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Replica exchange and expanded ensemble simulations as Gibbs sampling:
Simple improvements for enhanced mixing
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The widespread popularity of replica exchange and expanded ensemble algorithms for simulating
complex molecular systems in chemistry and biophysics has generated much interest in discovering
new ways to enhance the phase space mixing of these protocols in order to improve sampling of
uncorrelated configurations. Here, we demonstrate how both of these classes of algorithms can be
considered as special cases of Gibbs sampling within a Markov chain Monte Carlo framework. Gibbs
sampling is a well-studied scheme in the field of statistical inference in which different random vari-
ables are alternately updated from conditional distributions. While the update of the conformational
degrees of freedom by Metropolis Monte Carlo or molecular dynamics unavoidably generates corre-
lated samples, we show how judicious updating of the thermodynamic state indices—corresponding
to thermodynamic parameters such as temperature or alchemical coupling variables—can substan-
tially increase mixing while still sampling from the desired distributions. We show how state update
methods in common use can lead to suboptimal mixing, and present some simple, inexpensive alter-
natives that can increase mixing of the overall Markov chain, reducing simulation times necessary
to obtain estimates of the desired precision. These improved schemes are demonstrated for several
common applications, including an alchemical expanded ensemble simulation, parallel tempering,
and multidimensional replica exchange umbrella sampling. © 2011 American Institute of Physics.

[doi:10.1063/1.3660669]

. INTRODUCTION

A broad category of simulation methodologies known
as generalized ensemble' or extended ensemble® algorithms
have enjoyed increasing popularity in the field of biomolec-
ular simulation over the last decade. The two most popu-
lar algorithmic classes within this category are undoubtedly
replica exchange,® which includes parallel tempering*° and
Hamiltonian exchange,”"'” among others, and its serial equiv-
alent, the method of expanded ensembles,'! which includes
simulated tempering'>'? and simulated scaling."* In both
classes of algorithms, a mixture of thermodynamic states are
sampled within the same simulation, with each simulation
walker able to access multiple thermodynamic states through
a stochastic hopping process, which we will generically refer
to as consisting of swaps or exchanges. In expanded ensemble
simulations, the states are explored via a biased random walk
in state space; in replica exchange simulations, multiple cou-
pled walks are carried out in parallel without biasing factors.
Both methods allow estimation of equilibrium expectations at
each state as well as free energy differences between states.
In both cases, stochastic transitions between different ther-
modynamic states can reduce correlation times and increase
sampling efficiency relative to straightforward Monte Carlo

¥ Electronic mail: jchodera@berkeley.edu.
b Author to whom correspondence should be addressed. Electronic mail:
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or molecular dynamics simulations by allowing the system
avoid barriers between important configuration substates.

Because of their popularity, these algorithms and their
properties have been the subject of intense study over recent
years. For example, given optimal weights, expanded ensem-
ble simulations have been shown to have provably higher ex-
change acceptance rates than replica exchange simulations us-
ing the same set of thermodynamic states.'> Higher exchange
attempt frequencies have been demonstrated to improve mix-
ing for replica exchange simulations.'®!” Alternative veloc-
ity rescaling schemes have been suggested to improve ex-
change probabilities.'® Other work has examined the degree
to which replica exchange simulations enhance sampling rel-
ative to straightforward molecular dynamics simulations.!%
Numerous studies have examined the issue of how to opti-
mally choose thermodynamic states to enhance sampling in
systems with second-order phase transitions,”®-3? though sys-
tems with strong first-order-like phase transitions (such as
two-state protein systems) remain challenging.’*3* A num-
ber of combinations®>:3® and elaborations'*37- of these al-
gorithms have also been explored. A few publications have
examined the mixing and convergence properties of replica
exchange and expanded ensemble algorithms with mathe-
matical rigor*'** but there remain many unanswered ques-
tions about these sampling algorithms, both in terms of
theoretical bounds and practical guidelines for how much
these methods accelerate sampling for complex molecular
systems.

© 2011 American Institute of Physics
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Standard practice for expanded ensemble and replica ex-
change simulations is that exchanges are to be attempted
only between “neighboring” thermodynamic states—for ex-
ample, the states with temperatures immediately above or be-
low the current temperature in a simulated or parallel tem-
pering simulation.*"!” The rationale behind this choice is that
states further away in state space will have low probability of
acceptance due to diminished phase space overlap, and thus
attempts should focus on the states for which exchange at-
tempts are most likely to be accepted. Increasing the prox-
imity of neighboring thermodynamic states in both kinds of
simulations can further increase the probability that exchange
attempts will be accepted. However, restricting exchange at-
tempts to neighboring states can then result in slow overall
diffusion in state space due to the larger number of replicas
needed to span the thermodynamic range of interest.*> Some
exchange schemes have been proposed to improve this dif-
fusion process, such as all-pairs exchange,*® and optimized
exchange moves'® but the problem of designing optimal ex-
change moves and overall sampling improvement is still very
much a challenge; see Ref. 47 for a recent comparison of
different methods. The problem of slow diffusion is exacer-
bated in “multidimensional” simulations that make use of a
2D or 3D grid of thermodynamic states,”*®4’ where diffu-
sion times in state space increase greatly due to the increase
in dimensionality.>

Here, we show how the many varieties of expanded
ensemble and replica exchange simulations can all be con-
sidered to be forms of Gibbs sampling, a sampling scheme
well-known to the statistical inference literature,’>* though
unrelated to simulations in the “Gibbs ensemble” for deter-
mining phase equilibria.>*>> When the problem of sampling
among a number of ensembles is viewed in this statistical
context, a number of alternative schemes can readily be pro-
posed for updating the thermodynamic state while preserving
the distribution of configurations and thermodynamic states
sampled by the algorithm. By making simple modifications
to the exchange attempt schemes, we show that great gains in
sampling efficiency can be achieved under certain conditions
with little or no extra cost. There is essentially no drawback to
implementing these algorithmic improvements, as the addi-
tional computational cost is negligible, their implementation
sufficiently simple to encourage widespread adoption, and
there appears to be no hindrance of sampling in cases where
these schemes offer no great efficiency gain. Importantly,
we also demonstrate that schemes that encourage mixing in
state space can also encourage mixing of the overall Markov
chain, reducing correlation times in coordinate space, leading
to more uncorrelated samples being generated for a fixed
amount of computer time.

This paper is organized as follows. In Sec. II, we de-
scribe expanded ensemble and replica exchange algorithms
in a general way, casting them as a form of Gibbs sampling.
In Sec. III, we propose multiple approaches to the state ex-
change process in both classes of algorithm with the aim
of encouraging faster mixing in among the thermodynamic
states accessible in the simulation, and hence the overall
Markov chain. In Sec. IV, we illustrate how and why these
modified schemes enhance mixing of the overall chain for a
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simple one-dimensional model system. In Sec. V, we apply
these algorithmic variants to some examples from physical
chemistry, using several different common benchmark sys-
tems from biomolecular simulation, and examine several met-
rics of simulation efficiency. Finally, we make recommenda-
tions for the adoption of simple algorithmic variants that will
improve efficiency in Sec. VI.

Il. THEORY

Before describing our suggested algorithmic modifica-
tions (Sec. III), we first present some theoretical tools we will
use to analyze expanded ensemble and replica exchange sim-
ulations in the context of Gibbs sampling.

