
AUTHOR QUERY FORM

Journal: J. Chem. Phys. Please provide your responses and any corrections by

annotating this PDF and uploading it to AIP’s eProof

website as detailed in the Welcome email.

Article Number: 018143JCP

Dear Author,

Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP.

Location in Query / Remark: click on the Q link to navigate
article to the appropriate spot in the proof. There, insert your comments as a PDF annotation.

Q1 AU: Please check the edits done in the sentence beginning with “Illustrative trajectories for....” if the intended meaning is pre-
served.

Q2 AU: Please check the definition of OPLS, PME, and GPU.

Q3 AU: Please check journal abbreviation of Refs. 27 and 115.

Q4 AU: Please provide article title and update Ref. 32.

Q5 AU: Please check Refs. 44, 84, 87, and 108 for content errors, or provide the DOI.

Q6 AU: Please check publisher location of Refs. 63, 86, and 104.

Thank you for your assistance.



THE JOURNAL OF CHEMICAL PHYSICS 135, 000000 (2011)1

Replica exchange and expanded ensemble simulations as Gibbs sampling:
Simple improvements for enhanced mixing

2

3

John D. Chodera1,a) and Michael R. Shirts2,b)
4

1Research Fellow, California Institute of Quantitative Biosciences (QB3), University of California, Berkeley,
260J Stanley Hall, Berkeley, California 94720, USA

5

6
2Department of Chemical Engineering, University of Virginia, Virginia 22904, USA7

(Received 13 June 2011; accepted 26 October 2011; published online XX XX XXXX)8

The widespread popularity of replica exchange and expanded ensemble algorithms for simulating
complex molecular systems in chemistry and biophysics has generated much interest in discovering
new ways to enhance the phase space mixing of these protocols in order to improve sampling of
uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be
considered as special cases of Gibbs sampling within a Markov chain Monte Carlo framework. Gibbs
sampling is a well-studied scheme in the field of statistical inference in which different random vari-
ables are alternately updated from conditional distributions. While the update of the conformational
degrees of freedom by Metropolis Monte Carlo or molecular dynamics unavoidably generates corre-
lated samples, we show how judicious updating of the thermodynamic state indices—corresponding
to thermodynamic parameters such as temperature or alchemical coupling variables—can substan-
tially increase mixing while still sampling from the desired distributions. We show how state update
methods in common use can lead to suboptimal mixing, and present some simple, inexpensive alter-
natives that can increase mixing of the overall Markov chain, reducing simulation times necessary
to obtain estimates of the desired precision. These improved schemes are demonstrated for several
common applications, including an alchemical expanded ensemble simulation, parallel tempering,
and multidimensional replica exchange umbrella sampling. © 2011 American Institute of Physics.
[doi:10.1063/1.3660669]
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I. INTRODUCTION26

A broad category of simulation methodologies known27

as generalized ensemble1 or extended ensemble2 algorithms28

have enjoyed increasing popularity in the field of biomolec-29

ular simulation over the last decade. The two most popu-30

lar algorithmic classes within this category are undoubtedly31

replica exchange,3 which includes parallel tempering4–6 and32

Hamiltonian exchange,7–10 among others, and its serial equiv-33

alent, the method of expanded ensembles,11 which includes34

simulated tempering12, 13 and simulated scaling.14 In both35

classes of algorithms, a mixture of thermodynamic states are36

sampled within the same simulation, with each simulation37

walker able to access multiple thermodynamic states through38

a stochastic hopping process, which we will generically refer39

to as consisting of swaps or exchanges. In expanded ensemble40

simulations, the states are explored via a biased random walk41

in state space; in replica exchange simulations, multiple cou-42

pled walks are carried out in parallel without biasing factors.43

Both methods allow estimation of equilibrium expectations at44

each state as well as free energy differences between states.45

In both cases, stochastic transitions between different ther-46

modynamic states can reduce correlation times and increase47

sampling efficiency relative to straightforward Monte Carlo48
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or molecular dynamics simulations by allowing the system 49

avoid barriers between important configuration substates. 50

Because of their popularity, these algorithms and their 51

properties have been the subject of intense study over recent 52

years. For example, given optimal weights, expanded ensem- 53

ble simulations have been shown to have provably higher ex- 54

change acceptance rates than replica exchange simulations us- 55

ing the same set of thermodynamic states.15 Higher exchange 56

attempt frequencies have been demonstrated to improve mix- 57

ing for replica exchange simulations.16, 17 Alternative veloc- 58

ity rescaling schemes have been suggested to improve ex- 59

change probabilities.18 Other work has examined the degree 60

to which replica exchange simulations enhance sampling rel- 61

ative to straightforward molecular dynamics simulations.19–25
62

Numerous studies have examined the issue of how to opti- 63

mally choose thermodynamic states to enhance sampling in 64

systems with second-order phase transitions,26–32 though sys- 65

tems with strong first-order-like phase transitions (such as 66

two-state protein systems) remain challenging.33, 34 A num- 67

ber of combinations35, 36 and elaborations19, 37–40 of these al- 68

gorithms have also been explored. A few publications have 69

examined the mixing and convergence properties of replica 70

exchange and expanded ensemble algorithms with mathe- 71

matical rigor41–44 but there remain many unanswered ques- 72

tions about these sampling algorithms, both in terms of 73

theoretical bounds and practical guidelines for how much 74

these methods accelerate sampling for complex molecular 75

systems. 76
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Standard practice for expanded ensemble and replica ex-77

change simulations is that exchanges are to be attempted78

only between “neighboring” thermodynamic states—for ex-79

ample, the states with temperatures immediately above or be-80

low the current temperature in a simulated or parallel tem-81

pering simulation.4–10 The rationale behind this choice is that82

states further away in state space will have low probability of83

acceptance due to diminished phase space overlap, and thus84

attempts should focus on the states for which exchange at-85

tempts are most likely to be accepted. Increasing the prox-86

imity of neighboring thermodynamic states in both kinds of87

simulations can further increase the probability that exchange88

attempts will be accepted. However, restricting exchange at-89

tempts to neighboring states can then result in slow overall90

diffusion in state space due to the larger number of replicas91

needed to span the thermodynamic range of interest.45 Some92

exchange schemes have been proposed to improve this dif-93

fusion process, such as all-pairs exchange,46 and optimized94

exchange moves18 but the problem of designing optimal ex-95

change moves and overall sampling improvement is still very96

much a challenge; see Ref. 47 for a recent comparison of97

different methods. The problem of slow diffusion is exacer-98

bated in “multidimensional” simulations that make use of a99

2D or 3D grid of thermodynamic states,7, 48, 49 where diffu-100

sion times in state space increase greatly due to the increase101

in dimensionality.50
102

Here, we show how the many varieties of expanded103

ensemble and replica exchange simulations can all be con-104

sidered to be forms of Gibbs sampling, a sampling scheme105

well-known to the statistical inference literature,51, 52 though106

unrelated to simulations in the “Gibbs ensemble” for deter-107

mining phase equilibria.53–55 When the problem of sampling108

among a number of ensembles is viewed in this statistical109

context, a number of alternative schemes can readily be pro-110

posed for updating the thermodynamic state while preserving111

the distribution of configurations and thermodynamic states112

sampled by the algorithm. By making simple modifications113

to the exchange attempt schemes, we show that great gains in114

sampling efficiency can be achieved under certain conditions115

with little or no extra cost. There is essentially no drawback to116

implementing these algorithmic improvements, as the addi-117

tional computational cost is negligible, their implementation118

sufficiently simple to encourage widespread adoption, and119

there appears to be no hindrance of sampling in cases where120

these schemes offer no great efficiency gain. Importantly,121

we also demonstrate that schemes that encourage mixing in122

state space can also encourage mixing of the overall Markov123

chain, reducing correlation times in coordinate space, leading124

to more uncorrelated samples being generated for a fixed125

amount of computer time.126

This paper is organized as follows. In Sec. II, we de-127

scribe expanded ensemble and replica exchange algorithms128

in a general way, casting them as a form of Gibbs sampling.129

In Sec. III, we propose multiple approaches to the state ex-130

change process in both classes of algorithm with the aim131

of encouraging faster mixing in among the thermodynamic132

states accessible in the simulation, and hence the overall133

Markov chain. In Sec. IV, we illustrate how and why these134

modified schemes enhance mixing of the overall chain for a135

simple one-dimensional model system. In Sec. V, we apply 136

these algorithmic variants to some examples from physical 137

chemistry, using several different common benchmark sys- 138

tems from biomolecular simulation, and examine several met- 139

rics of simulation efficiency. Finally, we make recommenda- 140

tions for the adoption of simple algorithmic variants that will 141

improve efficiency in Sec. VI. 142

II. THEORY 143

Before describing our suggested algorithmic modifica- 144

tions (Sec. III), we first present some theoretical tools we will 145

use to analyze expanded ensemble and replica exchange sim- 146

ulations in the context of Gibbs sampling. 147

A. Thermodynamic states and thermodynamic 148

ensembles 149

To be as general as possible, we describe the expanded 150

ensemble and replica exchange algorithms as sampling a mix- 151

ture of K thermodynamic states. Here, a thermodynamic state 152

is parameterized by a vector of time-independent thermody- 153

namic parameters λ. For notational convenience and to make 154

what follows general, we define the reduced potential56 u(x) 155

of a physical system, 156

u(x) = β

[
H (x) + pV (x) +

∑
i

μini(x) + · · ·
]

