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We derive an expression for the classical rate constant between any two states of a
multistate system. The rate is given as the transition state theory rate of escape from
the originating state, multiplied by a dynamical correction factor in the form of a
time-correlation function which is evaluated using molecular dynamics techniques.
This method is desiged to treat cases in which reactive state-change events are so
infrequent (e.g., at low temperature) that direct molecular dynamics calculations are
unfeasible. In this regime where dynamical recrossings occur much more quickly
than the average time between reactive state changes, the concept of a rate between
two nonadjacent states becomes meaningful. We apply the method to the surface
diffusion of Rh on Rh(100) at the temperatures employed in field ion microscope

experiments.

. INTRODUCTION

The direct simulation of chemical processes via
classical molecular dynamics (MD) techniques is now a
widely used and powerful approach,' due largely to the
high speed of modern computers. There remains, however,
a class of systems for which direct molecular dynamics
simulation is unfeasible. These systems are characterized
by the “rare-event” nature of their dynamical evolution
from reactant to product states. Because there is a “‘bot-
tleneck™ in phase space (e.g., a high activation barrier)
through which the system must pass to change states,
direct integration of the equations of motion may require
many years of computer time before a single reactive
state-change event is observed. Examples of these rare-

event processes include thermal desorption from solid

surfaces, surface diffusion at low temperatures, and any
chemical reaction with an activation barrier which is high
relative to the temperature.

For such systems an elegant alternative approach
has been developed,>® which yields exact dynamical
quantities without the computational effort growing pro-
portional to the rareness of the event of interest (as in
direct MD). The key to this approach is the factoring of
the rate constant into two parts: (1) an equilibrium factor,
defined as the flux through a dividing surface separating
the two states, and (2) a dynamical correction factor,
which accounts for the fact that this flux contains spurious
crossings which do not correspond to true reactive state-
change events. The rare-event nature of the process is
included in the first factor, which is simply the transition
state theory (TST) rate constant. Because this is an
equilibrium property of the system, and does not require
knowledge of the dynamics, a variety of methods are
available for computing it efficiently.'®'" The second
factor requires explicit use of molecular dynamics, but is
easily evaluated because the trajectories need only be
followed for relatively short times.
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For many problems the dynamical correction factor
is close to unity (especially if the TST dividing surface is
chosen well), and thus the TST approximation is often
very good. Indeed, TST has proven to be, and remains,
a most valuable tool for computing reaction rates.'?
However, it is important to have the capability of com-
puting dynamically exact rates for two reasons: (1) the
quality of TST can be tested for a certain type of system
by comparing to the exact result for a representative case,
and (2) for many systems, the TST approximation is too
poor to be useful.

Though the concept of a dynamical correction factor
has been around for many years,'? the first use of MD
for its exact evaluation was due to Keck.Z More recently,
this type of approach has been applied to describe diffusion
in solids,® gas phase reactions,>*!'*!* intramolecular
rearrangements®'® and reactions in solution,’ and thermal
desorption from solids.'’~'® All work to date (with two
exceptions'®!? discussed below) has been on two-state
systems. In this paper we present a generalization of the
dynamical-correction formalism to the many-state case.
This should be useful for a variety of problems, such as
diffusion on or in a solid, polymer chain dynamics, etc.
As an example, we apply the method to calculate the
surface self-diffusion rate for a Rh atom on a Rh(100)
surface at 300 K, a task which would require >10® years
of computer time? using direct MD.

Our derivation of the many-state result is identical
in spirit to the two-state formalism presented by Chandler,?
and Skinner and Wolynes.® From the properties of the
fluctuation—fluctuation autocorrelation function for a sys-
tem at equilibrium, they extracted an expression which
gives a precise prescription for evaluating the dynamical
correction factor using classical trajectories. Montgomery,
Holmgren, and Chandler'® have examined the appro-
priate time correlation functions to estimate the impor-
tance of multiple-state transitions in alkane chains, and
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Adams and Doll'® have derived a matrix formulation for
the many-state case, but in neither work did the authors
actually extract elementary rate constants. We show here
that the elementary rate constants can be extracted and,
as in the two-state case, the formalism yields a simple
prescription for computing the necessary dynamical cor-
rection factors. Moreover, an interesting concept which
emerges naturally from this formalism is that of a rate
constant between two states which are not adjacent in
configuration space.

This paper is organized as follows: We review the
two-state derivation in Sec. II, and extend it to the many-
state case in Sec. III. Section IV contains a description of
how molecular dynamics techniques are applied to com-
pute the dynamical correction factors, and Sec. V contains
the application to Rh on Rh{(100) surface diffusion.

Il. THEORY: TWO-STATE SYSTEM

We first derive the method for making dynamical
corrections to transition state theory (TST) for a two-
state classical system. This is a simplified version of
Chandler’s original derivation.® As shown in Fig. 1, we
are considering a one-dimensional system with two stable
configurations, A and B, separated by an energy barrier
at x = g. We assume that for a canonical ensemble of
such systems, a first-order rate law applies, so that

Na = —kn—pNj + ka_aNp
NB = kn—BNa — kg, 2.1

where N, and Np are the populations of state A and state
B, respectively, ko_p and kg_, are the elementary rate
constants, and the dot indicates a time derivative. We
can define fluctuations of Ny and N away from their
equilibrium values by

8N, = No— N,

8Np = N — N, 2.2)
where conservation of particles requires

SN, + 0N = 0. (2.3)

Combining Egs. (2.1), (2.2), and (2.3) leads to a rate law
for the fluctuations,

ONA(?) = ka_.a0Np — ka_p0Na
= —kp_.a0Na — ka_g0Na

= — kewONa(?), 249

>

FIG. 1. Energy diagram for

B one-dimensional two-state
system. The boundary be-
tween the two states is at
X=4q

ENERGY

>

q
REACTION COORDINATE (x)

where we have defined an effective rate constant as
kett = ka—p + kp - (2.5)

Equation (2.4) gives the response of the system to an
artificial displacement from equilibrium. From the fluc-
tuation-dissipation theorem,?' we expect that when the
system is at equilibrium, it responds in this same way to
spontaneously occurring fluctuations. Thus, we deduce
the behavior of the fluctuation—fluctuation autocorrelation
function to be

(SNAOYNAW)) = —kea{ BNA(0)ONAD)). 2.6)

The angular brackets indicate the usual canonical-ensem-

ble average
f dp f dx Ye*H

(Y) = fdpfdxe-ﬂﬂ ,

where p is the conjugate momentum, H is the Hamiltonian
for the system, and 8 = 1/kgT (kz = the Boltzmann
constant, 7 = temperature). Noting that

(BNA0)NA®D)) = —(3NA(0)SNA®)),
we may rewrite Eq. (2.6) as
e = (BNA(0)SNAD)) .
(BNA(0)SNA(D))

Equation (2.7) gives an expression for the dynamically
correct rate constant in terms of equilibrium properties,
though it is not yet in a particularly useful form.