A. Thermodynamic states and thermodynamic
ensembles

To be as general as possible, we describe the expanded
ensemble and replica exchange algorithms as sampling a mix-
ture of K thermodynamic states. Here, a thermodynamic state
is parameterized by a vector of time-independent thermody-
namic parameters A. For notational convenience and to make
what follows general, we define the reduced potential®® u(x)
of a physical system,

w(x)=p | H@) + pV) + Y pimi) +--- [, (1)

l

corresponding to its thermodynamic state, where x denotes
the configuration of the system specifying any physical vari-
ables allowed to change, including the volume V(x) (in the
case of a constant pressure ensemble) and #;(x) the number of
molecules of each of i = 1, ..., M components of the system,
in the case of a (semi)grand ensemble. The reduced potential
is a function of the Hamiltonian H, the inverse temperature
B = (kgT)~', the pressure p, and the vector of chemical po-
tentials for each of M components ;. Other thermodynamic
parameters and their conjugate coordinates can be included
in a similar manner, or some of these can be omitted, as re-
quired by the physics of the system. We denote the set of all
thermodynamic parameters by A = {8, H, p, ii, ...}.

We next denote a configuration of the molecular system
by x € 2, where Q is allowed configuration space, which
may be continuous or discrete. A choice of thermodynamic
state gives rise to set of configurations of the system that are
sampled by a given time-independent probability distribution
at equilibrium. So each x will have associated unnormalized
probability density g(x), which is a function of A, where g(x)
> 0 for all x € Q. If we define the normalization constant, or
partition function, Z as

zZ= f dx q(x), )
Q
we can define a normalized probability density
m(x) =Z""q(x). 3)

A physical system in equilibrium with its environ-
ment obeying classical statistical mechanics will sample
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000000-3 Simulations as Gibbs sampling

configurations distributed according to the Boltzmann distri-
bution,

—u(x)

gx)=e “
In this paper, we consider a set of K thermodynamic
states defined by their thermodynamic parameter vectors, A
= {B, Hy, px, ik, ...}, with k=1, ..., K, where H; denotes
any modifications of the Hamiltonian H as a function of £,
including biasing potentials. Each new choice of k gives rise
to a reduced potential u;(x), un-normalized and normalized
probability distributions g;(x) and 7 ;(x) (which we also some-
times write as 7 (k, x)), and a partition function Z;. Although
in this paper, we generally assume a Boltzmann distribution,
there is nothing to prevent some or all of the states from
being sampled using non-thermodynamic (non-Boltzmann)
statistics using alternative choices of the un-normalized den-
sity gx(x), as in the case of multicanonical simulations®’ or
Tsallis statistics.”® To ensure that any configuration x has fi-
nite, nonzero density in all K thermodynamic states, we ad-
ditionally require that the same thermodynamic parameters
be specified for all thermodynamic states, though their values
may of course differ.

B. Gibbs sampling

Suppose we wish to sample from the joint distribution
of two random variables, x and y. We denote this joint dis-
tribution by 7 (x, y). Often, it is not possible to generate di-
rectly the uncorrelated sample pairs (x, y) from the joint dis-
tribution due to the complexity of the function 7 (x, y). In
these cases, a standard approach to sampling is to use some
form of Markov chain Monte Carlo (MCMC),>? such as the
Metropolis-Hastings algorithm>*%° or hybrid Monte Carlo.®!
While general in their applicability, MCMC algorithms suffer
from the drawback that they often must generate correlated
samples, potentially requiring long running times to produce a
sufficient number of effectively uncorrelated samples to allow
the computation of properties to the desired precision.®% %3

Assume we can draw samples, either independently or
through some Markov chain Monte Carlo procedure, from
the conditional distributions of one or more of the variables,
7 (x|y) or w(ylx), where the value of the second variable is
fixed. To generate a set of sample pairs {(xV, y(), (x@, y@),
...} from m(x, y), we can iterate the update scheme

XD~ x|y ™),

y(n+1)|x(n+1) (n+1))’

~ m(ylx

where x ~ m denotes that the random variable x is sampled or
“updated” from the distribution 7 (x).

This procedure is termed Gibbs sampling or the Gibbs
sampler in the statistical literature, and has been employed
and studied extensively.’'->?> In many cases, it may be possi-
ble to draw uncorrelated samples from either or both distri-
butions, but this is not required.®* The algorithm still samples
from the desired joint distribution correlated samples are gen-
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erated instead. The choice of which variable to update—in
this example, x or y—can be either deterministic (e.g., up-
date x then y) or stochastic (e.g., a random number determines
whether x or y is to be updated); both schemes sample from
the desired joint distribution 7 (x, y). However, each method
has different dynamic properties and can introduce different
correlation structure in the sequence of sample pairs. In par-
ticular, we note that a stochastic choice of which variable to
update obeys detailed balance, while a deterministic choice
obeys the weaker balance condition.® In both cases, the dis-
tribution 7 (x, y) is preserved.

In the sections below, we describe how expanded ensem-
ble and replica exchange simulations can be considered as
special cases of Gibbs sampling on the probability distribu-
tion 7 (x, k), which is now a function of both coordinates and
thermodynamic states, and how this recognition allows us to
consider simple variations of these techniques that will en-
hance mixing in phase space with little or no extra cost. In the
algorithms we consider here, the thermodynamic state vari-
able k is discrete, but continuous k are also completely valid
in this formalism if an appropriate continuous sampler is used.

C. Expanded ensembles

In an expanded ensemble simulation,!! a single replica

(or “walker”) samples pairs (x, k) from a joint distribution of
configurations x € I" and state indices k € {1, ..., K} given
by

7 (x, k) oc exp[—uk(x) + gkl &)
where g, is an state-dependent weighting factor. This space is
therefore a mixed, generalized, or expanded ensemble which
samples from multiple thermodynamic ensembles simulta-
neously. g, is chosen to give a specific weighting of each
subensemble in the expanded ensemble, and is generally de-
termined through some iterative procedure.!!-2:14:31,66-68 The
set of gy is frequently chosen to give each thermodynamic en-
semble equal probability, in which case gy = —In Z;, but they
can be set to arbitrary values as desired.

In the context of Gibbs sampling, an expanded ensemble
simulation proceeds by alternating between sampling from
the two conditional distributions,

_ qr(x) _ e uk(x)
Tl = fQ dx gi(x) fQ dx e ()’ ©
€8k qp(x) 8k —1i(x)
w(k|x) = @)

Zf’:l e8¢ g (x) Zf’:l 8k —uy (x) '

In all but trivial cases, sampling from the conditional dis-
tribution 7 (x|k) must be done using some form of Markov
chain Monte Carlo sampler that generates correlated sam-
ples, due to the complex form of u;(x) and the difficulty of
computing the normalizing constant in the denominator.>?
Typically, Metropolis-Hastings Monte Carlo>>® or molec-
ular dynamics is used,” generating an updated configura-

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

27

272

273

274

275



276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313
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tion x+ 1D that is correlated with the previous configura-

tion x, though some types of sampling, such as reservoir
exchange methods’’ attempt to sample independently from
a given ensemble through a reservoir. However, as we will
see in Sec. III A, multiple choices for sampling from the con-
ditional distribution 7 (k|x) are possible due to the simplicity
of its form.