, (1)

corresponding to its thermodynamic state, where x denotes 157

the configuration of the system specifying any physical vari- 158

ables allowed to change, including the volume V(x) (in the 159

case of a constant pressure ensemble) and ni(x) the number of 160

molecules of each of i = 1, . . . , M components of the system, 161

in the case of a (semi)grand ensemble. The reduced potential 162

is a function of the Hamiltonian H, the inverse temperature 163

β = (kBT)−1, the pressure p, and the vector of chemical po- 164

tentials for each of M components μi. Other thermodynamic 165

parameters and their conjugate coordinates can be included 166

in a similar manner, or some of these can be omitted, as re- 167

quired by the physics of the system. We denote the set of all 168

thermodynamic parameters by λ ≡ {β,H, p, �μ, . . .}. 169

We next denote a configuration of the molecular system 170

by x ∈ �, where � is allowed configuration space, which 171

may be continuous or discrete. A choice of thermodynamic 172

state gives rise to set of configurations of the system that are 173

sampled by a given time-independent probability distribution 174

at equilibrium. So each x will have associated unnormalized 175

probability density q(x), which is a function of λ, where q(x) 176

> 0 for all x ∈ �. If we define the normalization constant, or 177

partition function, Z as 178

Z ≡
∫

�

dx q(x), (2)

we can define a normalized probability density 179

π (x) = Z−1 q(x). (3)

A physical system in equilibrium with its environ- 180

ment obeying classical statistical mechanics will sample 181
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configurations distributed according to the Boltzmann distri-182

bution,183

q(x) ≡ e−u(x). (4)

In this paper, we consider a set of K thermodynamic184

states defined by their thermodynamic parameter vectors, λk185

≡ {βk,Hk, pk, �μk, . . .}, with k = 1, . . . , K, where Hk denotes186

any modifications of the Hamiltonian H as a function of k,187

including biasing potentials. Each new choice of k gives rise188

to a reduced potential uk(x), un-normalized and normalized189

probability distributions qk(x) and π k(x) (which we also some-190

times write as π (k, x)), and a partition function Zk. Although191

in this paper, we generally assume a Boltzmann distribution,192

there is nothing to prevent some or all of the states from193

being sampled using non-thermodynamic (non-Boltzmann)194

statistics using alternative choices of the un-normalized den-195

sity qk(x), as in the case of multicanonical simulations57 or196

Tsallis statistics.58 To ensure that any configuration x has fi-197

nite, nonzero density in all K thermodynamic states, we ad-198

ditionally require that the same thermodynamic parameters199

be specified for all thermodynamic states, though their values200

may of course differ.201

B. Gibbs sampling202

Suppose we wish to sample from the joint distribution203

of two random variables, x and y. We denote this joint dis-204

tribution by π (x, y). Often, it is not possible to generate di-205

rectly the uncorrelated sample pairs (x, y) from the joint dis-206

tribution due to the complexity of the function π (x, y). In207

these cases, a standard approach to sampling is to use some208

form of Markov chain Monte Carlo (MCMC),52 such as the209

Metropolis-Hastings algorithm59, 60 or hybrid Monte Carlo.61
210

While general in their applicability, MCMC algorithms suffer211

from the drawback that they often must generate correlated212

samples, potentially requiring long running times to produce a213

sufficient number of effectively uncorrelated samples to allow214

the computation of properties to the desired precision.62, 63
215

Assume we can draw samples, either independently or216

through some Markov chain Monte Carlo procedure, from217

the conditional distributions of one or more of the variables,218

π (x|y) or π (y|x), where the value of the second variable is219

fixed. To generate a set of sample pairs {(x(1), y(1)), (x(2), y(2)),220

. . . } from π (x, y), we can iterate the update scheme221

x(n+1)|y(n) ∼ π (x|y(n)),

y(n+1)|x(n+1) ∼ π (y|x(n+1)),

where x ∼ π denotes that the random variable x is sampled or222

“updated” from the distribution π (x).223

This procedure is termed Gibbs sampling or the Gibbs224

sampler in the statistical literature, and has been employed225

and studied extensively.51, 52 In many cases, it may be possi-226

ble to draw uncorrelated samples from either or both distri-227

butions, but this is not required.64 The algorithm still samples228

from the desired joint distribution correlated samples are gen-229

erated instead. The choice of which variable to update—in 230

this example, x or y—can be either deterministic (e.g., up- 231

date x then y) or stochastic (e.g., a random number determines 232

whether x or y is to be updated); both schemes sample from 233

the desired joint distribution π (x, y). However, each method 234

has different dynamic properties and can introduce different 235

correlation structure in the sequence of sample pairs. In par- 236

ticular, we note that a stochastic choice of which variable to 237

update obeys detailed balance, while a deterministic choice 238

obeys the weaker balance condition.65 In both cases, the dis- 239

tribution π (x, y) is preserved. 240

In the sections below, we describe how expanded ensem- 241

ble and replica exchange simulations can be considered as 242

special cases of Gibbs sampling on the probability distribu- 243

tion π (x, k), which is now a function of both coordinates and 244

thermodynamic states, and how this recognition allows us to 245

consider simple variations of these techniques that will en- 246

hance mixing in phase space with little or no extra cost. In the 247

algorithms we consider here, the thermodynamic state vari- 248

able k is discrete, but continuous k are also completely valid 249

in this formalism if an appropriate continuous sampler is used. 250

C. Expanded ensembles 251

In an expanded ensemble simulation,11 a single replica 252

(or “walker”) samples pairs (x, k) from a joint distribution of 253

configurations x ∈ � and state indices k ∈ {1, . . . , K} given 254

by 255

π (x, k) ∝ exp[−uk(x) + gk], (5)

where gk is an state-dependent weighting factor. This space is 256

therefore a mixed, generalized, or expanded ensemble which 257

samples from multiple thermodynamic ensembles simulta- 258

neously. gk is chosen to give a specific weighting of each 259

subensemble in the expanded ensemble, and is generally de- 260

termined through some iterative procedure.11, 12, 14, 31, 66–68 The 261

set of gk is frequently chosen to give each thermodynamic en- 262

semble equal probability, in which case gk = −ln Zk, but they 263

can be set to arbitrary values as desired. 264

In the context of Gibbs sampling, an expanded ensemble 265

simulation proceeds by alternating between sampling from 266

the two conditional distributions, 267

π (x|k) = qk(x)∫
�

dx qk(x)
= e−uk (x)∫

�
dx e−uk(x)

, (6)

268

π (k|x) = egkqk(x)∑K
k′=1 egk′ qk′(x)

= egk−uk(x)∑K
k′=1 egk′ −uk′ (x)

. (7)

In all but trivial cases, sampling from the conditional dis- 269

tribution π (x|k) must be done using some form of Markov 270

chain Monte Carlo sampler that generates correlated sam- 271

ples, due to the complex form of uk(x) and the difficulty of 272

computing the normalizing constant in the denominator.52
273

Typically, Metropolis-Hastings Monte Carlo59, 60 or molec- 274

ular dynamics is used,69 generating an updated configura- 275
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tion x(n + 1) that is correlated with the previous configura-276

tion x(n), though some types of sampling, such as reservoir277

exchange methods70 attempt to sample independently from278

a given ensemble through a reservoir. However, as we will279

see in Sec. III A, multiple choices for sampling from the con-280

ditional distribution π (k|x) are possible due to the simplicity281

of its form.282

D. Replica exchange ensembles283

In a replica exchange, we consider K simulations, with284

one simulation in each of the thermodynamic K states. The285

current state of the replica exchange simulation is given by286

(X, S), where X is a vector of the replica configurations, X287

≡ {x1, x2, . . . , xK}, and S ≡ {s1, . . . , sK} ∈ SK is a permuta-288

tion of the state indices {1, . . . , K} associated with each of the289

replica configurations {x1, . . . , xK}. Then290

π (X, S) ∝
K∏

i=1

qsi
(xi) ∝ exp

[
−

K∑
i=1

usi
(xi)

]
(8)

with the conditional densities given by291

π (X|S) =
K∏

i=1

[
e−usi

(xi )∫
�

dx e−usi
(xi )

]
, (9)

292

π (S|X) =
exp

[
−∑K

i=1 usi
(xi)

]
∑

S ′∈SK

exp
[
−∑K

i=1 us ′
i
(xi)

] . (10)

As in the case of expanded ensemble simulations, updating293

the vector of configurations X must be by some form Markov294

chain Monte Carlo or molecular dynamics simulation, invari-295

ably generating configurations with some degree of correla-296

tion. Unlike the case of expanded ensembles, generating inde-297

pendent samples in the conditional permutation space is very298

challenging for even moderate numbers of states because of299

the expense of computing the denominator of π (S|X),71 which300

includes a sum over all permutations in the set SK . However,301

as we shall see in Sec. III B, there are still effective ways302

to generate nearly uncorrelated permutations that have im-303

proved mixing properties over traditional exchange attempt304

schemes.305

III. ALGORITHMS306

We now describe the algorithms used in sampling from307

the expanded ensemble and replica exchange ensembles de-308

scribed in Sec. II. We start with the typical neighbor exchange309

schemes commonly used in the literature, and then describe310

additional novel schemes based on Gibbs sampling that can311

encourage more rapid mixing among the accessible thermo-312

dynamic states.313

A. Expanded ensemble simulation 314

For an expanded ensemble simulation, the conditional 315

distribution of the state index k given x is, again 316

π (k|x) = egk−uk(x)∑K
k′=1 egk′ −uk′ (x)

.