Noting that the denominator in Eq. (2.7) is a slowly
varying function of time compared to the numerator, we
make the following approximation, which we discuss
later:

(SNAO)NAD)) ~ (SNA(0)ONA(0)). (2.8)

With this assumption, and making use of Eq. (2.3), Eq.
(2.7) becomes

oty = —SONAONG(D)

(ANAQWNAO)) °

where we have explicitly indicated the time dependence
of k.;. Without loss of generality, we can make the
simplifying requirement that

No+Ng=1,

so that
Na(9) = 0lg — x(1)],
Ny(?) = 0[x(1) — 4},

where @ is the standard step function. The fluctuations in
N, and Ny are thus given by

ONA(D) = 0lg — X(D] — xa
ONg(?) = 0[x(?) — q] — xs, (2.10)

where xa and xg are the equilibrium mole fractions_of
components A and B, respectively (note that x, = N,,

2.7

2.9)
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X8 = Np). The autocorrelation function in the denominator
of Eq. (2.9) becomes

{3NA(0)SNA(0))
= {{flg ~ x(0)] — xa}{8lg — x(0)] — xa})
= {8lg — x(0)}8lg — X(O)]) — x4
=XA—X:2\- (2.11)
From detailed balance, we know that
kas _ xs
kp—a  xa
so that Eq. (2.5) becomes
ke = kA—-B(l + &) ,
XB
and from Egs. (2.9) and (2.11) we have
—(3NA(0)3Nx(£))
(1 + (xa/xp)l(xa — X&)
_ =(ONAOONs()
Xa

To simplify the numerator of Eq. (2.12), we need the
time derivative of 6N, ; from Eq. (2.10) we have

SNA(0) = —X(0)8[g — X(0)],

where 4(- - -) indicates the Dirac delta function. Thus,
we obtain

ka—p(t) =

(2.12)

knn(t) = {X(0)8[x(0) -x j]olx(t) -4l .

(2.13)
The numerator in Eq. (2.13) can be interpreted as the
particle flux through the x = g dividing surface, modified
by the step function 0[x(f) — g]. The particles crossing
the dividing surface in the +x direction (i.e., moving
from state A to state B) at time zero that reside in state
B at time ¢ contribute positively to the ensemble average,
while particles residing in state B at time ¢ that were
making a —x crossing at time zero contribute negatively
to the average.

If every particle that crosses the dividing surface in
the +x direction remains in state B (at least until a time
greater than ), and every particle crossing in the —x
direction remains in state A, then the ensemble average
in Eq. (2.13) is simply the one-directional flux through
the dividing surface. This is the transition state theory
(TST) assumption, that every dividing surface crossing
corresponds to a reactive state change. We can modify
Eq. (2.13) to reflect the TST approximation by setting ¢
to some small value ¢, chosen such that no recrossings
can occur between ¢ = 0 and ¢ = ¢. This gives

(HOBIX0) — glélx(e) — gI)
XA

_ {0)8[x(0) — gJ6[X(0)] .
XA

TST _
kazp =

(2.14)

It is easy to show that Eq. (2.14) is equivalent to a
more familiar expression for the TST rate. Noting first
that, in a canonical ensemble, the forward and reverse
flux through x = g have equal magnitudes, we can write

st _ KPHORIXO) - gy
A—B YA .

(2.15)

We can express x5 as

xa = {flg — x(0)])
f dp f dx Olg — x(0)]e #HeP

f dp f dx e—ﬂH(x.p)
f dp f dx e PHOD)
A

f dp dx e—BH(x,p) ’
A+B

where the subscripts A and A + B indicate that the
configuration-space integrals are over state A and all
space, respectively. Equation (2.15) thus becomes

p— —

[, ationo - ae ]
2

kTST = [

A—B

f dp dx e?H
A—B

f dp dx eFH
A+B
f dp f dx e PH
A

= KAHOSO) - ala,

where the subscript A indicates that the configuration
space part of the ensemble average is integrated only over
state A (plus the infinitesimal region necessary to include
the TST dividing surface). Equation (2.16) is a standard
expression for ki>tg,%!'?? interpretable as the flux of
particles through the TST dividing surface bordering state
A, divided by two since half the flux is going the wrong
direction. Note that the expression is independent of the
nature of state B>; k137, is simply the rate of escape from
state A across the boundary surface.

The dynamical correction factor we seek is obtained
by taking the ratio of k,_p [Eq. (2.13)] to k3% [Eq.
(2.14)], which yields

_ ka_p _ (X(0)é[x(0) — q}0[x(x) — q])

fa(t) =~ LIST /= .

kaZs  {x(0)3[x(0) — g16[x(e) — q])
Implementation of Eq. (2.17) requires an understanding
of the time dependence of the correlation function in the
numerator. As mentioned above, the TST assumption
that every particle crossing the dividing surface will come
to rest without recrossing is invalid for many systems.
After a crossing, there is a chance that the particle will
recross the surface one or more times before ultimately

(2.16)

2.17)

J. Chem. Phys., Vol. 82, No. 1, 1 January 1985

Downloaded 01 Jun 2005 to 128.95.128.65. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A. F. Voter and J. D. Doll: Multistate dynamical corrections to TST 83

thermalizing in state A or state B. (We are assuming that
the system is coupled to other degrees of freedom, which
are constantly exchanging energy with the coordinate
considered explicitly.) We define 7., as the time scale
on which these correlated dynamical recrossing events
occur; 1.e., a particle crossing x = g at time zero will have
thermalized by time 7.,,. We also define a time scale
associated with the reaction, 1, =~ (k.g)~!, which corre-
sponds to the average time between reactive crossings of
the dividing surface. At very short times (¢t = ¢), the
dynamical correction factor given by Eq. (2.17) is unity,
since the numerator and denominator are equivalent. As
t is increased to 7o, fi{t) decays to some value less than
one, because trajectories which recross contribute nega-
tively, or fail to contribute, to the numerator. If 1, is
much greater than 7., then f(z) will reach a plateau
value at ¢ = 7., as shown in Fig. 2. If f{7) is examined
on a very long time scale (i.e., units of 7,), it will be
seen to decay exponentially, and it ultimately tends to
zero, because the direction of travel of a particle making
a crossing at time zero is uncorrelated with its position
at > 7nn. Thus, only if this plateau region exists, and if
Eq. (2.17) is evaluated during that time, can meaningful
results be obtained. The dynamically correct rate constant
will be given by

ka—p = kRZs fit,), (2.18)
where ¢, satisfies
Teorr < Ip € Trxa- (2.19)