D. Replica exchange ensembles

In a replica exchange, we consider K simulations, with
one simulation in each of the thermodynamic K states. The
current state of the replica exchange simulation is given by
(X, S), where X is a vector of the replica configurations, X
= {x1, X2, ..., ¢}, and S = {s1, ..., sg} € Sk is a permuta-
tion of the state indices {1, ..., K} associated with each of the
replica configurations {x, ..., xg }. Then

K K
(X, 8) o< [ [ s (xi) ocexp [— > us,.(x,»)} ®)

i=1 i=1

with the conditional densities given by

K o ls; ()
JT(X|S)=1_[ W ) 9

i=1

exp [— S uy, (xi)]
Y. exp [— Y ”s,f(xi)] .

S/ES[(

w(S|X) = (10)

As in the case of expanded ensemble simulations, updating
the vector of configurations X must be by some form Markov
chain Monte Carlo or molecular dynamics simulation, invari-
ably generating configurations with some degree of correla-
tion. Unlike the case of expanded ensembles, generating inde-
pendent samples in the conditional permutation space is very
challenging for even moderate numbers of states because of
the expense of computing the denominator of 7 (S|X),”" which
includes a sum over all permutations in the set Sx. However,
as we shall see in Sec. III B, there are still effective ways
to generate nearly uncorrelated permutations that have im-
proved mixing properties over traditional exchange attempt
schemes.

lll. ALGORITHMS

We now describe the algorithms used in sampling from
the expanded ensemble and replica exchange ensembles de-
scribed in Sec. II. We start with the typical neighbor exchange
schemes commonly used in the literature, and then describe
additional novel schemes based on Gibbs sampling that can
encourage more rapid mixing among the accessible thermo-
dynamic states.

J. Chem. Phys. 135, 000000 (2011)

A. Expanded ensemble simulation

For an expanded ensemble simulation, the conditional
distribution of the state index k given x is, again

8kt (x)

7 (k) = K et

We can use any proposal/acceptance scheme that ensures this
conditional distribution is sampled in the long run for any
fixed x. We can choose at each step to sample in either k or
x according to some fixed probability p, in which case de-
tailed balance is obeyed. We can also alternate N; and N,
steps of k and x sampling, respectively. Although this algo-
rithm does not satisfy detailed balance, it does satisfy the
weaker condition of balance® which is sufficient to preserve
sampling from the joint stationary distribution 7 (x, k). In
the cases that proposal probabilities are based on past his-
tory, however, the algorithm will not preserve the equilibrium
distribution,”” though in some cases the deviations caused by
the history dependence can be mitigated with proper choices
of parameters.”?

1. Neighbor exchange

In the neighbor exchange scheme, the proposed state in-
dex j given the current state index i is chosen randomly from
one of the neighboring states, i £+ 1, with probability,

Lifj=i-1

a(jlx,iy=11 if j=i+]1 (11)
0 else

and accepted with probability,
Paccept(.”xa l)
0 if j¢{l,...,K}
= . . 12)
min {1, eeg,—()} else

This scheme was originally suggested by Marinari and
Parisi'?> and has been used extensively in subsequent
work.>>"* A slight variation of this scheme considers the set
{1, ..., K} to lie on a torus, such that state i + nK is equiva-
lent to state i for integral n, with the proposal and acceptance
probability otherwise left unchanged.

An alternative scheme avoids having to reject choices of

jthatlead to j&{1, ..., K} by modifying the proposal scheme,

1 . . .
5 ifkef{2,....,K—-1}]j—il=1
o 1 ifi=1,j=i4+1<K
ajlx, i) = o o (13)
fi=K,j=i—1>1
0 else
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000000-5 Simulations as Gibbs sampling

and modifying the acceptance criteria for these two moves to
beSS

1 e8i—ui®)
} (14)

Paccept(]|xa i) = min {l, EW
to include the correct Metropolis-Hastings ratio of proposal
probabilities.

2. Independence sampling

The most straightforward way of generating an uncorre-
lated state index i from the conditional distribution 7 (k|i) is
by independence sampling, in which we propose an update of
the state index i by drawing a new j from 7 (i|x) with proba-
bility

a(jlx, i) = m(ilx), (15)

and always accepting this new j. While well known in the
statistical inference literature’>—and the update scheme most
closely associated with the use of the Gibbs sampler there—
this scheme has been recently discovered independently in
the context of expanded ensembles* and distributed replica
sampling.”> A straightforward way to implement this update
scheme is to generate a uniform random number 7 on the in-
terval [0, 1), and select the smallest k where r < Zle (i|x).

3. Metropolized independence sampling

In what we term a metropolized independence sampling

move, ¢ a new state index k' is proposed from the distribution,

7 (jlx,i) : :
a(il.iy = | TR0 T 16)

0 j=i

and accepted with probability,
Procenr( 5. 1) 1y 1 —m(ilx, i) 17
x,i)=min{ 1, ———— ¢ .
acceptJ 1 —71(]|)C,l)

This scheme has the surprising property that, despite includ-
ing a rejection step (unlike the independence sampling in
Sec. III A 2 above), the mixing rate in 7 (k|x) can be proven
to be greater than that of independence sampling,’® using the
same arguments that Peskun used to demonstrate the optimal-
ity of the Metropolis-Hastings criteria over other criteria for
swaps between two states. This can be rationalized by noting
that metropolized independence sampling updates will always
try move away from the current state, whereas standard inde-
pendence sampling has some nonzero probability to propose
to remain in the current state.

4. Restricted range sampling

In some situations, such as simulated sc:aling14 or other
schemes in which the Hamiltonian differs in a non-trivial way
among thermodynamic states, there may be a non-negligible
cost in evaluating the un-normalized probability distributions
qi(x) for all k. Because transitions to a states with mini-
mal phase space overlap will have very low probability, prior
knowledge of which states have the highest phase space over-
lap could reduce computational effort with little loss in sam-

J. Chem. Phys. 135, 000000 (2011)

pling efficiency if states with poor overlap are excluded from
consideration for exchange.

One way to implement such a restricted range sampling
scheme is to define a set of proposal states S; for each state
i € {l,..., K}, with the requirement that i € S; if and only
if j € &;, and propose transitions from the current (x, i) to a
new state j with probability,

gj—uj(x)

Smmw JES
aljlx, i) = { & (18)
0 ¢S
This proposal is accepted with probability,
Z 8kt (x)
Pccep(ji 1, i) = min | 1, -5 (19)
Z e8r —8x ()
Kes;

We can easily see that this scheme satisfies detailed bal-
ance for fixed x. The probability the sampler is initially in
i € §; and transitions to j € S;, where j # i, is given by,

m (@ |x)a(jlx, ) Paceepc(J X, 1)

[ o8 —ui(x) j—uj(x) )
_ } [eg } |:min (1, Z(S’))] (20)
L Z(San) Z(S) Z(S))
[ @8 —uj(x) g&i—uti(x) ) . 1
_ W] [min(z'S). 2S))] @D
_ [e8i—#j@) ] [ e8i—ui(x) ) Z(S))
= [ 26w } [ Z(S)) } [mm (1’ zw»ﬂ ?2
= m(jl1x)e(i1x, j) Paccept(ilx, j), (23)

where Z(S;) = ZkeS; e W™ and Sy ={1,..., K}. This
is simply the detailed balance condition, ensuring that this
scheme will sample from the distribution 7 (i|x). Therefore,
this scheme samples from the stationary probability 7 (j|x).
For example, we can define S, ={i —n,...,i +n},
with n < K, for all i, making appropriate adjustments to this
range at i < n and i > K — n. Then we only need to compute

the reduced potentials for states {min (1,7 — 2n), ..., max (K,
i+ 2n)}, rather than all states {1, ..., K}. The additional eval-
uations for {min(1, i — 2n), ..., i — n — 1} and {max (i

+n+ 1, K)..., max(K, i + 2n)} are required to ensure
that we can calculate both sums in the acceptance criteria
(Eq. (19)).