We can use any proposal/acceptance scheme that ensures this 317

conditional distribution is sampled in the long run for any 318

fixed x. We can choose at each step to sample in either k or 319

x according to some fixed probability p, in which case de- 320

tailed balance is obeyed. We can also alternate Nk and Nx 321

steps of k and x sampling, respectively. Although this algo- 322

rithm does not satisfy detailed balance, it does satisfy the 323

weaker condition of balance65 which is sufficient to preserve 324

sampling from the joint stationary distribution π (x, k). In 325

the cases that proposal probabilities are based on past his- 326

tory, however, the algorithm will not preserve the equilibrium 327

distribution,72 though in some cases the deviations caused by 328

the history dependence can be mitigated with proper choices 329

of parameters.73
330

1. Neighbor exchange 331

In the neighbor exchange scheme, the proposed state in- 332

dex j given the current state index i is chosen randomly from 333

one of the neighboring states, i ± 1, with probability, 334

α(j |x, i) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 if j = i − 1

1
2 if j = i + 1

0 else

(11)

and accepted with probability, 335

Paccept(j |x, i)

=
⎧⎨
⎩

0 if j /∈ {1, . . . , K}

min
{

1, e
gj −uj (x)

egi−ui (x)

}
else

. (12)

This scheme was originally suggested by Marinari and 336

Parisi12 and has been used extensively in subsequent 337

work.35, 74 A slight variation of this scheme considers the set 338

{1, . . . , K} to lie on a torus, such that state i + nK is equiva- 339

lent to state i for integral n, with the proposal and acceptance 340

probability otherwise left unchanged. 341

An alternative scheme avoids having to reject choices of 342

j that lead to j �∈{1, . . . , K} by modifying the proposal scheme, 343

α(j |x, i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 if k ∈ {2, . . . , K − 1}, |j − i| = 1

1 if i = 1, j = i + 1 ≤ K

1 if i = K, j = i − 1 ≥ 1

0 else

(13)

344
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and modifying the acceptance criteria for these two moves to345

be35
346

Paccept(j |x, i) = min

{
1,

1

2

egj −uj (x)

egi−ui (x)

}
(14)

to include the correct Metropolis-Hastings ratio of proposal347

probabilities.348

2. Independence sampling349

The most straightforward way of generating an uncorre-350

lated state index i from the conditional distribution π (k|i) is351

by independence sampling, in which we propose an update of352

the state index i by drawing a new j from π (i|x) with proba-353

bility354

α(j |x, i) = π (i|x), (15)

and always accepting this new j. While well known in the355

statistical inference literature52—and the update scheme most356

closely associated with the use of the Gibbs sampler there—357

this scheme has been recently discovered independently in358

the context of expanded ensembles25 and distributed replica359

sampling.75 A straightforward way to implement this update360

scheme is to generate a uniform random number r on the in-361

terval [0, 1), and select the smallest k where r <
∑k

i=1 π (i|x).362

3. Metropolized independence sampling363

In what we term a metropolized independence sampling364

move, 76 a new state index k′ is proposed from the distribution,365

α(j |x, i) =
{

π(j |x,i)
1−π(j |x,i) j �= i

0 j = i
(16)

and accepted with probability,366

Paccept(j |x, i) = min

{
1,

1 − π (i|x, i)

1 − π (j |x, i)

}
. (17)

This scheme has the surprising property that, despite includ-367

ing a rejection step (unlike the independence sampling in368

Sec. III A 2 above), the mixing rate in π (k|x) can be proven369

to be greater than that of independence sampling,76 using the370

same arguments that Peskun used to demonstrate the optimal-371

ity of the Metropolis-Hastings criteria over other criteria for372

swaps between two states. This can be rationalized by noting373

that metropolized independence sampling updates will always374

try move away from the current state, whereas standard inde-375

pendence sampling has some nonzero probability to propose376

to remain in the current state.377

4. Restricted range sampling378

In some situations, such as simulated scaling14 or other379

schemes in which the Hamiltonian differs in a non-trivial way380

among thermodynamic states, there may be a non-negligible381

cost in evaluating the un-normalized probability distributions382

qk(x) for all k. Because transitions to a states with mini-383

mal phase space overlap will have very low probability, prior384

knowledge of which states have the highest phase space over-385

lap could reduce computational effort with little loss in sam-386

pling efficiency if states with poor overlap are excluded from 387

consideration for exchange. 388

One way to implement such a restricted range sampling 389

scheme is to define a set of proposal states Si for each state 390

i ∈ {1, . . . , K}, with the requirement that i ∈ Sj if and only 391

if j ∈ Si , and propose transitions from the current (x, i) to a 392

new state j with probability, 393

α(j |x, i) =
{ e

gj −uj (x)∑
k∈Si

egk−uk (x) j ∈ Si

0 j /∈ Si

. (18)

This proposal is accepted with probability, 394

Paccept(j |x, i) = min

⎛
⎜⎝1,

∑
k∈Si

egk−uk(x)

∑
k′∈Sj

egk′ −gk′ (x)

⎞
⎟⎠ . (19)

395

We can easily see that this scheme satisfies detailed bal- 396

ance for fixed x. The probability the sampler is initially in 397

i ∈ Sj and transitions to j ∈ Si , where j �= i, is given by, 398

π (i|x)α(j |x, i)Paccept(j |x, i)

=
[
egi−ui (x)

Z(Sall)

] [
egj −uj (x)

Z(Si)

] [
min

(
1,

Z(Si)

Z(Sj )

)]
(20)

399

=
[
egj −uj (x)egi−ui (x)

Z(Sall)

] [
min

(
Z−1(Si), Z

−1(Sj )
)]

(21)

400

=
[
egj −uj (x)

Z(Sall)

] [
egi−ui (x)

Z(Sj )

] [
min

(
1,

Z(Sj )

Z(Si)

)]
(22)

401

= π (j |x)α(i|x, j )Paccept(i|x, j ), (23)

where Z(Si) = ∑
k∈Si

egk−uk(x), and Sall = {1, . . . , K}. This 402

is simply the detailed balance condition, ensuring that this 403

scheme will sample from the distribution π (i|x). Therefore, 404

this scheme samples from the stationary probability π (j|x). 405

For example, we can define Si = {i − n, . . . , i + n}, 406

with n � K, for all i, making appropriate adjustments to this 407

range at i < n and i > K − n. Then we only need to compute 408

the reduced potentials for states {min (1, i − 2n), . . . , max (K, 409

i + 2n)}, rather than all states {1, . . . , K}. The additional eval- 410

uations for {min (1, i − 2n), . . . , i − n − 1} and {max (i 411

+ n + 1, K). . . , max (K, i + 2n)} are required to ensure 412

that we can calculate both sums in the acceptance criteria 413

(Eq. (19)). 414

Restricted range sampling simply reduces to indepen- 415

dence sampling, as presented in Sec. III A 2, when Si 416

= {1, . . . , K}, and all proposals are therefore accepted. We 417

also note that metropolized independence sampling, given in 418

Sec. III A 3, is exactly equivalent to using the restricted range 419

scheme with Si = {1, . . . , K} excluding i, such that α(i|x, 420

i) = 0 for all i. Any other valid scheme of sets Si can be 421

metropolized by removing i from Si . 422

Clearly, other state decomposition schemes exist, though 423

the efficiency of such schemes will almost certainly depend 424

on the underlying nature of the thermodynamic states un- 425

der study. It is possible to define state schemes that preserve 426
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detailed balance, but that are not ergodic, such as S1 = S3427

= S5 = {1, 3, 5} and S2 = S4 = S6 = {2, 4, 6} for K = 6, so428

some care must be taken. In most cases, users will likely429

use straightforward rules to find locally defined sets such430

as Si = {i − n, . . . , i + n} or the metropolized version Si431

= {i − n, . . . , i − 1, i + 1, . . . , i + n}, and ergodicity as well432

as detailed balance will be satisfied. Further analysis of the433

performance tradeoffs involved in choices of the sets, situa-434

tions where sets might be chosen stochastically, or more ef-435

ficient choices of sets that satisfy only balance is beyond the436

scope of this study.437

5. Other schemes438

The list above is by no means intended to be exhaustive—439

many other schemes can be used for updating the state index440

k, provided they sample from π (k|x). Compositions of differ-441

ent schemes are also permitted—even something simple as442

applying the neighbor exchange scheme a number of times,443

rather than just once, could potentially improve mixing prop-444

erties at little or no additional computational cost.445

B. Replica exchange simulation446

1. Neighbor exchange447

In standard replica exchange simulation algorithms, an448

update of the state permutation S of the (X, S) sampler state449

only considers exchanges between neighboring states.4–10
450

One such scheme involves attempting to exchange either the451

set of state index pairs {(1, 2), (3, 4), . . . } or {(2, 3), (4, 5),452

. . . }, chosen with equal probability.77
453

Each state index pair (i, j) exchange attempt is attempted454

independently, with the exchange of states i and j associ-455

ated with configurations xi and xj, respectively, accepted with456

probability457

Paccept(xi, i, xj , j ) = min

{
1,

e−[ui (xj )+uj (xi )]

e−[ui (xi )+uj (xj )]