We can now examine the approximation made in
Eq. (2.8). Because the correlation function (8NA(0)8N(#)>
decays on a time scale of 7.,,, and because we restrict
ourselves to times much smaller than 7,,,, the zero time
assumption is perfectly reasonable. Note that Eq. (2.7),
which does not include this assumption, gives an expres-
sion for the dynamically correct rate constant which is
valid for g/l times greater than r.,. As the numerator in
Eq. (2.7) decays towards zero for ¢t > 7.,, the denominator
also decays, leading to a constant ratio. Thus, if we used
Eq. (2.7) to compute k.g, we would not need to require
a separation of time scales between 7., and 7.,; We
could simply pick any ¢ > 7. to evaluate the right-
hand side of Eq. (2.7). However, evaluating the denomi-

™~

fd (1)

Teorr

t

FIG. 2. Typical behavior of the two-state dynamical correction factor
[EQq. (2.17)] for Tcorr <€ Tyxn-

nator of Eq. (2.7) requires more computational work than
the numerator, and can become prohibitively expensive
when the reaction is slow. For this reason Eq. (2.17)
becomes the method of choice when the requirements of
Eq. (2.19) can be met.

The concept of time-scale separation merits further
discussion. We can view this approach to calculating
ka_p in the following way: We imagine watching the
motion of a single particle which has resided in state A
for a time greater than 7.,,. When that particle finally
makes a crossing of the dividing surface, we close our
eyes for the next 7., time units, and then note the state
of the particle upon reopening our eyes. If the particle is
in state B, we say that a reactive crossing has occurred,
but if the particle is in state A, we pretend that nothing
happened—the particle never left state A. We now con-
tinue to monitor the motion of this particle, and follow
the same prescription each time a crossing occurs (in
either direction). After observing a large number of reactive
hops, we can compute k,_p as the average of the inverse
of the time between a reactive hop into state A and the
subsequent reactive exit from state A. Because 7oor
< Trn, We make only a negligible error using this ap-
proach—there is a negligible probability that an important
event (i.e., an extra reactive crossing) occurs during the
infinitesimal fraction of time that our eyes are closed.

Now consider how Eq. (2.17) actually performs this
counting. Figure 3 shows an idealized plot of the time
evolution of a system executing the four possible types of
surface crossings: A — B, A— A, B — A, and B — B,
each consisting of multiple recrossings. Only the A — B
event [Fig. 3(a)] should contribute to the calculation of
ka_p. If we examine a canonical ensemble of particles at
a given instant of time, we find that each of the five
crossings in Fig. 3(a) are present. The time-correlation
function {X(0)8[x(0) — ql6[x(¢,) — g]) instructs us to allow
each of these five systems to evolve for a time 7., and
then examine the final state. Because each system in our
example will be in state B, so that 8[x(z,) — q] = 1, they
will contribute positively or negatively to the average,
depending on the sign of x(0). Crossings 1, 3, and 5
contribute positively, while 2 and 4 contribute negatively.
Thus, the net contribution will be one crossing, as will
be the case for any number of recrossings. [Note that
only the phase of x(0) is important, not the magnitude;

ST S N VA
123415
Al AN AN A -
. \va<y VL (VA \vaY) x=q
A S Teorr J .
a) b) c) d)

t

FIG. 3. Idealized diagram of the four possible multiple-crossing events
for the two-state system. The numbers 1 to 5 in (a) label the five
crossings that comprise the single A — B reactive crossing event. The
A — A, B — A, and B — B crossing events shown in (b), (c), and (d)
make zero contribution to the numerator in Eq. (2.17), and hence do
not contribute to the dynamically correct kx—p.
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the magnitude appears in the ensemble average because
we are sampling from a velocity-weighted Boltzmann
distribution, corresponding to a snapshot in time of the
particles crossing the dividing surface. This will be dem-
onstrated in Sec. IV.] The A — A and B — A events
shown in Figs. 3(b) and 3(c) contribute nothing to the
average because 0[x(t) — g] = 0. The B — B event shown
in Fig. 3(d) makes no net contribution to the average
because there are an equal number of x(0) > 0 and X(0)
< 0 crossings.

Computation of the dynamically exact classical rate
constant is accomplished in two stages. First, the TST
rate constant is evaluated via Egs. (2.15) or (2.16). Then
the dynamical correction factor f; is computed from Eq.
(2.17), using the same dividing surface as in the TST
calculation. The ensemble averages in Eq. (2.17) are
evaluated by following the behavior of a swarm of classical
trajectories which start from the TST dividing surface.
This procedure is described in detail in Sec. IV. It is
worth noting that the rate constant computed in this
manner is independent of the location of the dividing
surface. While choosing the surface to be at the free-
energy maximum between the two states will yield the
most accurate k 1>'g (and f; closest to unity), other positions
will also work. This is helpful in many-dimensional
systems, because the position which will maximize f; is
often not easily defined.

lll. THEORY: MULTISTATE SYSTEM

In the last section we showed that the dynamical
correction factor for a two-state system can be expressed
as a ratio of equilibrium correlation functions, which may
be evaluated using classical trajectory techniques. In this
section we extend the analysis to a system with an
arbitrary number of states, and with the same assumption
that 7or <€ T14n, We show that an analogous expression
exists for the rate of reaction between any two states of
the system.

We begin with the matrix formulation of the rate
law used by Adams and Doll."” The system is assumed
to be composed of n states, with no restriction on the
connectivity of the states. An example is the potential for
an atom diffusing on a solid surface. In this case, there
are an infinite number of states, each corresponding to
one binding site, with each state bordering between two
and four other states (depending on the crystal face).
Because the total number of particles N is held fixed, it
is sufficient to specify the populations of n — 1 states. We
thus define the (n — 1)-dimensional column vector of
time-dependent populations N(?) and fluctuations away
from equilibrium,

8N(?) = N(» — N, 3.1)

where N is the column vector of equilibrium populations.
We again assume that the populations, and hence the
fluctuations, obey a first-order rate law, which we may
write as

SN(f) = —koN(?), (3.2)

where k is a (n — 1) X (n — 1) matrix of rate constants.
It is important to note that the elements of k are not the
elementary rate constants (indeed, our task will be to find
the relation between the two). As in the two-state case,
we take the behavior of the fluctuation correlation func-
tions to be governed by the same rate law, leading to

(ON(B)NT(0)) = —k(SN()SNT(0)),

which was obtained by right multiplying Eq. (3.2) by the
row vector SN7(0) [the transpose of dN(0)], and taking
an ensemble average. [Note that (3N(#)dN”(0)) represents
a matrix of correlation functions.] Taking advantage of

(ON(@)SNT(0)) = [(SN(O)NT(1))}"
and
(BN(0)SNT(1)) = —(N(0)ONT(2)),

we obtain an expression for the elements of the transpose
of k,

KT = [{(ON(0)SNT(1))] ' (SN(0)SNT(1)).