Restricted range sampling simply reduces to indepen-
dence sampling, as presented in Sec. III A 2, when §;
={1,..., K}, and all proposals are therefore accepted. We
also note that metropolized independence sampling, given in
Sec. III A 3, is exactly equivalent to using the restricted range
scheme with S; = {1, ..., K} excluding i, such that «a(i|x,
i) = 0 for all i. Any other valid scheme of sets S; can be
metropolized by removing i from S;.

Clearly, other state decomposition schemes exist, though
the efficiency of such schemes will almost certainly depend
on the underlying nature of the thermodynamic states un-
der study. It is possible to define state schemes that preserve
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detailed balance, but that are not ergodic, such as S; = S3
=8s={1,3,5}and S, =S4 = S = {2, 4, 6} for K = 6, so
some care must be taken. In most cases, users will likely
use straightforward rules to find locally defined sets such
as §; ={i —n,...,i +n} or the metropolized version S;
={i—n,....,i —1,i+1,...,i 4+ n},and ergodicity as well
as detailed balance will be satisfied. Further analysis of the
performance tradeoffs involved in choices of the sets, situa-
tions where sets might be chosen stochastically, or more ef-
ficient choices of sets that satisfy only balance is beyond the
scope of this study.

5. Other schemes

The list above is by no means intended to be exhaustive—
many other schemes can be used for updating the state index
k, provided they sample from m (k|x). Compositions of differ-
ent schemes are also permitted—even something simple as
applying the neighbor exchange scheme a number of times,
rather than just once, could potentially improve mixing prop-
erties at little or no additional computational cost.

B. Replica exchange simulation
1. Neighbor exchange

In standard replica exchange simulation algorithms, an
update of the state permutation S of the (X, S) sampler state
only considers exchanges between neighboring states.*"'°
One such scheme involves attempting to exchange either the
set of state index pairs {(1, 2), (3, 4), ...} or {(2, 3), 4, 5),
...}, chosen with equal probability.”’

Each state index pair (i, j) exchange attempt is attempted
independently, with the exchange of states i and j associ-
ated with configurations x; and x;, respectively, accepted with
probability

) e*[ui(xj)JrM/(Xi)]
Paccept(xi,l,xj,1)=mln{1,m}~ 24

2. Independence sampling

Independence sampling in replica exchange would con-
sist of generating an uncorrelated, independent sample from
7 (S|X). The most straightforward scheme for doing so would
require compiling a list of all possible K! permutations of
S, evaluating the un-normalized probability exp[— ) _; us, (x:)]
for each, normalizing by their sum, and then selecting a per-
mutation §” according to this normalized probability. Even if
the entire K x K matrix U = (u;;) with u;; = u,(x;) is precom-
puted, the cost of this sampling scheme becomes impractical
even for modestly large K.

Instead, we note that an effectively uncorrelated sample
from 7 (S|X) can be generated by running a MCMC sampler
scheme for a short time with trivial or small additional com-
putational expense. For each step of the MCMC sampler, we
pick a pair of state indices (i, j), with i # j, uniformly from
the set {1, ..., K}. The state pair associated with the con-
figurations x; and x; are swapped with the same replica ex-
change Metropolis-like criteria shown in Eq. (24), with the
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labels of the states updated after each swap. If we precompute
the matrix U, then these updates are extremely inexpensive,
and many Monte Carlo update steps of the state permutation
vector S can be taken to decorrelate from the previous sample
for a fixed set of configurations X, effectively generating an
uncorrelated sample S’ ~ P(S|X).

In the case where all u;; are equal, then the number of
swaps required is Kln K—a well-known result due to Aldous
and Diaconis.”® Empirically, we have found that swapping K3
to K° times each state update iteration appears to be suffi-
cient for the molecular cases examined in this paper and in
our own work without consuming a significant portion of the
replica exchange iteration time, but further experimentation
may be required for some systems. The improvement in effi-
ciency over neighbor exchange algorithms stems from the fact
that, for each state, there is a nonzero probability of moving
to all other states in proportion to the Boltzmann weight dif-
ference, thereby allowing exchange with more remote states
without significantly down-weighting exchange with neigh-
boring states. While complete mixing in state space is not
a requirement for validity of the algorithm in preserving the
equilibrium distribution, increasing the number of swap at-
tempts will lead to increased space sampling until the limit of
independent sampling is reached.

For parallel tempering, in which only the inverse temper-
ature B; varies with state index k, computation of U is triv-
ial if the potential energies of all K states are known. On the
other hand, computation of all u;(x;) for all 7, j =1, ..., K
may be time-consuming if the potential energy must be re-
computed for each state, such as in an alchemical simulation.
If the Bennett acceptance ratio (BAR) (Ref. 79) or the im-
proved multistate version MBAR (Ref. 56) are used to ana-
lyze data generated during the simulation, however, all such
energies are required anyway, and so no extra work is needed
if the state update interval matches the interval at which ener-
gies are written to disk. Alternatively, if the number of Monte
Carlo or molecular dynamics time steps in between each state
update is large compared to K, the overall impact on simula-
tion time of the need to compute U will be minimal.

Instead of performing random pair selections, we could
also apply multiple passes of the standard neighbor exchange
algorithm (Sec. III B 1)—a method that may be more eas-
ily implemented in existing simulation codes. With a suf-
ficient number of passes, independence sampling will also
be achieved, though convergence to an independent permu-
tation S will be at a different rate than the random swap al-
gorithm suggested above. Use of multiple consecutive state
swaps between configuration updates is not entirely novel—
we have heard several anecdotal examples of people exper-
imenting with multiple consecutive state swaps, with sparse
mentions in the literature.?%-8! However, we believe this is the
first study to characterize the theory and properties of this par-
ticular modification of standard replica exchange.

3. Other schemes

The list of replica exchange methods above is by no
means exhaustive—other schemes can be used for updating
the state index k, provided they sample from the space of
permutations 7 (S|X) in a way that preserves the conditional
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distribution. For example, it may be efficient for a node of
a parallel computer to perform many exchanges only among
replicas held in local memory, and to attempt few exchanges
between nodes due to network constraints. Compositions of
different schemes are again also permitted.

C. Metrics of efficiency

There is currently no universally accepted metric for as-
sessing sampling efficiency in molecular simulation, and thus
it is difficult to quantify exactly how much our proposed al-
gorithmic modifications improve sampling efficiency. In the
end, efficient algorithms will decrease the computational ef-
fort to achieve an estimate of the desired statistical precision
for the expectations or free energy differences of interest. Un-
fortunately, this can depend strongly on property of interest,
the thermodynamic states that are being sampled, and the dy-
namics of the system studied. While there exist metrics that
describe the worst case convergence behavior by approximat-
ing the slowest eigenvalue of the Markov chain,?>83 the worst
case behavior can often differ from practical behavior by or-
ders of magnitude.84 Here, we make use of a few metrics that
will help us understand the time scale of these correlations in
sampling under practical conditions.