}
. (24)

458

2. Independence sampling459

Independence sampling in replica exchange would con-460

sist of generating an uncorrelated, independent sample from461

π (S|X). The most straightforward scheme for doing so would462

require compiling a list of all possible K! permutations of463

S, evaluating the un-normalized probability exp[−∑
i usi

(xi)]464

for each, normalizing by their sum, and then selecting a per-465

mutation S′ according to this normalized probability. Even if466

the entire K × K matrix U ≡ (uij) with uij ≡ ui(xj) is precom-467

puted, the cost of this sampling scheme becomes impractical468

even for modestly large K.469

Instead, we note that an effectively uncorrelated sample470

from π (S|X) can be generated by running a MCMC sampler471

scheme for a short time with trivial or small additional com-472

putational expense. For each step of the MCMC sampler, we473

pick a pair of state indices (i, j), with i �= j, uniformly from474

the set {1, . . . , K}. The state pair associated with the con-475

figurations xi and xj are swapped with the same replica ex-476

change Metropolis-like criteria shown in Eq. (24), with the477

labels of the states updated after each swap. If we precompute 478

the matrix U, then these updates are extremely inexpensive, 479

and many Monte Carlo update steps of the state permutation 480

vector S can be taken to decorrelate from the previous sample 481

for a fixed set of configurations X, effectively generating an 482

uncorrelated sample S′ ∼ P(S|X). 483

In the case where all uij are equal, then the number of 484

swaps required is Kln K—a well-known result due to Aldous 485

and Diaconis.78 Empirically, we have found that swapping K3
486

to K5 times each state update iteration appears to be suffi- 487

cient for the molecular cases examined in this paper and in 488

our own work without consuming a significant portion of the 489

replica exchange iteration time, but further experimentation 490

may be required for some systems. The improvement in effi- 491

ciency over neighbor exchange algorithms stems from the fact 492

that, for each state, there is a nonzero probability of moving 493

to all other states in proportion to the Boltzmann weight dif- 494

ference, thereby allowing exchange with more remote states 495

without significantly down-weighting exchange with neigh- 496

boring states. While complete mixing in state space is not 497

a requirement for validity of the algorithm in preserving the 498

equilibrium distribution, increasing the number of swap at- 499

tempts will lead to increased space sampling until the limit of 500

independent sampling is reached. 501

For parallel tempering, in which only the inverse temper- 502

ature βk varies with state index k, computation of U is triv- 503

ial if the potential energies of all K states are known. On the 504

other hand, computation of all ui(xj) for all i, j = 1, . . . , K 505

may be time-consuming if the potential energy must be re- 506

computed for each state, such as in an alchemical simulation. 507

If the Bennett acceptance ratio (BAR) (Ref. 79) or the im- 508

proved multistate version MBAR (Ref. 56) are used to ana- 509

lyze data generated during the simulation, however, all such 510

energies are required anyway, and so no extra work is needed 511

if the state update interval matches the interval at which ener- 512

gies are written to disk. Alternatively, if the number of Monte 513

Carlo or molecular dynamics time steps in between each state 514

update is large compared to K, the overall impact on simula- 515

tion time of the need to compute U will be minimal. 516

Instead of performing random pair selections, we could 517

also apply multiple passes of the standard neighbor exchange 518

algorithm (Sec. III B 1)—a method that may be more eas- 519

ily implemented in existing simulation codes. With a suf- 520

ficient number of passes, independence sampling will also 521

be achieved, though convergence to an independent permu- 522

tation S will be at a different rate than the random swap al- 523

gorithm suggested above. Use of multiple consecutive state 524

swaps between configuration updates is not entirely novel— 525

we have heard several anecdotal examples of people exper- 526

imenting with multiple consecutive state swaps, with sparse 527

mentions in the literature.80, 81 However, we believe this is the 528

first study to characterize the theory and properties of this par- 529

ticular modification of standard replica exchange. 530

3. Other schemes 531

The list of replica exchange methods above is by no 532

means exhaustive—other schemes can be used for updating 533

the state index k, provided they sample from the space of 534

permutations π (S|X) in a way that preserves the conditional 535
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distribution. For example, it may be efficient for a node of536

a parallel computer to perform many exchanges only among537

replicas held in local memory, and to attempt few exchanges538

between nodes due to network constraints. Compositions of539

different schemes are again also permitted.540

C. Metrics of efficiency541

There is currently no universally accepted metric for as-542

sessing sampling efficiency in molecular simulation, and thus543

it is difficult to quantify exactly how much our proposed al-544

gorithmic modifications improve sampling efficiency. In the545

end, efficient algorithms will decrease the computational ef-546

fort to achieve an estimate of the desired statistical precision547

for the expectations or free energy differences of interest. Un-548

fortunately, this can depend strongly on property of interest,549

the thermodynamic states that are being sampled, and the dy-550

namics of the system studied. While there exist metrics that551

describe the worst case convergence behavior by approximat-552

ing the slowest eigenvalue of the Markov chain,82, 83 the worst553

case behavior can often differ from practical behavior by or-554

ders of magnitude.84 Here, we make use of a few metrics that555

will help us understand the time scale of these correlations in556

sampling under practical conditions.557

Complex systems often get stuck in metastable states in558

configuration space with residence times a substantial frac-559

tion of the total available simulation time. This dynamical be-560

havior hinders the sampling of uncorrelated configurations by561

molecular dynamics simulation or Metropolis Monte Carlo562

schemes.85, 86 Systems can remain stuck in these metastable563

traps even as a replica in an expanded ensemble or replica564

exchange simulation travels through multiple thermodynamic565

states,87 either because the trap exists in multiple thermody-566

namic states or because the system does not have enough time567

to escape the trap before returning to states where the trap ex-568

ists. While approaches for detecting and characterizing the ki-569

netics of these metastable states exist,87, 88 the combination of570

error from discretizing the conformation space and statistical571

error makes these approaches to compute relaxation times in572

configuration space not ideal for our purposes.573

Here, we instead consider three simple statistics of the574

observed state index of each replica trajectory as surrogates575

to assess the improvements in overall efficiency of sampling.576

Instead of considering the full expanded ensemble simula-577

tion trajectory {(x(0), k(0)), (x(1), k(1)), . . . } or the replica ex-578

change simulation trajectory {(X(0), S(0)), (X(1), S(1)), . . . }, we579

consider the trajectory of individual replicas projected onto580

the sequence of thermodynamic state indices s ≡ {s0, s1, . . . }581

visited during the simulation. In long replica exchange sim-582

ulations, each replica executes a random walk, and statistics583

can be pooled.89 If significant metastabilities in configuration584

space exist, we hypothesize that these configurational states585

will have different typical reduced potential u(x) distributions,586

and therefore induce metastabilities in the state index trajec-587

tory s as well. This metastabilities will be detectable by the588

methods described below. Each of the measures provides a589

different way to interpret the mixing of the simulation in state590

space; we will refer to all of them in the rest of the paper as591

“mixing times.”592

1. Relaxation time from empirical state transition 593

matrix, τ 2 594

One way to characterize how rapidly the simulation is 595

mixing in state space is to examine the empirical transition 596

matrix among states, the K × K row-stochastic matrix T. An 597

individual element of this matrix, Tij, is the probability that an 598

expanded ensemble or replica exchange walker currently in 599

state i will be found in state j the next iteration of state sam- 600

pling. From a given expanded ensemble or replica exchange 601

simulation, we can estimate T by examining the expanded en- 602

semble trajectory history or pooled statistics from individual 603

replicas, 604

Tij ≈ Nij + Nji∑K
k=1[Nik + Nki]