We now deviate from Adams and Doll.

We wish to express the elementary rate constants
k2., in terms of time correlation functions, as we did for
the two-state case. We can write the rate law as

(3.3)

SN(t) = 2 (—ONKEL; + dNkS.)

J

= —2 8N,fij+ 2 6N,f, 3.4)
j J

J
where ON; is the ith element of 6N(7), and we have
introduced the n X n matrix of elementary rate constants
f defined by

(f)ij =ﬁ‘ = kxe']—-j,

to avoid confusing k', with an element of k. Now
consider the following expression, which gives k in terms
of elementary rates:

(3.5)

Kyij=~fi+tfutb; 2Zfas Lj<n (3.6)
k

(here §;; is the Kronecker delta function). We will prove

Eq. (3.6) by inserting it into Eq. (3.2) and comparing

with Eq. (3.4). Rewriting Eq. (3.2) and inserting Eq. (3.6)

gives

n—1

SN(1) = — 3 (K)udN1)
k

n—1 n
- (—ﬁa Aot o zﬁ,)aNkm
k !

n—1 n—1 n
2 SidNLO) — fui 22 SN — 2 fudNi(2).
k k k

Extending the range of the first two sums from #» — 1 to
n (the extra terms cancel), and noting that
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i IN()=0 3.7
k

we obtain
ONi(1) = 2 fid Ndt) — 0 — 3 fudN (1),
k k

which is the same as Eq. (3.4), proving Eq. (3.6). Now
consider another expression:

n—1
kil =fi= 2 xR — (K b j<n, (3.8)
k

where x; is the equilibrium mole fraction in state k. We
will prove this by inserting Eq. (3.6) into the right-hand
side of Eq. (3.8), which gives

%:l Xk("fkj +fuit i %fﬂ)

+fii—Jui— 0 2 S
k

Because we are not interested in k%.;, we may discard
the last term (§; ZZ Jix). We may also extend the range of
the first sum from n — 1 to n, because the extra terms
cancel, as long as j < n. (We are currently restricting i
and j to be less than n, but our ultimate expression for
k¢ will be valid for all i # j.) This leads to

n n n
=2 xihejtfuj 2 xe t 2 t i — s
k k !
and using
Zxe=1
k

and
xifi i=X jfji,
we obtain

é(_)(kfkj + x; ) +fn,-(2 Xk) +fij = Jj
K k

=0+/fo;+Sij= faj

=.fl Js
which proves Eq. (3.8). Substituting Eq. (3.3) into Eq.
(3.8) gives the elementary rate constants in terms of
correlation functions, but first we wish to simplify the
“denominator” matrix in Eq. (3.3).

As in the two-state case, we will approximate the

fluctuation-fluctuation correlation function by its time-
zero value

(SN(0)SN(2)) =~ (8N(0)dN(0)). 3.9

Taking N = 1 (with no loss of generality), so that N;
= x;, it is easy t0 show (see the Appendix) that

[<5N(0)5NT(0)>]i ji= 0; JXi = XiXjs (3.10)

and that the desired inverse matrix is given by

1,8

6 T 1=
{[(3NOBNO)I ™} w3

(3.11)

Using Egs. (3.3), (3.8), and (3.11), we can express the
elementary rate constants in terms of the correlation-
function matrix elements

Ci; = (8N,(0)SN(5)).
From Egs. (3.3) and (3.11) we have
r n—1 1 6ik
k)ij= 2 {—+—C)>
k Xn Xi
so that
G i B
(k);; = > (X_ + l)ckia

k n X

and inserting into Eq. (3.8) gives
n—-1 n—1 l 6 n—1 1 61'
e, =53 (L 2o ] 5 (L 2,
1l

x \Xn X4 r \Xn  Xi
I} x Xn 1 Xi ’ k Xn Xi
1 — Xn n—1 n—1 1 n—1 C::
=( )chj'*‘zckj——zckj_—”
Xn k Xn Xi
= —Cilxi»

and substituting for C;; yields

pa = —CONAOBN,(@)
i—j .

Xi

(3.12)

Equation (3.12) is the central result of this paper. It
states that, when 7., < T, the elementary rate constant
between any two states, connected or not, is given by a
simple equilibrium correlation function. Note that the
form of Eq. (3.12) is identical to Eq. (2.12) for the two-
state system. Note also that there is no dependence on
state n in Eq. (3.12); we are free to choose any state other
than i or j as the nth state, and thus we may abandon
the i, j < n restriction. As in the two-state case, we will
tinker with Eq. (3.12) to obtain a computationally con-
venient form.

Because systems of interest will rarely be one dimen-
sional, we extend our scope to a many-dimensional
system defined by the coordinate R. The time-dependent
population of state i is given by

0:(t) = 8{F;[R(1)]},

where F;(R) is a continuous, differentiable function with
the property that

>0, if Risin state i,
F;(R) 1 =0, if Ris on the boundary to state i,
<0, if Ris outside state i.
The population fluctuation is thus

ONi() = 0:(1) — x: (3.13)
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and the time derivative becomes
3Ni(?) = 8{F,[R()]}VF;-v
= —0;()vi(?), (3.14)

where v; is the velocity normal to the dividing surface
(defined as positive when the system is exiting state i),

—VF;-v
v; = W >
and we have defined
8:() = 8{F,[ROBIVE[R)]I. (3.15)
Equation (3.12) becomes
ke, = {vi(0)3:(0)6,(1)) , (3.16)

Xi
and writing the TST rate of escape from state i as

st = K((06,0))

(3.17)
Xi
[see Eq. (2.15)], we obtain
ke, = SOUO800,)) vy (3.18)

3(|v:(0)18:(0))

As in the two-state case, we have expressed the true rate
constant as the transition state theory rate modified by a
ratio of ensemble averages. The expression is only valid
if the numerator can be evaluated at a time ¢ such that

(3.19)

Teorr < € Trxa-

Before describing how to evaluate Eq. (3.18) via molecular
dynamics, we conclude this section with a few important
points.

As indicated by Eq. (3.17), kT depends only on
the nature of state i, and the shape of its boundary
surface. Thus, in computing k¢';, the same TST rate
constant is employed for any final state j. All dependence
on state j is contained in the time-correlation function
{v:(0)8;(0)8(#)), which accounts for the ultimate fate of
particles which are at the boundary to state i at time zero.

