. For example, a heavy-tailed
sampler and a sampler that approximates the integrand in the
center can be applied. These ideas require further formalization
and investigation.

APPENDIX: PROOFS

Proof of Formula (8)

Let Z,,41 = Z and recall that g, 1(x) = g(x). The likeli-
hood equations (6) and (7) can be written as T(z) = 0, where

Z=10(21....»Zm> Im+1) —(le--uTm»Tm—t-l)T and
qj(xl
Tj@)==z +ZT‘7
o1 kel kT 9k (X0)

Note that T(cz) = ¢T(z) for an arbitrary constant ¢ (>0). For definite-
ness, fix 7] = 1. The MLE Z (|, = (Z2/Z. ... Zm/Z\ Zpt JZ1) T
is a solution to the m equations T(j)(z(;y) = 0, where z() =
(220« Zm, 4m+l) and Ty = (TZ»-’; T, m«—l)
guments as those of Gill et al. (1988), Zy) is consistent and asymptot-

. By similar ar-
ically normal with variance n " TH 'GH ', where

01}1101r

G = nvar[T(1)(Z1))] =01y — Oy A(1HO) —

R
a

H=F _—T(])(Z(l)) =0(])A(1)“Im‘
()Z(])

and I, is the identity matrix of order m. Now it is straightforward
to check that (I — OAY(1, Z3/Z1, .. Zm/Z1. Zmy1 /21| =
and thus (I, — O¢yA¢1y)Z1) = nroy/n. Using this fact twice,
we first obtain

H'G=—-(0(, —Z1o] ). (19)
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and then obtain formula (8). The asymptotic variance matrix
of (Z2/Z1,....Zn/Zy) is of the same form as (8), by similar cal-
culations as above.

Proof of Theorem 1

We consider the ratios (Z»>/Z;. ..., Zm/Zy) and the general ra-
tio Z/Z simultaneously. For convenience, assume that g(x) > 0 and
Z > 0; otherwise, we can replace ¢(x) by the vector [max(g(x).0),
max(—¢g(x). )} and extend the following argument to allow a vector-
valued ¢(x). By the law of large numbers, (2/27/21 ..... z/m721) is
consistent and so is the estimator (10). By the inequality

n n !

Z q(x;) _ q{x;)
i=1 Zzlzﬂlk(z/k?/zl)_ i=1 Yo i Zi/ 20 e |

i
lg (x|
<<
- ‘Z 1k (Zi /2D g ) }

i=1

m o(ZTZy)
X{Z( iz

j=1 (Zi/z))

Lok xi)

—(Z;/Zp7Y }
: .

it follows that the estimator (9) is also consistent. For 2 < i < m, let
oy me1(x)=0.Forl <j<m,let

() il 20
o 1.;ix) = - or —_.
m+1. l]j(x)

—1
Yr ez ar(x)
according to which estimator, (9) or (10), is treated as Zm/;\172]
In either case, the bridge sampling estimator Z 1y =(Z2/Zy. ...,
Zm/Zl
Z(U)ZU) —b(z(l))—O where 21 =1, z¢1) = (22, .

m+1/Zl)T 1s a solution to the estimating equatlon

e Zms wn-#l)
and B(z( 1y) and b(zm) are sample counterparts of B(z(l y)and b(z(()),
now defined as

by e —hyy O
B= : : :
_bmz bmm 0
~bm+1.2 —bpt1m |
and
bay
b =
hml
bm«l.l
with
m+1
bpw= Y, Eplonjq;l.  2<h<m+1,
J=1jF#h

bpj = E jlapjqnl, htjl<j<m+l.

In the case where the estimator (9) is treated, the derivative matrix

—b(z))]

]~3( ) ( O(mAl)xm
= () — m 5o 0%ml . *
Tt Ejl =g am+11z

is such that its supremum norm for zyy in a neighborhood of Z 1,
is square integrable by the assumption that 0,4 ] ;1 is finite, and

0
31(])

[B(z1))z)
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its expectation at z(y = Z1y equals B(Zj)) because the extra term
vanishes by (2) and ZT:] Uyt j(X)gj () =1

m . m .