, (25)

where Nij is the number of times the replica is observed to be 605

in state j one update interval after being in state i. To obtain 606

a transition matrix T with purely real eigenvalues, we have 607

assumed both forward and time-reversed transitions in state 608

indexes are equally probable, which is true in the limit of in- 609

finite time for all methods described in this paper. To assess 610

how quickly the simulation is transitioning between different 611

thermodynamic states, we compute the eigenvalues {μ1, μ2, 612

. . . , μK} of T and sort them in descending order, such that 613

that 1 = μ1 ≥ μ2 ≥ ··· ≥ μK. If μ2 = 1, the Markov chain is 614

decomposable, meaning that two more subsets of the thermo- 615

dynamic states exist where no transitions have been observed 616

between these sets, a clear indicator of very poor mixing in 617

the simulation. In this case, the thermodynamic states charac- 618

terized by {λ1, . . . , λK} should be adjusted, or additional ther- 619

modynamic states inserted to enhance overlap in problematic 620

regions. Several schemes for optimizing the choice of these 621

state vectors exist,26–32 but are beyond the scope of this work 622

to discuss here. 623

If the second-largest eigenvalue μ2 is such that 0 < μ2 624

< 1 we can estimate a corresponding relaxation time τ 2 as 625

τ2 = τ

1 − μ2
, (26)

where τ is the effective time between exchange attempts. τ 2 626

then provides an estimate of the total simulation time re- 627

quired for the autocorrelation function in the state index k(n)
628

of a replica at iteration n of the simulation to decay to 1/e 629

of the initial value. This estimate holds if the time scale of 630

decorrelation in the configurational coordinate x is fast com- 631

pared to the decorrelation of the state index k; that is, if es- 632

sentially uncorrelated samples could be drawn from π (x|k) 633

for each update of x(n + 1)|k(n). Because configuration updates 634

for useful molecular problems generally have long correla- 635

tion times, this τ 2 time represents a lower bound on the ob- 636

served correlation time for both the state index k(n) and the 637

configuration x(n). 638

2. Correlation time of the replica state index, τ ac 639

As a more realistic estimate of how quickly correla- 640

tions in the state index k(n) decay in a replica trajectory, we 641

also directly compute the correlation time of the state index 642
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history using the efficiency computation scheme described in643

Sec. 5.2 of Ref. 89, where τ ac is equal to the integrated area644

under the autocorrelation function. For replica exchange sim-645

ulations, where all replicas execute an equivalent walk in state646

space, the unnormalized autocorrelation functions were aver-647

aged over all replicas before computing the autocorrelation648

time by integrating the area under the autocorrelation func-649

tion. This time, τ ac, gives a practical estimate of how much650

simulation time must elapse for correlations in the state index651

to fall to 1/e. The statistical inefficiency is the number of sam-652

ples required to collect each uncorrelated sample, and can be653

estimated for a Markovian process by 2τ ac + 1, with τ ac in654

units of time between samples.655

3. Average end-to-end transit time of the replica656

state index, τ end657

As an additional estimate of practical efficiency, we mea-658

sure the average end-to-end transition time for the state in-659

dex, τ end. This is the average of the time elapsed between660

the first visit of the state index k(n) to one end point (k661

= 1 or k = K) after visiting the opposite end point (k = K662

or k = 1, respectively). This metric of efficiency, or the re-663

lated “round-trip” time, has seen common use in diagnos-664

ing efficiency for simulated-tempering and replica exchange665

simulations.18, 28, 90, 91
666

IV. MODEL ILLUSTRATION667

To illustrate the motivation behind the idea that speed-668

ing up sampling in one coordinate—the state index or669

permutation—will enhance sampling of the overall Markov670

chain of (x, k) or (X, P), we consider a simulated tempering671

simulation in a one-dimensional model potential,672

U (x) = 10(x − 1)2(x + 1)2, (27)

shown in the top panel of Figure 1, along with the correspond-673

ing stationary distribution π (x) at several temperatures from674

kBT = 1 to kBT = 10. To simplify our illustration, we directly675

numerically compute the log-weight factors676

gk = − ln
∫ +∞

−∞
dx e−βkU (x) (28)

so that the simulation has an equal probability to be in each677

of the K states.678

The K inverse temperatures βk that can be visited during679

the simulated tempering simulation are chosen to be geomet-680

rically spaced,681

βk = 10−(k−1)/(K−1) for k = 1, . . . , K (29)

Each iteration of the simulation consists of an update682

of the temperature index k using either neighbor exchange683

(Sec. III A 1) or independence sampling updates (Sec. III A684

2), followed by 100 steps of Metropolis Monte Carlo59, 60 us-685

ing a Gaussian proposal with zero mean and standard devia-686

tion of 0.1 in the x-coordinate. Simulations are initiated from687

(x0, k0) = ( − 1, 1).688

Illustrative trajectories for K = 16 are shown in the mid-689

dle and bottom panels of Figure 1, along with the correlation690
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FIG. 1. Simulated tempering for a one-dimensional model. Top panel: Poten-
tial energy U(x) and stationary probabilities π (x) for one-dimensional two-
well model potential at 16 temperatures spanning kBT = 1, where barrier
crossing is hindered, to kBT = 10, where barrier crossing is rapid. Middle
panel: Temperature index, k, and position, x, histories for a simulated tem-
pering simulation where neighbor swap in temperature are attempted each
iteration. Bottom panel: Temperature index, k, and position, x, histories for
a simulated tempering simulation where independence sampling of the tem-
perature index is performed each iteration. Only the first 5000 iterations are
shown, though simulations of 106 iterations were conducted to estimate the
correlation times τ k and τ x printed above each panel, shown in number of
iterations required to produce an effectively uncorrelated sample in either k
or x, respectively. Statistical uncertainties shown represent one standard error
of the mean.

times τ k and τ x computed for the temperature index k and the 691

configurational coordinate x, respectively, from a long trajec- 692

tory of 106 iterations. Independence sampling in state space k Q1693

greatly reduces the correlation time, and hence statistical in- 694

efficiency, in k compared to neighbor sampling. Importantly, 695

because k and x are coupled, we clearly see that increasing 696



000000-9 Simulations as Gibbs sampling J. Chem. Phys. 135, 000000 (2011)

2 4 8 16 32 64
0

500

1000

1500

2000

number of temperatures

τ k

 

 

neighbor
independence

2 4 8 16 32 64
0

20

40

60

τ x

number of temperatures

FIG. 2. Autocorrelation times as function of number of temperatures for
one-dimensional model. The integrated autocorrelation time τ k for state in-
dex k (top) and τ x for position x (bottom) as a function of the number of
exponentially-spaced temperatures spanning the range kBT ∈ [1, 10]. The cor-
relation times for neighbor swap (black points) and independence sampling
updates (red stars) are shown for each. Error bars represent one standard error
of the mean.

the mixing in the index k also substantially reduces the cor-697

relation time in the configurational coordinate x. We find that698

τ x = 9.6 ± 0.2 for independence sampling, compared to 24.1699

± 0.9 for neighbor moves.700

Figure 2 compares the correlation times for k and x es-701

timated from simulations of length 106 for different numbers702

of temperatures spanning the same range of kBT ∈ [1, 10],703

with temperatures again geometrically spaced according to704

Eq. (29). As the number of temperatures spanning this range705

increases, the correlation time in the temperature coordinate k706

increases, as one would expect for a random walk on domains707

of increasing size. Notably, increasing the number of temper-708

atures also has the effect of increasing the correlation time of709

the configuration coordinate x. When independence sampling710

is used to update the temperature index k instead, the mix-711

ing time in k is greatly reduced, and both correlation times τ k712

and τ x remain small even as the number of temperatures is713

increased.714

V. APPLICATIONS715

To demonstrate that the simple state update modifications716

we describe in Sec. III lead to real efficiency improvements in717

practical simulation problems, we consider three typical sim-718

ulation problems: An alchemical expanded ensemble simula-719

tion of united atom (UA) methane in water to compute the720

free energy of transfer from gas to water; a parallel temper-721

ing simulation of terminally blocked alanine dipeptide in im-722

plicit solvent; and a two-dimensional replica exchange um-723

brella sampling simulation of alanine dipeptide in implicit724

solvent to compute the potential of mean force. These systems725

are small compared to modern applications of biophysical and726

biochemical interest. However, they are realistic enough to 727

demonstrate the fundamental issues in multiensemble simu- 728

lations, but still sufficiently tractable that a large quantity of 729

data can be collected to prove that the differences in efficiency 730

of our proposed mixing schemes are highly significant. 731

A. Expanded ensemble alchemical simulations 732

of Lennard-Jones spheres in water 733

1. United atom methane 734

We first compare different types of Gibbs sampling state 735

space updates in an expanded ensemble alchemical simula- 736

tion of the kind commonly used to compute the free energy of 737

hydration of small molecules.35, 90 If the state mixing schemes 738

proposed here lead to more efficient sampling among alchem- 739

ical states, a larger number of effectively uncorrelated sam- 740

ples will be generated for a simulation of a given duration, 741

and thus require less computation effort to reach the desired 742

degree of statistical precision. 743

An optimized potentials for liquid simulation-UA united 744

atom methane particle (σ = 0.373 nm, ε = 1.230096 kJ/mol) 745

was solvated in a cubic simulation cell containing 893 TIP3P 746

(Ref. 92) waters. For all simulations, a modified version 747

of GROMACS 4.5.2 (Ref. 93) was used.94 A velocity Verlet 748

integrator95 was used to propagate dynamics with a time step 749

of 2 fs. A Nosé-Hoover chain of length 10 (Ref. 96) and time 750

constant τ T = 10.0 ps was used to thermostat the system 751

to 298 K. A measure-preserving barostat was used accord- 752

ing to Tuckerman et al.97, 98 to maintain the average system 753

pressure at 1 atm, with τ p = 10.0 ps and compressibility 4.5 754

× 10−5 bar−1. Rigid geometry was maintained for all waters 755

using the analytical SETTLE scheme.99 A neighborlist and 756

photomagnetoelastic (PME) cutoff of 0.9 nm were used, with Q2757

a PME order of 6, spacing of 0.1 nm and a relative tolerance of 758

10−6 at the cutoff. The Lennard-Jones potential was switched 759

off, with the switch beginning at 0.85 nm and terminating at 760

the cutoff of 0.9 nm. An analytical dispersion correction was 761

applied beyond the Lennard-Jones cutoff to correct the energy 762

and pressure computation.100 The neighborlist was updated 763

every 10 steps. 764

A set of K = 6 alchemically modified thermodynamic 765

states were used in which the Lennard-Jones interactions be- 766

tween the methane and solvent were eliminated using a soft- 767

core Lennard-Jones potential,101
768

Uij (r; λ) = 4εijλ f (r; λ)[1 − f (r; λ)],

f (r; λ) ≡ [α(1 − λ) + (r/σij )6]−1 (30)