Note that state i and state j need not be connected;
ki, may be computed from Eq. (3.18) for any two states
of the system. While this may seem contrary to the
conventional concept of a rate constant, we feel that
kg, is in fact well defined for nonadjacent i and j. As in
the two-state case, we appeal to the notion of “closing
our eyes” during the time 7, following an initial crossing
event. If a particle initially in state / exits and reappears
in some distant state j when we reopen our eyes, then it
is reasonable to say that it has made a direct flight from
state i to state j. The possibility that we are missing some
important event is negligibly small, since our eyes are
closed only 7.o/7rxn Of the time. This concept can also
be stated another way. Though states i and j are not
connected in configuration space, we can think of them
as being connected by a sort of “tunnel” in phase space,
which passes through the states connecting / and j. When
a particle exits state i with the right set of phase-space

coordinates for entering this tunnel, it is automatically
guided to state j. Even though it passes through the
configuration space of some state k, this tunnel region of
phase space is inaccessible to state k, and can only be
entered from state { (or state j, by time-reversal symme-
try—assuming that all coordinates are explicitly included
in the system). A particle can pass from i to j through
this tunnel in a time less than 7., while actually hopping
from i to k, and then k to j, would require ~2 7,.

As in the two-state case, it is easy to visualize how
the ensemble average in Eq. (3.18) counts only the true
reactive events. Figure 4 shows a schematic trajectory
which, in time 7., passes from state i through states k,
I/, and m, and into state j. Each of the crossing points,
labeled 1 to 7, will appear in the canonical ensemble, and
after evolving for time 7., will reside in state j. Be-
cause of the form of the time-correlation function
(v:(0)8,(0)0,(£)), this set of trajectories can only contribute
to kiL;, ki';, ki-;, and k5 ;. However, the net contri-
butions to kf.;, ki';, and k5 _; will be zero because for
each of these three initial states, there are an equal
number of initially entering trajectories [v;(0) < 0] and
initially exiting trajectories [v;(0) > 0]. (For example,
trajectories 4 and 6 contribute negatively to k5, while
5 and 7 contribute positively.) Thus, as we would hope,
the only nonzero contribution is to k&.;.

Figure 5 shows the expected time dependence of the
dynamical correction factor, defined as

ki —j)y = kL kBT, (3.20)

If states i and j are adjacent, the behavior is similar to
the two-state case; f{i — j) decays from unity and reaches
a plateau value by ¢ = 7.,. If states i and j are not
adjacent, f{i — j) is initially zero (because a finite amount
of time is required for any trajectory initially exiting state
i to reach state j), and then rises towards a plateau value
at 7.orr. FOr both cases, the approach to the plateau value
is not necessarily a monotonic function, since trajectories
passing through state j on their way to another final state
will cause a temporary increase (or decrease) in f{i — j)

i"‘lk a m
AV
2\_J3 L\J

1 J

FIG. 4. Schematic example of a trajectory that passes from state i to
state j in time 7, via states k, /, and m. Each box represents a different
state of the system. Each of the seven surface crossings shown will be
represented in the canonical ensemble. Using Eq. (3.18) to evaluate the
dynamically correct rate constants shows that this trajectory contributes
only to k;.;, while at the TST level of approximation this trajectory
contributes to kTS%, kTS5, kI, kISF, kIS5, k3%, kiSY;, and kT5),.
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FIG. 5. Typical behavior of the many-state dynamical correction factor
[Eq. (3.20)] for 7eorr <€ Trxn. In case (@), state j is adjacent to state i, and
the behavior is very similar to the two-state case. In case (b), states
and j are not adjacent, so that the correction factor is initially zero, and
rises to a plateau value.

(this is also true for the two-state case). As in the two-
state case, if the time-zero approximation [Eq. (3.9)] had
not been imposed, the computed value for f(i — j) would
remain constant for all ¢ > 7., and the requirement
that T.or <€ Txa Would not be necessary (though this
approach would require as much work as a direct molec-
ular dynamics calculation). While in the two-state case
this time-zero approximation caused a slow exponential
decay in the plateau region, in the many-state case the
plateau behavior is more complicated (though still slow),
since a number of terms arising from the matrix multi-
plication shown in Eq. (3.3) are missing.

IV. EVALUATION OF THE RATE CONSTANTS
VIA MOLECULAR DYNAMICS

The first stage in calculating k&,; consists of com-
puting the TST rate k15T, This can be accomplished via
Eq. (3.17), or from an ensemble average over only the
phase space belonging to state i,

1

kBT = 5 <|vi(0)l5i(0)>i- 4.1

We have shown elsewhere?® that this can usually be

further simplified to give an average over only the config-
uration space of state i,

1 (2ksT\'?
kET=5(Tf:) (540,

where §;(0) is given by Eq. (3.15), and m is the particle
mass, assuming that F;(R) (i.e., the dividing surface)
involves the coordinates of one particle only. If F;(R) is
a function of the coordinates of more than one particle,
the separation implied by Eq. (4.2) is still possible provided
that the effective mass®® of the coordinate perpendicular
to the dividing surface is constant over the whole dividing
surface. For this case, the mass in Eq. (4.2) is replaced
by the effective mass of this perpendicular coordinate
[S(R)], and the gradient operator in Eq. (3.15) operates
with respect to .S rather than R, so that

4.2)

oF;
(1) = 5(Fi)|£ . 4.3)

Equation (4.2) may be evaluated using Metropolis Monte
Carlo techniques,?6-2® once a form for the potential energy
function has been chosen. The Monte Carlo approach
has the advantage that the exact TST rate is obtained,
with statistical error bars that can be made arbitrarily
small, Alternatively, some form of harmonic approxima-
tion may be employed; this tends to work very well at
low temperature where the system resides predominately
in the harmonic region of the potential.

The second stage, which is the focus of this section,
is the evaluation of the dynamical correction factors.
(Either f; or k™T may be evaluated first; the only require-
ment is that the same TST dividing surface be used for
each calculation.) If we define the weighting function for
a Maxwellian-flux distribution at the boundary to state i
by

wi(R, p) = |v;(0)|5;(0)ePH*» (4.4)

(i.e., w; corresponds to a snapshot of the particles crossing
the dividing surface), Eq. (3.18) becomes

2”211910,-(t)w,-dadp/ ffe“’”dep

kel = [v:(0)| kTST
T fma] [ a
=220 aj(z)>w‘_k?_~°:T, s

where the subscript w; indicates that the ensemble average
is over the distribution given by Eq. (4.4). Equation (4.5)
gives a simple prescription for evaluating the dynamical
correction factors. From a configuration-space Metropolis
walk restricted to remain on (or very near) the TST
dividing surface for state i, we select a number of config-
urations. For each of these configurations we assign a
velocity to the perpendicular coordinate S, chosen
randomly from a Maxwellian-flux distribution [P(v)
oc |vjlexp(—Bm,v?/2)], and assign a velocity chosen from
a Maxwellian distribution [P(v) oc exp(—8mv?/2)] to each
other coordinate. Each of these N configurations becomes
a starting point for a classical trajectory, and we assign a
phase to each one according to

v;(0)
lv:(0)]’

phase (1) =

exiting state i, and negative if it is initially entering state
i. (Note that these N initial conditions could instead be
generated using Bennett’s method® of selecting snapshots

TABLE 1. Monte Carlo TST rate constants (total rate for escape in any
direction) and diffusion constants for Rh on Rh(100). The rates have been
extrapolated to zero slab width and the error estimates are two standard
deviations.