1, Zj v | Zim+1
S Ej| —td LN B | Ly, P2 <o,
pt ][ oz, "7 = " Tz, Y]z

By the asymptotic theory of M-estimators (van der Vaart 1998), i( 1 is
asymptotically normal with variance B! var[EZ( T bIB" !, where
B =B(Z), B= E(Z(l)), and b= B(Z(l)). In the case where the
estimator (10) is treated, ﬁ(z(l)) and f)(zm) are in fact free of z(y),

and this result follows trivially. Applying the matrix version of the
Cauchy—Schwartz inequality

var(X) > cov(X.Y) var~! Y) cov (X, Y)
with X =BZ(j, —band Y = T(},(Z(1)). we obtain
var[ﬁZ(l) - f)] > COV[BZ“) -b.Ty(Z1))] x nG~!
X covT[BZ(U —b. T“)(Z(l))].

Now for 2 < h, j <m+ 1, the (h — 1,j — 1)th element of
1 COV[BZ(I) - b, T(])(Z(l))] is

i cov [a g Zh nqjl/Zi ]
Wopgv—— =5
v=1,vsh ARDY R I TYIA
i cov [a 9h 2 wlid }
- v| Cldh 5 = o
v=1vh Zy Yoy medr/ Z
m
Zy ng;/Z
= Eh[“hv‘]v]“—Eh[—m—
v=1,vs£h Z Zk:l nkqe! Zi
m
Zy ngj/Zy
- Z El’[a!zuqh]_Ev[—m————
v=1,v#h Z 2ok Mkl ! Zi
m m
= Z Eplapyvgvlonj — Z Evlapugrloy;,
v=lvsth v=1.v#h

and the (4 — 1, j — )th element of BOH™!G), due to (19), is

m

Zp
- Z Eplensg] Uhj_Z_l(’jl

v=1,v#h

n Z
v
+ Z Eu[ahv‘Ih]<0\)j - Z_l()-”)

v=2,v#h

m

Zy
= —Eh[ahwn](ﬂhj - _l”jl) - Z Eploatpugylon;

Zi v=2.v#h
m
+ Z Evlapugnloy;
v=2,v#h
m m
== Z Eplapvgvlon; + Z Evlopugnloy;
v=1,vs#h v=1,v#h

The corresponding elements of cov[fiZ(l) — B,TU)(Z(]))] and
—n"'B(H!G) are equal. Thus B~ cov[BZ(j) — b. T(1y(Z1))] =
—n~YH~!G. Consequently, we have

B~ 'var[BZ, - b]B ! =n 'HTIGHT L
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The right side is exactly the asymptotic variance of 2(1); see the proof
of (8). The equality holds if o ; (x) =n;; Zj._l/ Z;(":l nkZ;qu (x) for

h#j.2<h<m+1,1 §j§m+1,becausethen]§Z(1)—f):
=Ty(Zy).

Two Examples. In the first example, there does not exist a mea-
sure that maximizes the likelihood in the reduced parameter space.
In the second example, the maximizing measure places mass outside
the sample.

Let the state space be the unit interval (0, 1) and the baseline mea-
sure be Lebesgue measure. Let g (x) =1 and ¢o(x) = 34—y,
Then the integral of gj(x) = g2(x) — g1 (x) is 0. Suppose that the ob-
servations are xp, x3, and x3, for which gy (x) equals 1/5, 1, and 6/5.
For simplicity, consider only measures g such that both [ g1 (x)du
and [ga(x)dp are 1. The log-likelihood is Z?:] log u({x;}) up to
an additive constant. For measures supported on the sample, the log-
likelihood has maximum —3.74, which is achieved by the measure
withmass 2/15 at xy, 1/3 at xp, and 8/15 at x3. Foreach0 < § < 1/3,
the measure with mass 1/3 — & on x(, 1/3 on xp, 1/3 on x3, and
8 on x4, where go(x4) = (1 + 1/8)/5, satisfies the constraint, and the
log-likelihood is —3log 3+ log(1 —34). This sequence can be arbitrar-
ily close to the unconstrained maximum —3log3 (= —3.30). But the
limit measure does not satisfy the constraint. Thus there does not exist
an MLE for this example.