with values of the alchemical coupling parameter λk chosen 769

to be {0.0, 0.3, 0.6, 0.7, 0.8, 1.0}. 770

To simplify our analysis of efficiency, we fix the 771

log-weights gk to “perfect weights,” where all states are 772

visited with equal probability. This also decouples the 773

issue of efficiency of state updates with efficiency of dif- 774

ferent weight update schemes, of which many have been 775

proposed.11, 12, 14, 31, 66–68 The “perfect” log-weights were 776

estimated for this system as follows: A 1 ns expanded 777

ensemble simulation using independence sampling was run, 778

with weights gk initialized to zero, then adjusted using a 779
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TABLE I. Efficiency measures for expanded ensemble alchemical simulation of united atom methane in water. Times measuring mixing in state space are:
τ 2, estimated from second eigenvalue of the empirical state transition matrix; τ ac, estimated from autocorrelation function of the alchemical state index; τ end,
estimated average end-to-end transit time for the alchemical state index. τN is a structural parameter, the autocorrelation function of the number of TIP3P
oxygen molecules within 0.3 nm (87.5% of the Lennard-Jones σ ij (0.3428 nm)) of the center of the united atom methane particle. The relative speedup in
sampling efficiency is given relative to the standard neighbor exchange scheme.

Mixing times (ps) Relative speedup

τ 2 τ ac τ end τN τ 2 τ ac τ end τN

1 state move attempted every 0.1 ps

Neighbor exchange 1.693 ± 0.008 6.7 ± 0.4 11.9 ± 0.2 5.9 ± 0.4 1.0 1.0 1.0 1.0
Independence sampling 0.771 ± 0.004 6.2 ± 0.2 7.2 ± 0.1 5.4 ± 0.2 2.20 ± 0.02 1.08 ± 0.08 1.65 ± 0.04 1.10 ± 0.09
Metropolized independence 0.645 ± 0.003 4.6 ± 0.2 6.6 ± 0.1 4.4 ± 0.2 2.62 ± 0.02 1.5 ± 0.1 1.81 ± 0.04 1.3 ± 0.1

1 000 state moves attempted every 0.1 ps

Neighbor exchange 0.764 ± 0.006 4.9 ± 0.3 7.2 ± 0.1 4.6 ± 0.3 1.0 1.0 1.0 1.0
Independence sampling 0.769 ± 0.005 4.8 ± 0.2 7.2 ± 0.1 4.5 ± 0.2 0.99 ± 0.01 1.01 ± 0.08 1.00 ± 0.02 1.01 ± 0.07
Metropolized independence 0.774 ± 0.005 5.0 ± 0.2 7.5 ± 0.1 4.7 ± 0.2 0.99 ± 0.01 0.98 ± 0.08 0.96 ± 0.02 0.98 ± 0.07

1 state move attempted every 5 ps

Neighbor exchange 85.8 ± 2.3 177.7 ± 17.6 330.0 ± 16.1 105.3 ± 12.1 1.0 1.0 1.0 1.0
Independence sampling 39.0 ± 0.9 69.2 ± 6.1 141.1 ± 4.7 49.1 ± 3.8 2.20 ± 0.08 2.6 ± 0.3 2.3 ± 0.1 2.1 ± 0.3
Metropolized independence 31.8 ± 0.4 51.4 ± 1.9 115.7 ± 3.4 37.4 ± 1.4 2.70 ± 0.08 3.5 ± 0.4 2.9 ± 0.2 2.8 ± 0.3

Wang-Landau scheme,14 until occupancy of each state was780

roughly even to within statistical noise. With these approxi-781

mate weights, a 2 ns expanded ensemble simulation using in-782

dependence sampling with fixed weights was run, and the free783

energy of each state was estimated using MBAR.56 The log-784

weights gk were set to these estimated free energies, which785

were {0.0, 0.32, −0.46, −1.67, −2.83, −3.66}, in units of786

kBT. Simulations using these weights deviated by an average787

of 5% from flat histogram occupancy in states, with an aver-788

age maximum deviation over all simulations of less than 10%.789

The state update procedure was carried out either every790

0.1 ps (frequent update) or 5 ps (infrequent update), in order791

to test the effect of state updates that were much faster than,792

or on the order of, the conformational correlation times of793

molecular dynamics, as water orientational correlation times794

are a few picoseconds.102 Production simulations with fixed795

log-weights were run with for 25 ns (250 000 state updates),796

for frequent updates, or 100 ns (20 000 state updates), for in-797

frequent updates. Three types of state moves were attempted:798

(1) neighbor exchange moves (described in Sec. III A 1), (2)799

independence sampling (Sec. III A 2, and (3) metropolized800

independence sampling (Sec. III A 3. In the case of frequent801

updates, we additionally performed 1000 trials of the state up-802

date every 0.1 ps, instead of a single update, before returning803

to coordinate update moves with molecular dynamics.804

Statistics of the observed replica trajectories are shown in805

Table I. All three mixing efficiency measures of the state in-806

dex trajectories described in Sec. III C were computed: relax-807

ation time of the empirical state transition matrix (τ 2), auto-808

correlation of the state function (τ ac), and average end-to-end809

distance (τ end).810

We additionally look at a measure of correlation in the811

coordinate direction. For each configuration, we examine the812

number of O atoms of the water molecules N that are found813

in the interior of the united atom methane, set to be 0.3 nm814

(or 87.5% of the Lennard-Jones σ ij = 0.3428 nm) from the815

center. We then compute the autocorrelation function of τN of 816

this variable, which is affected both by the dynamics of the 817

state and the dynamical response of the system to changes in 818

state. Uncertainties in these time autocorrelation functions are 819

computed by subdividing the trajectories into NS = 10 subtra- 820

jectories, computing the standard error, and then dividing by 821√
NS to obtain standard error of the NS × longer trajectory. 822

Uncertainties changed by less than 5% when computed with 823

NS = 20 for frequent update simulations, and less than 10% 824

for infrequent update simulations. 825

The relaxation time τ 2 estimated from the second eigen- 826

value of the empirical state transition matrix (Sec. V B) does 827

appear to provide a lower bound for the other estimated 828

mixing times. For the infrequent state updates, it is only 829

about 25% smaller than τN. This suggests that when tran- 830

sition times in state space are of the same order of magni- 831

tude as conformational rearrangements τ 2 is not only a lower 832

bound, but is characteristic of sampling through the joint 833

state-configuration space. We additionally note that mixing 834

time τ 2 is empirically exactly proportional to the update fre- 835

quency; the mixing times for the infrequent update state are 836

exactly (5 ps/0.1 ps) = 50 times longer than the frequent state 837

mixing times, a direct consequence of the fact that the proba- 838

bility of successful state transitions is directly proportional to 839

the rate of attempted transitions. 840

For both the frequent and infrequent state updates, inde- 841

pendence sampling and metropolized independence sampling 842

yield a clear, statistically significant speedup by all sampling 843

metrics. This speedup is accentuated for infrequent updates. 844

For frequent updates, the speedup is between 1.3 and 2.6 845

for metropolized independence sampling, while for infrequent 846

updates, it ranges between 2.7 and 3.5, as seen in Table I. 847

As expected, attempting many state updates in a row (1000 848

state moves) using any of the state update schemes effectively 849

recapitulates the independence sampling scheme. Repeated 850

application of any method that obeys the balance condition 851



000000-11 Simulations as Gibbs sampling J. Chem. Phys. 135, 000000 (2011)

TABLE II. Efficiency measures for expanded ensemble alchemical simulation of large LJ sphere in water. Times measuring mixing in state space are: τ 2,
estimated from second eigenvalue of empirical state transition matrix; τ ac, estimated from autocorrelation time of alchemical state index; τ end, estimated average
end-to-end transit time for alchemical state index. τN is a structural parameter, the autocorrelation function of the number of TIP3P oxygen molecules within
0.5 nm (85.3% of the Lennard-Jones σ ij (0.5860 nm)) of the center of the large Lennard-Jones particle. The relative speedup in sampling efficiency is given
relative to the standard neighbor exchange scheme.