Complex systems often get stuck in metastable states in
configuration space with residence times a substantial frac-
tion of the total available simulation time. This dynamical be-
havior hinders the sampling of uncorrelated configurations by
molecular dynamics simulation or Metropolis Monte Carlo
schemes.®>% Systems can remain stuck in these metastable
traps even as a replica in an expanded ensemble or replica
exchange simulation travels through multiple thermodynamic
states,’” either because the trap exists in multiple thermody-
namic states or because the system does not have enough time
to escape the trap before returning to states where the trap ex-
ists. While approaches for detecting and characterizing the ki-
netics of these metastable states exist,3”-38 the combination of
error from discretizing the conformation space and statistical
error makes these approaches to compute relaxation times in
configuration space not ideal for our purposes.

Here, we instead consider three simple statistics of the
observed state index of each replica trajectory as surrogates
to assess the improvements in overall efficiency of sampling.
Instead of considering the full expanded ensemble simula-
tion trajectory {(x©, k@), (), &), ...} or the replica ex-
change simulation trajectory {(X©, §©), (xM®, sM), .}, we
consider the trajectory of individual replicas projected onto
the sequence of thermodynamic state indices s = {so, 51, ... }
visited during the simulation. In long replica exchange sim-
ulations, each replica executes a random walk, and statistics
can be pooled.?’ If significant metastabilities in configuration
space exist, we hypothesize that these configurational states
will have different typical reduced potential u(x) distributions,
and therefore induce metastabilities in the state index trajec-
tory s as well. This metastabilities will be detectable by the
methods described below. Each of the measures provides a
different way to interpret the mixing of the simulation in state
space; we will refer to all of them in the rest of the paper as
“mixing times.”

J. Chem. Phys. 135, 000000 (2011)

1. Relaxation time from empirical state transition
matrix, T,

One way to characterize how rapidly the simulation is
mixing in state space is to examine the empirical transition
matrix among states, the K x K row-stochastic matrix T. An
individual element of this matrix, T;;, is the probability that an
expanded ensemble or replica exchange walker currently in
state 7 will be found in state j the next iteration of state sam-
pling. From a given expanded ensemble or replica exchange
simulation, we can estimate T by examining the expanded en-
semble trajectory history or pooled statistics from individual
replicas,

Nij + Nj;
I~ LT (25)

KNk + Nl

where N;; is the number of times the replica is observed to be
in state j one update interval after being in state i. To obtain
a transition matrix T with purely real eigenvalues, we have
assumed both forward and time-reversed transitions in state
indexes are equally probable, which is true in the limit of in-
finite time for all methods described in this paper. To assess
how quickly the simulation is transitioning between different
thermodynamic states, we compute the eigenvalues {u;, (2,
.., ng} of T and sort them in descending order, such that
that 1 = wu; > up > -+ > k. If wy = 1, the Markov chain is
decomposable, meaning that two more subsets of the thermo-
dynamic states exist where no transitions have been observed
between these sets, a clear indicator of very poor mixing in
the simulation. In this case, the thermodynamic states charac-
terized by {A1, ..., Ax} should be adjusted, or additional ther-
modynamic states inserted to enhance overlap in problematic
regions. Several schemes for optimizing the choice of these
state vectors exist,”6~3? but are beyond the scope of this work
to discuss here.
If the second-largest eigenvalue w, is such that 0 < u;
< 1 we can estimate a corresponding relaxation time T, as

T
1— '

153 (26)

where t is the effective time between exchange attempts. T,
then provides an estimate of the total simulation time re-
quired for the autocorrelation function in the state index &
of a replica at iteration n of the simulation to decay to 1/e
of the initial value. This estimate holds if the time scale of
decorrelation in the configurational coordinate x is fast com-
pared to the decorrelation of the state index k; that is, if es-
sentially uncorrelated samples could be drawn from 7 (x|k)
for each update of x|k, Because configuration updates
for useful molecular problems generally have long correla-
tion times, this 7, time represents a lower bound on the ob-
served correlation time for both the state index k" and the
configuration x".

2. Correlation time of the replica state index, t 5¢

As a more realistic estimate of how quickly correla-
tions in the state index k™ decay in a replica trajectory, we
also directly compute the correlation time of the state index
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history using the efficiency computation scheme described in
Sec. 5.2 of Ref. 89, where 7, is equal to the integrated area
under the autocorrelation function. For replica exchange sim-
ulations, where all replicas execute an equivalent walk in state
space, the unnormalized autocorrelation functions were aver-
aged over all replicas before computing the autocorrelation
time by integrating the area under the autocorrelation func-
tion. This time, 7,., gives a practical estimate of how much
simulation time must elapse for correlations in the state index
to fall to 1/e. The statistical inefficiency is the number of sam-
ples required to collect each uncorrelated sample, and can be
estimated for a Markovian process by 2t,. + 1, with 7, in
units of time between samples.

3. Average end-to-end transit time of the replica
state index, teng

As an additional estimate of practical efficiency, we mea-
sure the average end-to-end transition time for the state in-
dex, Teng. This is the average of the time elapsed between
the first visit of the state index k™ to one end point (k
= 1 or k = K) after visiting the opposite end point (k = K
or k = 1, respectively). This metric of efficiency, or the re-
lated “round-trip” time, has seen common use in diagnos-
ing efficiency for simulated-tempering and replica exchange
simulations.':28:90.91

IV. MODEL ILLUSTRATION

To illustrate the motivation behind the idea that speed-
ing up sampling in one coordinate—the state index or
permutation—will enhance sampling of the overall Markov
chain of (x, k) or (X, P), we consider a simulated tempering
simulation in a one-dimensional model potential,

U(x) = 10(x — D*(x + 1)%, (27)

shown in the top panel of Figure 1, along with the correspond-
ing stationary distribution 7 (x) at several temperatures from
kgT =1 to kgT = 10. To simplify our illustration, we directly
numerically compute the log-weight factors

+00
8k = —lﬂ/
—00

so that the simulation has an equal probability to be in each
of the K states.

The K inverse temperatures B that can be visited during
the simulated tempering simulation are chosen to be geomet-
rically spaced,

B = 107*=D/E=D" for p=1,...,K

=B U(x)

dxe (28)

(29)

Each iteration of the simulation consists of an update
of the temperature index k using either neighbor exchange
(Sec. IIT A 1) or independence sampling updates (Sec. IIT A
2), followed by 100 steps of Metropolis Monte Carlo>®%° us-
ing a Gaussian proposal with zero mean and standard devia-
tion of 0.1 in the x-coordinate. Simulations are initiated from
(x0, ko) = (=1, 1).

Mlustrative trajectories for K = 16 are shown in the mid-
dle and bottom panels of Figure 1, along with the correlation
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U(x)

neighbor (Tk =67+2, T = 24.1+0.9)

16

2000 3000
iteration

4000 5000

independence (Tk =0.243+0.004, T = 9.6+0.2)

16

2000 3000
iteration

0 1000

FIG. 1. Simulated tempering for a one-dimensional model. Top panel: Poten-
tial energy U(x) and stationary probabilities 7 (x) for one-dimensional two-
well model potential at 16 temperatures spanning kg7 = 1, where barrier
crossing is hindered, to kT = 10, where barrier crossing is rapid. Middle
panel: Temperature index, k, and position, x, histories for a simulated tem-
pering simulation where neighbor swap in temperature are attempted each
iteration. Bottom panel: Temperature index, &, and position, x, histories for
a simulated tempering simulation where independence sampling of the tem-
perature index is performed each iteration. Only the first 5000 iterations are
shown, though simulations of 10° iterations were conducted to estimate the
correlation times 74 and 7, printed above each panel, shown in number of
iterations required to produce an effectively uncorrelated sample in either &
or x, respectively. Statistical uncertainties shown represent one standard error
of the mean.

times t; and 7, computed for the temperature index k and the
configurational coordinate x, respectively, from a long trajec-
tory of 10° iterations. Independence sampling in state space k
greatly reduces the correlation time, and hence statistical in-
efficiency, in k compared to neighbor sampling. Importantly,
because k and x are coupled, we clearly see that increasing
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FIG. 2. Autocorrelation times as function of number of temperatures for
one-dimensional model. The integrated autocorrelation time 7 for state in-
dex k (top) and 7, for position x (bottom) as a function of the number of
exponentially-spaced temperatures spanning the range kg7 € [1, 10]. The cor-
relation times for neighbor swap (black points) and independence sampling
updates (red stars) are shown for each. Error bars represent one standard error
of the mean.

the mixing in the index k also substantially reduces the cor-
relation time in the configurational coordinate x. We find that
7, = 9.6 £ 0.2 for independence sampling, compared to 24.1
=+ 0.9 for neighbor moves.