T (K) kBT ™) D™T (cm?s7")
200 3.32 x 107 (6.38 £ 0.48) X 107%
300 1.39 X 10 (2.68 + 0.22) X 1072
500 1.30 X 10? (2.49 £ 0.19) X 10713

1000 2.10 X 108 (4.03 £ 0.37) X 1078
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from the path of a trajectory that is artificially reflected
back and forth across the TST dividing surface.) The N
trajectories are propagated until 1 = 7., at which time
surface-crossing events should have ceased, leaving each
trajectory thermalized in some final state. For every state
J (#i) in the system, the elementary rate constant k¢
can be computed from

N
kg, = k,TET[Z > phase (1)6;(I )] , (4.6)

I=1

where 6,(I) = 1 if trajectory I resides in state j at time
Teorr, and is zero otherwise,

Two properties of Eq. (4.6) are evident. First, k§.;
can only be nonzero for those states j in which trajectories
terminate—as we would expect. Second, it appears possible
to obtain a negative value for k%, which would be
meaningless. It is easy to prove, however, that for a
perfect sampling of trajectories (i.e., if N is made large
enough), only nonnegative rates will be computed. This
is because in the true canonical ensemble, for every
trajectory with negative phase, there is an associated
trajectory with positive phase that will terminate in the
same state. This can be verified by inspection of Fig. 4;
e..g, trajectory 2 is initially entering state / (and thus
contributes negatively to k§.)), but to terminate in state
J, it has to exit state /, thus generating the starting point
for trajectory 3, which has positive phase and cancels
trajectory 2.

V. RHODIUM SURFACE DIFFUSION

Surface diffusion, the migration of an atom or mol-
ecule (or collection of molecules) on a solid surface, is an
important part of a variety of physical processes, including
crystal growth, defect formation, epitaxial layer growth,
and heterogeneous catalysis. Understanding the factors
that influence the rate and mechanism of this migration
is thus of central importance, and has received considerable
attention in recent years.?’

Use of the field ion microscope® (FIM), which is
capable of observing a single adatom on a clean crystal
face, has yielded high-quality surface diffusion constants
for a variety of metal-on-metal systems.3'~3® These diffu-
sion constants generally exhibit Arrhenius behavior, with
activation energies and preexponentials that vary widely
with the choice of metal and crystal face. These results
thus allow a test of our qualitative understanding of the
microscopic features of the adatom dynamics, and provide
quantitative results against which we can test our theo-
retical methods.

A number of theoretical studies of single-adatom
diffusion have appeared, applying either direct MD,*%-45
or some form of TST?432374649 to the problem. All the
calculations employed a finite cluster of atoms, bound
together by Lennard-Jones or Morse pairwise potentials,
to simulate the solid surface. These simulations have
proved quite helpful in understanding qualitative features
of the diffusion dynamics. For example, Halichioglu et
al %3¢ were able to demonstrate that the cross-channel

diffusion of Ir on Pt(110) proceeds by a channel-wall
knockout mechanism. However, in making quantitative
comparisons to experimental diffusion constants, none of
these studies has been able to reduce the possible types
of error to a single source.

Assuming classical mechanics is valid for describing
the dynamics of a particle as heavy as a transition metal
atom, the accuracy of a MD simulation should only be
limited by the quality of the potential energy function
employed. However, at the temperature used in FIM
studies (i.e., 350 K and below), the diffusive hops between
surface binding sites represent a rare-event process. Thus,
MD simulations have only been feasible at much higher
temperatures, so that no direct comparisons could be
made between theory and experiment. TST diffusion
constants have been calculated in the FIM temperature
range, but there was no way to tell whether the approxi-
mate dynamics or the approximate potential energy func-
tion was responsible for the observed disagreement.

The multistate dynamical corrections method derived
in Secs. III and IV allows us to directly address this
problem, by computing dynamically exact surface diffusion
constants at the same temperature as the FIM experiments.
Any discrepancy between theory and experiment can
then be attributed to the approximate potential function.

The calculations presented here all employ the
Lennard-Jones 6-12 template model described previ-
ously.?*42%3 Briefly, this model consists of one or more
layers of movable atoms affixed to a rigid template of
atoms that has the geometry appropriate for the desired
crystal face. The potential energy at each geometry is
computed from a Lennard-Jones 6-12 pairwise potential
with spherical cutoff

V=2t (5.1)
i>j
where
v:“__:{vij(rij)_vij(rc) (0<rij§ rc) (5 2)
Y 0 (rij > rc) )
and
— o1\
v;(ri;) = 46,-,-[(7i) - (r—J) :I . (5.3)
i ij

Here r;; is the distance between atoms 7 and j, ¢;; and o;;
are the Lennard-Jones well depth and distance parameters
for that pair of atoms, and r. is a cutoff distance. This
form for V eliminates the need to calculate interactions
between atoms separated by more than r,, while main-
taining a potential that is continuous (though the deriv-
atives are discontinuous at 7;; = r.). For the Rh on
Rh(100) case considered here, all the interactions are
identical (o;; = o, ¢; = ¢), and the parameters were
chosen to match previous MD*** and TST?**° studies
(¢/kg = 7830 K, 0 = 2.47 A, r. = 2.20). These values for
¢ and o were obtained from bulk thermodynamic data.*?
There are 32 atoms per layer in the cluster, with one
layer allowed to move and three layers frozen; the total
cluster including the adatom thus consists of 129 atoms.
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The lattice spacing at all temperatures was chosen to give
a nearest-neighbor distance of 2'%¢ (the minimum in
v;;), and periodic boundary conditions were employed.
The TST dividing surface for one binding site is
shown in Fig. 6. It is defined by connecting the four
atoms around a binding site with planes that extend
infinitely in the +z and —z directions. Rather than
allowing these planes to move with these four atoms (as
in our previous TST studies?**%), we simply fixed them
to the equilibrium positions of the atoms. This gives a
TST surface that depends on the adatom coordinates
only, eliminating the need for an effective-mass correction
and simplifying the calculation of the trajectory initial
velocities. To compute the TST rate constant (Table I),
each plane was replaced by a slab with finite thickness 5.
A Monte Carlo procedure was used to determine the
ensemble average in Eq. (4.2), using uniform weighting
over the thickness of the slab as a prelimit form for the
Dirac delta function. By making independent runs with
different values for b, the TST rate was extrapolated to
that for a zero-width slab, as shown in Fig. 7. We found
that using b = 0.1 bohr was sufficient to produce agreement
with the b = 0 limit. At these low temperatures, accurate
evaluation of the Monte Carlo averages requires the use
of importance sampling techniques, due to the rare-event
nature of the process. We recently presented one such
method,*® but in the present work we had better success
with an alternative approach when the slab width was
made very small. This new approach exploits the fact
that the desired ensemble average can be written as a
ratio of partition functions for two states (A and B),