For the second example, g2 (x) is changed to the beta(20, 20) den-
sity function. The observations are changed such that ¢> (x]), g2(x2),
and g (x3) remain as 1/5, 1, and 6/5. As before, the log-likelihood,
subject to the constraint [ g1(x)dp = 0, has maximum —3.74 over
measures supported on the sample. But the global maximum is —3.43
at the measure with mass .28 at x. .33 at xp, .35 at x3, and .04 at x4,
where g2 (x4) is the maximum g* (=5.01) of g>(x) on (0, 1). This
measure can be found by maximizing ) ;_, logw; over (wy. wy, w3)
such that wy, wy, and w3y are nonnegative, wy /5 + wy + 6w3/5 <1,
and wy /54 wy + 6ws/5+¢*(1 — Z?:l w;) < 1.

Proof of Theorem 2

The set Z, contains a neighborhood of O because ¢ (x;) > 0 for
1 < i < n. Further, it is an open and convex set. The function ¢, is
twice continuously differentiable with derivatives

n

3, 1 gj(x;)
W g+ gl
and
326, I 8n(x)g;(x;)

00,08, n = lar0n) + 8 RO

It follows that £, is strictly concave on Z, because the matrix with
columns g(x1}, ....8(xx) has full rank 7.

(a) = (b): Suppose that 2, is bounded. Then £, is bounded from
above on B, and approaches —oc at the boundary. By strict concavity,
£, achieves a unique maximum.

(b) = (a): Suppose that £, has a maximum on Z,. Then £, is
bounded from above on Z,. It follows that £, is bounded. Otherwise,
there exists a sequence of pairs (¢x. { ). where ¢ is a positive number
and & is a unit vector, such that ¢y — oo as k — o0 and gy (x;) +
ckcl—:g(x,-) > 0 for | <i < n. By compactness of the unit ball, there
exists a unit vector ¢ such that &; — &g as k —> oo. Letting k — 00
in I;;g(x,') > —q{x;)/ck, we obtain g‘gg(xi) >0 for 1 <i<n.
The inequality holds strictly for some i because g(x}), ..., g(xy) has
full rank /. Then c¢ belongs to Z, for each positive number c. and
£,(cg ) can be arbitrarily large, which is a contradiction.
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(b) = (c): Suppose that £, is maximized at Z;' Then the derivatives
of £, are 0 at ¢, because the set =, is open. From the identity

Z s dtn

4]

12

it follows that the positive weights

q1(x;)
T +¢ g(x)

nl

)+ 2T gy
are positive and satisfy the constraints that define A,.

(¢) = (b) + (d): For any (wy....,wy) € Ay and any ¢ € Ep,
Jensen’s inequality implies that

n

—Zlo0 w; q1(¥1)+§ g(" )“

i=1

n

< log %Z

i=1

wig1 () + ¢ Tglxn)]

= —log(n),

which can be rewritten as

1 n l n T

=) logw; <—— > log|qi(x;)+ & glx;)|—login).

. ; . ; [ ]
Suppose that the constraint set A, contains at least one point such that
w; > Oforalli. Then ¢, is bounded from above on Zj;. By the proof of
(b) = (a), B, is bounded. Thus £, achieves a unique maximum on Ej.
Let £ be the maximizer of ¢,. Then the foregoing (i1....,1y) is a
unique solution to the problem (13).

(d) = (c): It is trivially true.

Proof of Theorem 3

Consider the criterion function

L) =flog[l +CT£(Q}dP1,
q1(x)

where the log of 0 or a negative number is taken to be —oo. It is finite
in at least a neighborhood of £ = 0, because g(x)/q(x) is bounded
on X. For each fixed x, log[1 + ;Tg(.x)/ql (x)] is concave in ¢ and so
is £(¢). By Jensen’s inequality, £(¢) < log Eq[1 + §Tg(x)/q| (x)]=
log(1) = 0, and the equality holds only at £ because the functions
in g are linearly independent on X. Thus £(&) has a unique maximum
at {. Now f is defined by maximizing the sample counterpart £, (Z).
Note that 32¢, /3; Zis uniformly bounded for £ over a neighborhood
of &g, and — —E[3? én/d{ (¢g)] = vary[g/q]. By the asymptotlc the-
ory of M-estimators from convex minimization (Niemiro 1992), ¢ con-
verges to ¢ with probability I, and \/n/ — ¢ ) has the expansion

s L o1 8 172
¢ —¢qg=var [41} 0c (;‘0)4—0,,(:1 .