Figure 2 compares the correlation times for k and x es-
timated from simulations of length 10° for different numbers
of temperatures spanning the same range of kgT € [1, 10],
with temperatures again geometrically spaced according to
Eq. (29). As the number of temperatures spanning this range
increases, the correlation time in the temperature coordinate k
increases, as one would expect for a random walk on domains
of increasing size. Notably, increasing the number of temper-
atures also has the effect of increasing the correlation time of
the configuration coordinate x. When independence sampling
is used to update the temperature index k instead, the mix-
ing time in £ is greatly reduced, and both correlation times 7
and 7, remain small even as the number of temperatures is
increased.

V. APPLICATIONS

To demonstrate that the simple state update modifications
we describe in Sec. III lead to real efficiency improvements in
practical simulation problems, we consider three typical sim-
ulation problems: An alchemical expanded ensemble simula-
tion of united atom (UA) methane in water to compute the
free energy of transfer from gas to water; a parallel temper-
ing simulation of terminally blocked alanine dipeptide in im-
plicit solvent; and a two-dimensional replica exchange um-
brella sampling simulation of alanine dipeptide in implicit
solvent to compute the potential of mean force. These systems
are small compared to modern applications of biophysical and
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biochemical interest. However, they are realistic enough to
demonstrate the fundamental issues in multiensemble simu-
lations, but still sufficiently tractable that a large quantity of
data can be collected to prove that the differences in efficiency
of our proposed mixing schemes are highly significant.

A. Expanded ensemble alchemical simulations
of Lennard-Jones spheres in water

1. United atom methane

We first compare different types of Gibbs sampling state
space updates in an expanded ensemble alchemical simula-
tion of the kind commonly used to compute the free energy of
hydration of small molecules.?>*° If the state mixing schemes
proposed here lead to more efficient sampling among alchem-
ical states, a larger number of effectively uncorrelated sam-
ples will be generated for a simulation of a given duration,
and thus require less computation effort to reach the desired
degree of statistical precision.

An optimized potentials for liquid simulation-UA united
atom methane particle (o = 0.373 nm, € = 1.230096 kJ/mol)
was solvated in a cubic simulation cell containing 893 TIP3P
(Ref. 92) waters. For all simulations, a modified version
of GROMACS 4.5.2 (Ref. 93) was used.”* A velocity Verlet
integrator® was used to propagate dynamics with a time step
of 2 fs. A Nosé-Hoover chain of length 10 (Ref. 96) and time
constant T = 10.0 ps was used to thermostat the system
to 298 K. A measure-preserving barostat was used accord-
ing to Tuckerman et al.*”-°® to maintain the average system
pressure at 1 atm, with 7, = 10.0 ps and compressibility 4.5
x 1073 bar~!. Rigid geometry was maintained for all waters
using the analytical SETTLE scheme.” A neighborlist and
photomagnetoelastic (PME) cutoff of 0.9 nm were used, with
a PME order of 6, spacing of 0.1 nm and a relative tolerance of
107 at the cutoff. The Lennard-Jones potential was switched
off, with the switch beginning at 0.85 nm and terminating at
the cutoff of 0.9 nm. An analytical dispersion correction was
applied beyond the Lennard-Jones cutoff to correct the energy
and pressure computation.'” The neighborlist was updated
every 10 steps.

A set of K = 6 alchemically modified thermodynamic
states were used in which the Lennard-Jones interactions be-
tween the methane and solvent were eliminated using a soft-
core Lennard-Jones potential,'"!

Uij(r;A) = 4eid f(r; VI = f(r;0)],
Frs0) = [a(d — )+ (r/oi))°1!

with values of the alchemical coupling parameter A; chosen
to be {0.0, 0.3,0.6,0.7, 0.8, 1.0}.

To simplify our analysis of efficiency, we fix the
log-weights g; to “perfect weights,” where all states are
visited with equal probability. This also decouples the
issue of efficiency of state updates with efficiency of dif-
ferent weight update schemes, of which many have been
proposed.!!:12:14.31.66-68  The “perfect” log-weights were
estimated for this system as follows: A 1 ns expanded
ensemble simulation using independence sampling was run,
with weights g; initialized to zero, then adjusted using a
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TABLE I. Efficiency measures for expanded ensemble alchemical simulation of united atom methane in water. Times measuring mixing in state space are:
72, estimated from second eigenvalue of the empirical state transition matrix; 7, estimated from autocorrelation function of the alchemical state index; Tenpd,
estimated average end-to-end transit time for the alchemical state index. ty is a structural parameter, the autocorrelation function of the number of TIP3P
oxygen molecules within 0.3 nm (87.5% of the Lennard-Jones o ;; (0.3428 nm)) of the center of the united atom methane particle. The relative speedup in

sampling efficiency is given relative to the standard neighbor exchange scheme.

Mixing times (ps)

Relative speedup

2 Tac Tend TN T2 Tac Tend N
1 state move attempted every 0.1 ps
Neighbor exchange 1.693 £ 0.008 6.7+ 0.4 11.9+0.2 59+04 1.0 1.0 1.0 1.0
Independence sampling 0.771 £ 0.004 62+0.2 72+£0.1 54+£02 220+£0.02 1.08+0.08 1.65+0.04 1.10=£0.09
Metropolized independence  0.645 £ 0.003 4.6 £0.2 6.6+ 0.1 44402 2.62 £0.02 1.5+£0.1 1.81 £0.04 1.3+£0.1
1 000 state moves attempted every 0.1 ps
Neighbor exchange 0.764 £ 0.006 49403 72+£0.1 4.6+0.3 1.0 1.0 1.0 1.0
Independence sampling 0.769 £ 0.005 4.8+02 72+£0.1 45+02 099+001 1.01+0.08 1.00£0.02 1.01+£0.07
Metropolized independence  0.774 £ 0.005 5.0+£0.2 7.5+0.1 47+02 099 +0.01 098+£0.08 096+0.02 0.98+0.07
1 state move attempted every 5 ps

Neighbor exchange 85.8+23 177.7£17.6 3300+ 16.1 1053+ 12.1 1.0 1.0 1.0 1.0
Independence sampling 39.0£ 09 69.2 £ 6.1 141.1 £ 4.7 49.1 £3.8 2.20 £ 0.08 26+£03 23+0.1 2.1£03
Metropolized independence 31.8+04 514+£19 115.7+£ 34 374+ 14 2.70 £ 0.08 35+04 29+0.2 28+0.3

Wang-Landau scheme,' until occupancy of each state was
roughly even to within statistical noise. With these approxi-
mate weights, a 2 ns expanded ensemble simulation using in-
dependence sampling with fixed weights was run, and the free
energy of each state was estimated using MBAR.>® The log-
weights g, were set to these estimated free energies, which
were {0.0, 0.32, —0.46, —1.67, —2.83, —3.66}, in units of
kgT. Simulations using these weights deviated by an average
of 5% from flat histogram occupancy in states, with an aver-
age maximum deviation over all simulations of less than 10%.