. (108
(0:(0)); grg ( b QA) , (5.4)
where state A is the whole binding site bounded by the
TST dividing surface (the center of the slab), and state B
is the hypothetical state generated by restricting the
adatom to be inside the slab. The problem thus becomes
one of evaluating the free-energy difference between states
A and B, and the method is a variation on an existing

()

FIG. 6. The LJ template model used for modeling the Rh(100) surface.
Only the top layer is shown. For one binding site the TST boundary
surface is shown, represented by four finite-width slabs (see the text),
which extend infinitely in the +z and —z directions.

ey
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FIG. 7. Extrapolation of the TST diffusion constant at 300 K to zero
slab width (see Fig. 6). The error bars are two standard deviations. The
shaded point was obtained using TST slabs that moved along with the
top-layer atoms (see Ref. 49) and is seen to be in good agreement with
the fixed-slab results. The TST rates are shown in Table I.

technique® for this type of problem. This method is
described in detail elsewhere.*°
The TST diffusion constant is obtained from

DTST = _1_2_ ST
2d —

where d is the dimensionality of the space (d = 2 in this
case; d = 1 for channeled surfaces) and / is the distance
between adjacent binding sites; i.e., the hop length. In
addition to the TST assumption that adatoms crossing
the dividing surface do not recross, Eq. (5.5) assumes that
successive hops are directionally uncorrelated, so that an
adatom has equal probability of exiting to each of the (in
this case, four) adjacent sites, regardless of the direction
from which it entered. Of course, both of these assump-
tions are approximations, which can be eliminated using
dynamical corrections.

Using the procedure described in Sec. IV, classical
trajectories were started from the fixed TST surface,
allowing calculation of k¢.; from Eq. (4.6) for all possible
binding sites (j) to which the adatom can “hop.” The
integration was performed using a fourth order Runge-
Kutta~Gill algorithm, with a time step of 100 atomic
units (1 a.u. = 2.418 X 107" s) and an energy rescaling
every 11 steps. The highest temperature we report here is
1000 K; above this temperature the time scales (7., and
Txn) Degin to be inseparable, so that the elementary rate
constants cannot be cleanly extracted. Because of the
symmetry of the lattice and the TST surface, it is sufficient
to start all trajectories in the same direction from only
one of the four TST planes shown in Fig. 6; the fate of
the set of trajectories in the true canonical ensemble
(which enter and exit state i from all four planes) can be
determined from the unique set of trajectories using
symmetry considerations.

Figure 8 shows the behavior of 200 trajectories run
at 1000 K. At short times, all the trajectories reside in
the state that they were entering at ¢ = 0O (state B). After
~20 000 a.u., dynamical recrossing events begin to occur.
While the majority of trajectories are trapped in state B,

(5.5)
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Rh ON Rh(100) T =1000K
200 200 196| 3
1
t=0 t=10 t=20
1 2 3
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t=30 t=40 1=50 t=60
3 3 3 3
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FIG. 8. Time dependence of the state populations resulting from 200
trajectories initiated at the TST plane. All trajectories were initiated from
the same TST plane, in the same direction, as indicated by the arrow in
the first subfigure. The time units are 10° a.u. = 2.42 X 107" 5. The
coordinate system for this representation of the fc(100) lattice is rotated
by 45° compared to Fig. 6.

17 of the trajectories exit in various directions before
thermalizing in nearby states. These correlated dynamical
events have terminated by 80 000 a.u. (continuing 100 of
these trajectories until 200 000 a.u. caused only one
additional crossing), so that 7., = 80000 a.u. Taking
Ten =~ (KTST)7! leads to

Ton _ 2.1 X108
Teorr 80 OOO

indicating that the condition of Eq. (3.19) is satisfied.
Applying symmetry to generate all possible starting con-
ditions (trajectories entering and exiting from all four
sides) and applying Eq. (4.6) leads to the dynamical
correction factors shown in Fig. 9. The time dependence
is as discussed in Sec. IV, with the correction factors for
nonadjacent states initially zero and then rising to a
plateau value. The sum of all the f; values is 0.90,

=2.6 X 10°,
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FIG. 9. Dynamical correction factors [Eq. (3.20)] resulting from the 200
trajectories shown in Fig. 8. Symmetry operations were used to construct
the additional trajectories present in the total “ensemble,” in which
trajectories enter and exit from all four directions. (The distribution was
also made isotropic by symmetry averaging.)

indicating that the rate at which adatoms escape from a
binding site is 10% slower than that predicted by TST.
To compute the dynamically corrected diffusion
constant, we replace Eq. (5.5) with a sum over all possible
binding sites to which the adatom can directly “hop,”

1
D=— > kL%, 5.6

2d E Y (56)
where /;; is the distance between states i and j. Note that
in the limit where the TST assumptions are valid, Eq.
(5.6) reduces to Eq. (5.5). Taking the ratio of Eq. (5.6) to
Eq. (5.5) leads to the dynamical correction factor for the
diffusion constant,

D L\
DT = 2L —-’j)(T’) . (5.7)

J*i

These are shown for various temperatures, along with the
fALi — j) values, in Table II. While the average hop rate
is decreased by the dynamical corrections, the diffusion
constant is increased, because the average squared length
of a hop is increased. Of course, dynamical corrections
in general will not necessarily increase D. For example,
if the TST surface were poorly chosen, so that k3T, and
hence D™T, were artificially high, then the dynamical
corrections would act to lower D to the classically correct
value. Another example is an effect we have observed in
Rh on Rh(111) diffusion; at certain temperatures there is
an enhanced probability that the adatom that is entering
a binding site will bounce off the far wall of this binding
site and re-exit in the direction from which it came. On
the Rh(100) surface no such effect was observed.