Then | + ng(x)/ql (x) converges to 1 uniformly on X, and the right
side of the inequality

| |
lZ 7 q(x;)
| /1Zy — i )‘

1 g(x;)

! q1(x;)

g(x)
g1 +2Tgw)

o T

|

L]

converges to 0, because g(x)/q1 (x) is bounded on X". Thus Z/Zl con-
verges to Z/Z | with probability 1. For ¢ about . a Taylor expansion

<
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of Z/Z] yields
S q{x;) ( AT g(x;) ) —1,2
VAVAR — +o0p(n )
o n,zqm) g ) 0
3 —l- n q(xl)
1 - qgilx;)
1 ) T (4 1
_ _Z‘[(’H)g (x;) V‘arfl[—g—} _Z g(x;)
n a3 i) g1 J\"  @1(xi)
+opn~ /

The remainder term in the first equation is

Ry wgng () - :
T q1lOgly g X —1/2

- =op(n ).
‘ (”gwxnuﬁguf)ﬁ £=or

where ¢* lies between £ and ¢. The first-order term is a regres-
sion estimator with a slightly different regression coefficient than B .
We conclude the proof because two consistent estimators of 8 yield
equivalent regression estimators to first order (Glynn and Szechtman
2000, thm. 1).

Proof of Theorem 6

(a) The vector that minimizes the variance is

nj q(‘ l) ] m g(\'l)
been| 33 S 15y S

=t qe(xji) n =t q*(x”)

q*(le)

m nj g(’f‘i)
X var [’ ZZ / i|

It remains to show that this vector equals 8. For 2 < k < m, we have

m Ny

1 Z Z [ qlxji) ’ gk (X i) _CI](-’Cji)jl
n i qx (X i) Gx (X i)
m
=O0m41.k — Om+1.1 ;{ Zn_jom+].j(0kj - ”lj)
j=1
1 bi13
= Otk = Ome1l ~ Z”j(”m+l.j —Om+1.10j —015),
j=2

because n (() — 0 ) + m ~ R '(0 i— 0 ) = 0. Writing in matrix
110kl 11 j=2 T j\Okj 1j g
notation. we obtain

1 i %COV[ qxji) - 8xji) }
"

i=1i=1 95 (xji) 4 (xji)

T T
=04 _(’;n—i—l,l]mf])[lm—l Ay (O(IJ —ollmfl)]
where 0,11 = {02 41+ Omom+1 )T Similarly, we have
L i)
LYy | B
nioio Laston

T T
= (0(1) - 1'"-101 — 0] 1m—l +0|11"1—11n141)
T
X [Im—l - A(l)(Ol'l) - 01]17171)]'
Thus the optimal regression coefficient is
T T T oyl
(0(1) - 1'"*101 — 0 1mfl +0”1'"—]1m—1)

X (Opt1 = g1 1 m—1),
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which is exactly 8.

(b) Forl <j <m,let nj _-f)\ (x)(g(x)— c; (x)g x))dpg. Then
Zm_l n; = Z. The estimator is unbiased and ha% variance

2/(

Qj(-r)d

A

(K)*C (x)g(x) oy )2
J

(Ij(x) Zx

(g () — €] ()R = 1jq;(x)/Zx)

niqi(x)/n

dug

v

z;! / (Z'j":l X0 q () ~ €] (0g) = 174, (6)/Z4)? ]
—— o

n Gx(x)

zZ) [ (g b g0 — X njaj (0/Z)’
f dug

n gx(x)

I /(qm —bgx) = Y75 g1 — Zn 1 /mg 0/ 2.

n gx(x)

_ i QQ*UC)
7 Z

The last line is the variance of the estimator considered in (a), with b
replaced by b+ (np — Zny/n, ..., nm — an/n)T/Z*, under unstrat-
ified sampling from P, and thus is no smaller than that of the regres-
sion estimator. The equality holds in the foregoing Cauchy-Schwartz
inequality if )\j (x) = niq; (x}/(ng«(x)) and ci(x)= B.

dug

[Received November 2002. Revised March 2004.]
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