The state update procedure was carried out either every
0.1 ps (frequent update) or 5 ps (infrequent update), in order
to test the effect of state updates that were much faster than,
or on the order of, the conformational correlation times of
molecular dynamics, as water orientational correlation times
are a few picoseconds.!?? Production simulations with fixed
log-weights were run with for 25 ns (250 000 state updates),
for frequent updates, or 100 ns (20 000 state updates), for in-
frequent updates. Three types of state moves were attempted:
(1) neighbor exchange moves (described in Sec. III A 1), (2)
independence sampling (Sec. III A 2, and (3) metropolized
independence sampling (Sec. III A 3. In the case of frequent
updates, we additionally performed 1000 trials of the state up-
date every 0.1 ps, instead of a single update, before returning
to coordinate update moves with molecular dynamics.

Statistics of the observed replica trajectories are shown in
Table I. All three mixing efficiency measures of the state in-
dex trajectories described in Sec. III C were computed: relax-
ation time of the empirical state transition matrix (7,), auto-
correlation of the state function (7 ,.), and average end-to-end
distance (Tepq)-

We additionally look at a measure of correlation in the
coordinate direction. For each configuration, we examine the
number of O atoms of the water molecules N that are found
in the interior of the united atom methane, set to be 0.3 nm
(or 87.5% of the Lennard-Jones o;; = 0.3428 nm) from the

center. We then compute the autocorrelation function of ty of
this variable, which is affected both by the dynamics of the
state and the dynamical response of the system to changes in
state. Uncertainties in these time autocorrelation functions are
computed by subdividing the trajectories into Ng = 10 subtra-
jectories, computing the standard error, and then dividing by
/Ny to obtain standard error of the Ng x longer trajectory.
Uncertainties changed by less than 5% when computed with
Ng = 20 for frequent update simulations, and less than 10%
for infrequent update simulations.

The relaxation time 7, estimated from the second eigen-
value of the empirical state transition matrix (Sec. V B) does
appear to provide a lower bound for the other estimated
mixing times. For the infrequent state updates, it is only
about 25% smaller than ty. This suggests that when tran-
sition times in state space are of the same order of magni-
tude as conformational rearrangements 7 is not only a lower
bound, but is characteristic of sampling through the joint
state-configuration space. We additionally note that mixing
time 7, is empirically exactly proportional to the update fre-
quency; the mixing times for the infrequent update state are
exactly (5 ps/0.1 ps) = 50 times longer than the frequent state
mixing times, a direct consequence of the fact that the proba-
bility of successful state transitions is directly proportional to
the rate of attempted transitions.

For both the frequent and infrequent state updates, inde-
pendence sampling and metropolized independence sampling
yield a clear, statistically significant speedup by all sampling
metrics. This speedup is accentuated for infrequent updates.
For frequent updates, the speedup is between 1.3 and 2.6
for metropolized independence sampling, while for infrequent
updates, it ranges between 2.7 and 3.5, as seen in Table I.
As expected, attempting many state updates in a row (1000
state moves) using any of the state update schemes effectively
recapitulates the independence sampling scheme. Repeated
application of any method that obeys the balance condition
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TABLE II. Efficiency measures for expanded ensemble alchemical simulation of large LJ sphere in water. Times measuring mixing in state space are: 7,
estimated from second eigenvalue of empirical state transition matrix; 4, estimated from autocorrelation time of alchemical state index; Tepg, estimated average
end-to-end transit time for alchemical state index. Ty is a structural parameter, the autocorrelation function of the number of TIP3P oxygen molecules within
0.5 nm (85.3% of the Lennard-Jones o; (0.5860 nm)) of the center of the large Lennard-Jones particle. The relative speedup in sampling efficiency is given

relative to the standard neighbor exchange scheme.

Mixing times (ps)

Relative speedup

T2 Tac Tend TN T2 Tac Tend TN
1 state move attempted every 0.1 ps
Neighbor exchange 9.51 £0.01 65.8 4.2 126.3 £ 4.2 58.1£43 1.0 1.0 1.0 1.0
Independence sampling 2.586 £ 0.009 429+24 88.4+27 41.54+2.0 3.68 £0.01 1.5+0.1 1.43 £0.06 14+£0.1
Metropolized independence  2.181 % 0.006 48.6 £4.0 88.3+3.0 46.7+34 4.36 £ 0.01 1.4+0.1 1.43 £0.07 1.2+0.1
1 state move attempted every 1 ps

Neighbor exchange 95.0£0.2 211.1 £589  507.6 £19.3 167.6 £16.0 1.0 1.0 1.0 1.0
Independence sampling 25.8+£0.1 67.3£3.6 196.0 £ 5.8 63.1 £33 3.69+£0.02 3.1+£09 2.6+0.1 27+£03
Metropolized independence 21.6 £0.1 66.8 £2.4 169.2 £ 4.7 62.1 £25 440£0.02 32£09 3.0+0.1 27+£03

will eventually converge to the same independent sampling
distribution. If state updates are relatively inexpensive, then
any state update scheme that ensures the correct distribution is
sampled can be iterated many times, effectively resulting in an
independence sampling scheme. Interestingly, this means that
metropolized independence sampling becomes worse when
repeated several times, as it eventually turns into simple in-
dependence sampling.

Although the acceleration of independence sampling
over neighbor exchange is more dramatic with longer inter-
vals between state updates, more frequent state updates ap-
pear to always be better than less frequent updates. For exam-
ple, neighbor exchange with more frequent updates achieves
shorter correlation times that either independence sampling
scheme for infrequent updates, confirming earlier findings
that frequent exchange attempts in neighbor exchange reduce
correlation times.!®!” We also note that for this particular
system, metropolized independence sampling is slightly but
clearly better than independence sampling in all sampling
measures, providing a strong incentive to use metropolized
independence sampling when it is inexpensive to do so.

2. Larger Lennard-Jones spheres

As united atom methane is much smaller than typical
biomolecules of interest, we additionally examined an al-
chemical expanded ensemble simulation of a much larger
Lennard-Jones sphere. In this case, the sphere has o
= 1.09 nm and €; = 1.230096 kJ/mol, again solvated in a
cubic simulation cell containing 893 TIP3P (Ref. 92) wa-
ters. These parameters result in a sphere-water o; = 0.561
nm, and therefore a particle 5.0 times as large in volume as
the UA methane sphere. Because of the larger volume of the
solute, K = 18 alchemically modified thermodynamic states
were required, with A = [0, 0.15, 0.3, 0.45, 0.55, 0.6, 0.64,
0.66, 0.68, 0.70, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.90, 1.0].
All other simulation parameters (other than simulation length)
were the same as the UA methane simulations. Log-weights
gi for the equilibrium expanded ensemble simulation were
determined in the same manner as for united atom methane,

except that a 15 ns simulation was used to generate the data
for MBAR, yielding weights g, = {0.0, 1.74, 2.96, 3.39,
2.84,2.01,0.73, —0.34, —1.75, =3.35, —4.96, —7.19, —9.11,
—10.70, —11.98, —12.98, —13.72, —14.65}. Frequent state
updates were performed every 0.1 ps, but infrequent state
moves were performed every 1 ps rather than 5 ps to obtain
better statistics for the larger molecule. The production ex-
panded ensemble simulations were run for a total of 100 ns
for frequent exchange, and 250 ns for infrequent exchange.
The same three types of moves in state space were attempted
as with UA methane.