Mixing times (ps) Relative speedup

τ 2 τ ac τ end τN τ 2 τ ac τ end τN

1 state move attempted every 0.1 ps

Neighbor exchange 9.51 ± 0.01 65.8 ± 4.2 126.3 ± 4.2 58.1 ± 4.3 1.0 1.0 1.0 1.0
Independence sampling 2.586 ± 0.009 42.9 ± 2.4 88.4 ± 2.7 41.5 ± 2.0 3.68 ± 0.01 1.5 ± 0.1 1.43 ± 0.06 1.4 ± 0.1
Metropolized independence 2.181 ± 0.006 48.6 ± 4.0 88.3 ± 3.0 46.7 ± 3.4 4.36 ± 0.01 1.4 ± 0.1 1.43 ± 0.07 1.2 ± 0.1

1 state move attempted every 1 ps

Neighbor exchange 95.0 ± 0.2 211.1 ± 58.9 507.6 ± 19.3 167.6 ± 16.0 1.0 1.0 1.0 1.0
Independence sampling 25.8 ± 0.1 67.3 ± 3.6 196.0 ± 5.8 63.1 ± 3.3 3.69 ± 0.02 3.1 ± 0.9 2.6 ± 0.1 2.7 ± 0.3
Metropolized independence 21.6 ± 0.1 66.8 ± 2.4 169.2 ± 4.7 62.1 ± 2.5 4.40 ± 0.02 3.2 ± 0.9 3.0 ± 0.1 2.7 ± 0.3

will eventually converge to the same independent sampling852

distribution. If state updates are relatively inexpensive, then853

any state update scheme that ensures the correct distribution is854

sampled can be iterated many times, effectively resulting in an855

independence sampling scheme. Interestingly, this means that856

metropolized independence sampling becomes worse when857

repeated several times, as it eventually turns into simple in-858

dependence sampling.859

Although the acceleration of independence sampling860

over neighbor exchange is more dramatic with longer inter-861

vals between state updates, more frequent state updates ap-862

pear to always be better than less frequent updates. For exam-863

ple, neighbor exchange with more frequent updates achieves864

shorter correlation times that either independence sampling865

scheme for infrequent updates, confirming earlier findings866

that frequent exchange attempts in neighbor exchange reduce867

correlation times.16, 17 We also note that for this particular868

system, metropolized independence sampling is slightly but869

clearly better than independence sampling in all sampling870

measures, providing a strong incentive to use metropolized871

independence sampling when it is inexpensive to do so.872

2. Larger Lennard-Jones spheres873

As united atom methane is much smaller than typical874

biomolecules of interest, we additionally examined an al-875

chemical expanded ensemble simulation of a much larger876

Lennard-Jones sphere. In this case, the sphere has σ ii877

= 1.09 nm and εii = 1.230096 kJ/mol, again solvated in a878

cubic simulation cell containing 893 TIP3P (Ref. 92) wa-879

ters. These parameters result in a sphere-water σ ij = 0.561880

nm, and therefore a particle 5.0 times as large in volume as881

the UA methane sphere. Because of the larger volume of the882

solute, K = 18 alchemically modified thermodynamic states883

were required, with λ = [0, 0.15, 0.3, 0.45, 0.55, 0.6, 0.64,884

0.66, 0.68, 0.70, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.90, 1.0].885

All other simulation parameters (other than simulation length)886

were the same as the UA methane simulations. Log-weights887

gk for the equilibrium expanded ensemble simulation were888

determined in the same manner as for united atom methane,889

except that a 15 ns simulation was used to generate the data 890

for MBAR, yielding weights gk = {0.0, 1.74, 2.96, 3.39, 891

2.84, 2.01, 0.73, −0.34, −1.75, −3.35, −4.96, −7.19, −9.11, 892

−10.70, −11.98, −12.98, −13.72, −14.65}. Frequent state 893

updates were performed every 0.1 ps, but infrequent state 894

moves were performed every 1 ps rather than 5 ps to obtain 895

better statistics for the larger molecule. The production ex- 896

panded ensemble simulations were run for a total of 100 ns 897

for frequent exchange, and 250 ns for infrequent exchange. 898

The same three types of moves in state space were attempted 899

as with UA methane. 900

Statistics of the observed replica trajectories are shown 901

in Table II. All three convergence rate diagnostics of the state 902

index trajectories described in Sec. III C were computed. In 903

general, the relaxation time estimated from the second eigen- 904

value of the empirical state transition matrix (Sec. V B) again 905

provides a lower bound for the other computed relaxation 906

times. For the infrequent sampling interval τ 2 is of the same 907

order of magnitude (2 to 5 times less) than the other sam- 908

pling measures. Again, for both the frequent (0.1 ps) and 909

infrequent (1 ps) state update intervals, independence sam- 910

pling and metropolized independence sampling yield a clear 911

speedup over neighbor exchange. The improvement in sam- 912

pling efficiency appears to be valid for both small and large 913

particles. 914

B. Parallel tempering simulations of terminally 915

blocked alanine peptide in implicit solvent 916

We next consider a parallel tempering simulation, a 917

form of replica exchange in which the thermodynamic states 918

differ only in inverse temperature βk. A system containing 919

terminally blocked alanine (sequence Ace-Ala-Nme) was 920

constructed using the LEaP program103 from the AMBER- 921

TOOLS 1.2 package with bugfixes 1–4 applied. The AMBER 922

parm96 forcefield was used104 along with the Onufriev- 923

Bashford-Case generalized Born-surface area (OBC GBSA) 924

implicit solvent model (corresponding to model I of Ref. 105 925

equivalent to igb=2 in AMBER’s sander program and 926

using the mbondi2 radii selected within LEaP). 927
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TABLE III. Efficiency measures for parallel tempering simulation of alanine dipeptide in implicit solvent. Mixing times listed are: τ 2, estimated from second
eigenvalue of empirical state transition matrix; τ ac, estimated from autocorrelation time of alchemical state index; τ end, estimated average end-to-end transit
time for alchemical state index. Autocorrelation times of trigonometric functions of φ and ψ torsion angles are listed as τ cos φ , τ sin φ , τ cos ψ , τ sin ψ . The statistical
error is given as one standard error of the mean.

State mixing times (ps) Structural correlation times (ps)

τ 2 τ ac τ end τ cos φ τ sin φ τ cos ψ τ sin ψ

Neighbor exchange 91.8 ± 0.6 80 ± 2 360 ± 30 25 ± 2 110 ± 9 25 ± 2 66 ± 6
Independence sampling 2.62 ± 0.01 1.60 ± 0.06 28.7 ± 0.7 12.4 ± 0.5 8.7 ± 0.4 11.8 ± 0.6 9.1 ± 0.5

A custom Python code making use of the graphics pro-928

cessing unit (GPU)-accelerated OPENMM package106–108 and929

the PYOPENMM Python wrapper109 was used to conduct930

the simulations. All forcefield terms are identical to those931

used in AMBER except for the surface area term, which was932

left as default in the OPENMM implementation through a933

GBSAOBC Force term. Parallel tempering simulations of934

2000 iterations were run, with dynamics propagated by 500935

steps each iteration using a 2 fs time step and the leapfrog936

Verlet integrator.110, 111 Velocities were reassigned from the937

Maxwell-Boltzmann distribution each iteration. The Python938

scripts for simulation and data analysis used here are avail-939

able online at http://simtk.org/home/gibbs.940

For the replica-mixing phase, the simulation employed941

either neighbor exchange (Sec. III A 1) or independence sam-942

pling (Sec. III B 2), with K3 attempted swaps of replica pairs943

selected at random. The efficiency was measured in several944

ways, shown in Table III. In addition to the standard mix-945

ing metrics described in Sec. III C, an estimate of the con-946

figurational relaxation times was also made; due to the cir-947

cular nature of the torsional coordinates φ and ψ known to948

be slow degrees of freedom for this system,112 we instead949

computed the autocorrelation times for sin φ, cos φ, sin ψ ,950

and cos φ. All replicas were treated as equivalent, and their951

raw statistics (e.g., autocorrelation functions before normal-952

ization) were averaged to produce these estimates. Statistical953

error was again estimated by blocking.954

As expected, the various metrics indicate that the parallel955

tempering replicas mix in state space much more rapidly with956

independence sampling than when only neighbor exchanges957

are attempted. The amount by which mixing is accelerated de-958

pends on the metric used to quantify this, but it is roughly one959

to two orders of magnitude. The structural relaxation times960

also reflect a speedup, though much more modest than the ac-961

celeration in state space sampling—roughly a factor of two to962

ten, depending on the metric examined.963

C. Two-dimensional replica exchange umbrella964

sampling of terminally-blocked alanine peptide965

in implicit solvent966

Finally, we consider a two-dimensional replica exchange967

umbrella sampling situation, commonly used to compute po-968

tentials of mean force along two coordinates of interest. We969

again consider the alanine dipeptide in implicit solvent, and970

employ umbrella potentials to restrain the φ and ψ torsions971

near reference values (φ0
k , ψ

0
k ) for K = 101 replicas spaced972

evenly on a 10 × 10 toroidal grid, with the inclusion of one973

replica without any bias potential for ease of post-simulation 974

analysis. 975

Because harmonic constraints are not periodic, we em- 976

ploy periodic bias potential based on the von Mises circular 977

normal distribution, 978

U ′
k(x) ≡ −κ

[
cos

(
φ − φ0

k

) + cos
(
ψ − ψ0

k

)]
, (31)