Inspection of Table II also shows that the dynamical
effects decrease as the temperature is lowered. This is
because at low temperatures the particle typically has just
enough energy to pass over the barrier and is easily
trapped in the adjacent state, while at higher temperatures
there is an increased probability that the particle will
have energy in excess of that required to cross the barrier,
and may thus make another crossing before this energy
is dissipated. This temperature dependence has been
observed previously at higher temperatures.*44

An Arrhenius plot of the diffusion constants is shown
in Fig. 10, along with the experimental FIM results of
Ayrault and Ehrlich.* Fitting to the Arrhenius form

D = Dye EarksT (5.8)

leads to E, = 23.82 £ 0.05 kcal/mol and D, = (6.6
+ 0.6) X 107 cm? s', compared to the FIM values of
E, = 202 £+ 1.7 kecal/mol and Dy = 1 X 1073 cm? s™.
The theoretical value for D at 300 K is smaller than the
experimental values by a factor of 60. As discussed above,
this discrepancy can, for the first time, be attributed to
the approximate potential function. This LJ potential,
which was fit to Rh bulk thermodynamic data, is not
necessarily suited to describing atoms on the surface. For
two reasons, we make no attempt here to modify the
potential to achieve better agreement with experiment.
First, the purpose of the present study is to demonstrate
the feasibility of obtaining exact dynamical results in the
rare-event regime, not to match experiment. Second, any
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TABLE II. Dynamical correction factors for Rh on Rh(100). The state designations (i and j) used in
fuli — j) are defined in Fig. 9. Ny,; is the number of trajectories used to determine the dynamical corrections;
Nor is the number of these that come to rest in a state other than B. Note that f;(A — B) = 0.25 corresponds

to TST.

T (K) N New flA—B) fA—C fA—-D) f{A—E) D/D™"
200 100 0 0.25 0.0 0.0 0.0 1.00
300 100 0 0.25 0.0 0.0 0.0 1.00
500 150 1 0.2467 0.0017 0.0 0.0 1.013

1000 200 17 0.2088 0.0100 0.0050 0.000 62 1.060

of a number of arbitrary modifications could be made to
the potential to increase the agreement with experiment,
but we feel this would have limited meaning. It is possible,
however, that calculations like those presented here could
be used in conjunction with a variety of other data to
generate more accurate potential functions.

Probably the most important result of this Rh on
Rh(100) study is that the dynamical corrections are
essentially negligible in the temperature range of the FIM
experiments (~300 to 330 K). (Even at 1000 K, D/D™ST
is only 1.06.) While it would be premature to assume this
is true of all surface dynamics, it is consistent with other
results we have obtained for single metal atoms on metal
surfaces. Thus, it appears that future studies of this type
can benefit from the significant computational savings of
using TST, assuming that a good TST dividing surface
can be constructed. For those systems in which there is
doubt about the accuracy of TST, the method presented
here may be used to obtain the exact dynamics many
orders of magnitude more quickly than using full MD
simulations.

VI. CONCLUSIONS

We have extended the two-state dynamical correc-
tions formalism to treat the general many-state case. For
processes characterized by rare-event dynamics, the
method allows the computation of (classical) dynamically
exact rate constants between any two states of a system,
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FIG. 10. Surface self-diffusion constants for Rh on Rh(100), plotted in
Arrhenius form. The units are D (cm?/s) and T (K). The error bars (two
standard deviations) are not shown since they are smaller than the
plotted points. The experimental results are from Ref. 35.

a task which is unfeasible using direct molecular dynamics.
The key to the method is embodied in Eq. (3.12), which
expresses the arbitrary elementary rate constant (kf.;)
as an equilibrium time-correlation function. Equation
(3.18) shows that k' is simply the TST rate of escape
from state { multiplied by a dynamical correction factor,
and Eq. (4.6) indicates how this correction factor can be
evaluated using molecular dynamics techniques. Dynam-
ical properties of the system may be obtained by following
the evolution of a pseudodynamical simulation, in which
the system executes a biased random walk from state to
state, with weighting governed by the precalculated ele-
mentary rate constants. By combining this approach at
low temperatures with direct molecular dynamics at high
temperatures, dynamical properties may be computed at
any temperature. (The middle range of temperatures,
where reactive transitions are slightly too frequent to be
classified as rare events, then becomes the most compu-
tationally intensive.)

An interesting result that emerges from this work is
the definition of a rate constant between states which are
not adjacent in configuration space. The concept of a
“direct” transition between nonadjacent states is intuitively
meaningful, and in the rare-event regime, Eq. (3.12) gives
a precise definition for this rate.

For the Rh on Rh(100) system, we have calculated
the first dynamically exact single-atom diffusion constants
in the temperature range of the FIM experiments. The
discrepancy between theory and experiment (which is
surprisingly small, considering the simplicity of the LJ
potential) can now be attributed to the approximate
potential function. At 1000 K and below, the dynamical
corrections were found to be negligible, indicating that
TST is a very good approximation for this type of system.
Moreover, we have shown recently*® that simple harmonic
TST, which requires energies at only a few geometries, is
a good approximation to exact TST at these low temper-
atures.’! Thus, it should be feasible to calculate accurate
diffusion constants using ab initio electronic structure
methods, once relative energies can be obtained with
better than 1 kcal accuracy.

Finally, we note that although the Rh diffusion
example presented here exhibited only minor dynamical
corrections, the method will work equally well if the
corrections are large. The method can be applied to any
multistate system, as long as molecular dynamics can be
run on the potential energy function which is employed.
Examples of systems which would benefit from this
treatment include the diffusion of atom clusters on a
metal surface, the diffusion of vacancies or impurities
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through a solid, and the dynamical evolution of a polymer
chain.
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APPENDIX

We wish to show that the inverse of the time-zero
fluctuation—fluctuation autocorrelation function is indeed
given by Eq. (3.11). We take N = 1, so that Eq. (3.13)
holds, and note that

(67(0)) = <8:0)) = x; (A1)
and

{6:(0)0,(0)> = &; ;xi- (A2)
For an arbitrary element of the matrix we have
(BN0)3N(0))

= ([6:(0) — xJ[0;(0) — x;]>

= {8:(0)0,0)) — xi{8;(0)) — x,;€0:0)) + xix;

= 0ijXi = XiXjs (A3)

as asserted by Eq. (3.10). If the right-hand side of Eq.
(3.11) is the inverse of the matrix defined by Eq. (A3), it
will satisfy the condition for the inverse of a matrix A:

2 (ATl Aj = 6;;. (A4)
k

Inserting Eqs. (A3) and (3.11) into the left-hand side of
Eq. (A4) yields

n-1 1 1
2 Baxi — XiXk)(_ + O —)
k Xn Xk

n— . .
Xy, XS X X0y
Xn X x Xn Xj
-1
x_ n
=6ij+_’(1 -2 Xk)“Xi
Xn k
= bij, (A5)

proving Eq. (3.11). The last step in Eq. (A5) made use of
Zxk=1
k
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