where κ has units of energy. For sufficiently large values of κ , 979

this will localize the torsion angles in an approximately Gaus- 980

sian distribution near the reference torsions (φ0
k , ψ

0
k ) with a 981

standard deviation of σ ≡ (βκ)1/2. 982

Here, we employ a κ of (2π /30)−2β−1 so that neigh- 983

boring bias potentials are separated by 3σ . This was suffi- 984

cient to localize sampling near the reference torsion values for 985

most sterically unhindered regions. The simulation was run at 986

300 K, using a 2 fs time step with 5 ps between replica ex- 987

change attempts. A total of 2000 iterations were conducted, 988

with each iteration consisting of mixing the replica state as- 989

signments via a state update phase, a new velocity assignment 990

from the Maxwell-Boltzmann distribution, propagation of dy- 991

namics, and writing out the resulting configuration data. The 992

first 100 iterations were discarded as equilibration. 993

The same mixing schemes examined in the parallel tem- 994

pering simulation were evaluated here, and the results of the 995

efficiency metrics are summarized in Table IV. Note that the 996

end-to-end time does not have a clear interpretation in terms 997

of the average transit time between a maximum and minimum 998

thermodynamic parameter here—it simply reflects the aver- 999

age time between exchanges between a particular localized 1000

umbrella and the unbiased state. 1001

As in the parallel tempering case, we find that both mix- 1002

ing times in state space and the structural correlation times 1003

are reduced by use of Gibbs sampling, albeit to a lesser de- 1004

gree than in the parallel tempering case. Here, state relaxation 1005

times are reduced by a factor of two to six, depending on the 1006

metric considered, while structural correlation times are re- 1007

duced by a factor of four or five. 1008

VI. DISCUSSION 1009

We have presented the framework of Gibbs sampling on 1010

the joint set of state and coordinate variables to better un- 1011

derstand different expanded ensemble and replica exchange 1012

schemes, and demonstrated how this framework can iden- 1013

tify simple ways to enhance the efficiency of expanded en- 1014

semble and replica exchange simulations by modifying the 1015

http://simtk.org/home/gibbs
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TABLE IV. Efficiency measures for two-dimensional replica exchange umbrella sampling for the alanine dipeptide in implicit solvent. Mixing times in state
space listed are: τ 2, estimated from second eigenvalue of empirical state transition matrix; τ ac, estimated from autocorrelation time of alchemical state index;
τ end, estimated average end-to-end transit time for alchemical state index. Autocorrelation times of trigonometric functions of φ and ψ torsion angles are listed
as τ cos φ , τ sin φ , τ cos ψ , τ sin ψ . The statistical error is given as one standard error of the mean.

State mixing times (ps) Structural correlation times (ps)

τ 2 τ ac τ end τ cos φ τ sin φ τ cos ψ τ sin ψ

Seighbor exchange 82 ± 4 31.0 ± 0.9 350 ± 30 47 ± 2 57 ± 2 26.4 ± 0.8 27.1 ± 0.9
Independence sampling 24.2 ± 0.3 5.45 ± 0.06 175 ± 6 8.92 ± 0.09 9.9 ± 0.1 5.63 ± 0.04 6.09 ± 0.04

thermodynamic state update phase of the algorithms. While1016

the actual efficiency improvement will depend on the system1017

and simulation details, we believe there is likely little, if any,1018

drawback to using these improvements in a broad range of1019

situations.1020

For simulated and parallel tempering simulations, in1021

which only the temperature is varied among the thermody-1022

namic states, the recommended scheme (independence sam-1023

pling updates, Secs. III A 2 and III B 2) is simple and inex-1024

pensive enough to be easily adopted by simulated and parallel1025

tempering codes. Because calculation of exchange probability1026

requires no additional energy evaluations, it is effectively free.1027

Other expanded ensemble or replica exchange simulations1028

where the potential does not vary between states (such as ex-1029

change among temperatures and pressures48 or pH values113)1030

are also effectively free, as no additional energy evaluations1031

are required in these cases either. As long as state space evalu-1032

ations are cheap compared to configuration updates, indepen-1033

dence sampling will mix more rapidly than neighbor updates,1034

though this advantage will be reduced as the interval spent be-1035

tween configuration updates by molecular dynamics or Monte1036

Carlo simulation or the total time performing these coordinate1037

updates becomes very small.1038

In some cases, exchange of information between proces-1039

sors during replica exchange in tightly coupled parallel codes1040

may incur some cost, mainly in the form of latency. In many1041

cases, however, the decrease in mixing times could more than1042

offset any loss in parallel efficiency. If the recommended in-1043

dependence sampling schemes would consume a substantial1044

fraction of the iteration time, or where the parallel implemen-1045

tation of state updates is already complex, it may still be rela-1046

tively inexpensive to perform simply the same state update1047

scheme several times, achieving enhanced mixing with lit-1048

tle extra coding or computational overhead. Alternatively, the1049

Gibbs sampling formalism could be used to design some other1050

scheme that performs frequent state space sampling only on1051

replicas that are local in the topology of the code.1052

For simulated scaling14 or Hamiltonian exchange1053

simulations,7–10 independence sampling updates of state per-1054

mutation vector S requires evaluation of the reduced potential1055

uk(x) at all K states for the current configuration (in simu-1056

lated scaling) or all replica configurations xk (for Hamiltonian1057

exchange), which requires more energy evaluations than the1058

neighbor exchange scheme. However, if the intent is to make1059

use of the MBAR estimator,56 which produces optimal esti-1060

mates of free energy differences and expectations, all of these1061

energies are required for analysis anyway, and so the com-1062

putational impact on simulation time is negligible. It is more 1063

computationally efficient to evaluate these additional reduced 1064

potentials during the simulation, instead of post-processing 1065

simulation data, which is especially true if the additional re- 1066

duced potential evaluations are done in parallel. Alternatively, 1067

if a simulated scaling simulation is run and one does not wish 1068

to use MBAR, restricted range state updates (Sec. III A 4) of- 1069

fer improved mixing behavior with minimal additional num- 1070

ber of energy evaluations. 1071

We have found that examining the exchange statistics, the 1072

empirical state transition matrix and its dominant eigenval- 1073

ues, is extremely useful in diagnosing equilibration and con- 1074

vergence, as well as poor choices of thermodynamic states. 1075

It is often very easy to see, from the diagonally dominant 1076

structure of this matrix, where regions of poor state overlap 1077

occur. Poor overlap among sets of thermodynamic states ob- 1078

served early in simulations from the empirical state transi- 1079

tion matrix are likely to also frustrate post-simulation analy- 1080

sis with techniques such as MBAR and histogram reweight- 1081

ing methods,56, 89, 114 making such metrics useful diagnostic 1082

tools. 1083

For more complex state topologies in expanded ensem- 1084

ble or replica exchange simulations, where, for example, sev- 1085

eral different pressures or temperatures are included simul- 1086

taneously, there may not exist a simple grid of values, or it 1087

may not be easy to identify which states are the most efficient 1088

neighbors. Using independence sampling eliminates the need 1089

to plan efficient exchange schemes among neighbors, or even 1090

to determine which states are neighbors. This may encour- 1091

age the addition of states that aid in reducing the correlation 1092

time of the overall Markov chain solely by speeding decorre- 1093

lation of conformational degrees of freedom, since they will 1094

automatically couple to states with reasonable phase space 1095

overlap. 1096

It is important to stress, however, that expanded ensem- 1097

ble and replica exchange simulations are not a cure-all for 1098

all systems with poor sampling. In the presence of a first- 1099

order or pseudo-first-order phase transition, phase space mix- 1100

ing may still take an exponentially long time even when sim- 1101

ulated or parallel tempering algorithms are used.42 Optimiza- 1102

tion of the state exchange scheme, as described here, can only 1103

help so much; further efficiency gains would require design 1104

of intermediate states that abolish the first-order phase transi- 1105

tion. Schemes for optimal state selection are an area of active 1106

research.26–32
1107

Finally, we observe that the independence sampling 1108

scheme for a simulated tempering simulation or any 1109
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simulation where the contribution to the reduced potential1110

is a thermodynamic parameter λ multiplying a conjugate1111

configuration-dependent variable h(x) naturally generalizes to1112

a continuous limit. As the number K of thermodynamic states1113

λk is increased between some fixed lower and upper limits,1114

this process eventually results in the thermodynamic state in-1115

dex k effectively becoming a continuous variable λ.2 Such a1116

continuous tempering simulation would sample from the joint1117

distribution π (x, λ) ∝ exp [− λh(x) + g(λ)], with the contin-1118

uous log weighting function g(λ) replacing the discrete gk in1119

simulated tempering simulations.1120

The Gibbs sampler and variations on it remain exciting1121

areas for future exploration, and we hope that our conditional1122

state space sampling formulation will make it much easier for1123

other researchers to envision, develop, and implement new1124

schemes for sampling from multiple thermodynamics states.1125

We also hope it encourages exploration of further connections1126

between the two deeply interrelated fields of statistical me-1127

chanics and statistical inference.1128
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