Statistics of the observed replica trajectories are shown
in Table II. All three convergence rate diagnostics of the state
index trajectories described in Sec. III C were computed. In
general, the relaxation time estimated from the second eigen-
value of the empirical state transition matrix (Sec. V B) again
provides a lower bound for the other computed relaxation
times. For the infrequent sampling interval 7, is of the same
order of magnitude (2 to 5 times less) than the other sam-
pling measures. Again, for both the frequent (0.1 ps) and
infrequent (1 ps) state update intervals, independence sam-
pling and metropolized independence sampling yield a clear
speedup over neighbor exchange. The improvement in sam-
pling efficiency appears to be valid for both small and large
particles.

B. Parallel tempering simulations of terminally
blocked alanine peptide in implicit solvent

We next consider a parallel tempering simulation, a
form of replica exchange in which the thermodynamic states
differ only in inverse temperature 8;. A system containing
terminally blocked alanine (sequence Ace-Ala-Nme) was
constructed using the LEaP program'® from the AMBER-
TOOLS 1.2 package with bugfixes 1-4 applied. The AMBER
parm96 forcefield was used'® along with the Onufriev-
Bashford-Case generalized Born-surface area (OBC GBSA)
implicit solvent model (corresponding to model I of Ref. 105
equivalent to igb=2 in AMBER’s sander program and
using the mbondi?2 radii selected within LEaP).
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TABLE III. Efficiency measures for parallel tempering simulation of alanine dipeptide in implicit solvent. Mixing times listed are: 7, estimated from second
eigenvalue of empirical state transition matrix; T,c, estimated from autocorrelation time of alchemical state index; Tengd, estimated average end-to-end transit
time for alchemical state index. Autocorrelation times of trigonometric functions of ¢ and  torsion angles are listed as Tcos¢» Tsing» Tcos > Tsiny - Lhe statistical

error is given as one standard error of the mean.

State mixing times (ps)

Structural correlation times (ps)

T2 Tac Tcos¢ Tsing Tcosyr Tsinyr
Neighbor exchange 91.8 £ 0.6 80+£2 360 £+ 30 25+£2 110+ 9 25+2 66 +6
Independence sampling 2.62 £ 0.01 1.60 £ 0.06 28.7£0.7 124 £0.5 8.7+04 11.8 £ 0.6 9.1+£0.5

A custom Python code making use of the graphics pro-
cessing unit (GPU)-accelerated OPENMM package'?-1%% and
the PYOPENMM Python wrapper'® was used to conduct
the simulations. All forcefield terms are identical to those
used in AMBER except for the surface area term, which was
left as default in the OPENMM implementation through a
GBSAOBC Force term. Parallel tempering simulations of
2000 iterations were run, with dynamics propagated by 500
steps each iteration using a 2 fs time step and the leapfrog
Verlet integrator.''% ! Velocities were reassigned from the
Maxwell-Boltzmann distribution each iteration. The Python
scripts for simulation and data analysis used here are avail-
able online at http://simtk.org/home/gibbs.

For the replica-mixing phase, the simulation employed
either neighbor exchange (Sec. III A 1) or independence sam-
pling (Sec. III B 2), with K3 attempted swaps of replica pairs
selected at random. The efficiency was measured in several
ways, shown in Table III. In addition to the standard mix-
ing metrics described in Sec. III C, an estimate of the con-
figurational relaxation times was also made; due to the cir-
cular nature of the torsional coordinates ¢ and i known to
be slow degrees of freedom for this system,''”> we instead
computed the autocorrelation times for sin¢, cos ¢, siny,
and cos ¢. All replicas were treated as equivalent, and their
raw statistics (e.g., autocorrelation functions before normal-
ization) were averaged to produce these estimates. Statistical
error was again estimated by blocking.

As expected, the various metrics indicate that the parallel
tempering replicas mix in state space much more rapidly with
independence sampling than when only neighbor exchanges
are attempted. The amount by which mixing is accelerated de-
pends on the metric used to quantify this, but it is roughly one
to two orders of magnitude. The structural relaxation times
also reflect a speedup, though much more modest than the ac-
celeration in state space sampling—roughly a factor of two to
ten, depending on the metric examined.

C. Two-dimensional replica exchange umbrella
sampling of terminally-blocked alanine peptide
in implicit solvent

Finally, we consider a two-dimensional replica exchange
umbrella sampling situation, commonly used to compute po-
tentials of mean force along two coordinates of interest. We
again consider the alanine dipeptide in implicit solvent, and
employ umbrella potentials to restrain the ¢ and y torsions
near reference values (¢7, ¥0) for K = 101 replicas spaced
evenly on a 10 x 10 toroidal grid, with the inclusion of one

replica without any bias potential for ease of post-simulation
analysis.

Because harmonic constraints are not periodic, we em-
ploy periodic bias potential based on the von Mises circular
normal distribution,

Ui(x) = —k [cos (¢ — ¢}) +cos (¥ — )], (3D
where « has units of energy. For sufficiently large values of «,
this will localize the torsion angles in an approximately Gaus-
sian distribution near the reference torsions (¢,‘3, W;?) with a
standard deviation of o = (B«)"?.

Here, we employ a « of (27/30)728~! so that neigh-
boring bias potentials are separated by 3o. This was suffi-
cient to localize sampling near the reference torsion values for
most sterically unhindered regions. The simulation was run at
300 K, using a 2 fs time step with 5 ps between replica ex-
change attempts. A total of 2000 iterations were conducted,
with each iteration consisting of mixing the replica state as-
signments via a state update phase, a new velocity assignment
from the Maxwell-Boltzmann distribution, propagation of dy-
namics, and writing out the resulting configuration data. The
first 100 iterations were discarded as equilibration.

The same mixing schemes examined in the parallel tem-
pering simulation were evaluated here, and the results of the
efficiency metrics are summarized in Table IV. Note that the
end-to-end time does not have a clear interpretation in terms
of the average transit time between a maximum and minimum
thermodynamic parameter here—it simply reflects the aver-
age time between exchanges between a particular localized
umbrella and the unbiased state.

As in the parallel tempering case, we find that both mix-
ing times in state space and the structural correlation times
are reduced by use of Gibbs sampling, albeit to a lesser de-
gree than in the parallel tempering case. Here, state relaxation
times are reduced by a factor of two to six, depending on the
metric considered, while structural correlation times are re-
duced by a factor of four or five.

VI. DISCUSSION

We have presented the framework of Gibbs sampling on
the joint set of state and coordinate variables to better un-
derstand different expanded ensemble and replica exchange
schemes, and demonstrated how this framework can iden-
tify simple ways to enhance the efficiency of expanded en-
semble and replica exchange simulations by modifying the
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TABLE IV. Efficiency measures for two-dimensional replica exchange umbrella sampling for the alanine dipeptide in implicit solvent. Mixing times in state
space listed are: 7, estimated from second eigenvalue of empirical state transition matrix; 74, estimated from autocorrelation time of alchemical state index;
Tend, €stimated average end-to-end transit time for alchemical state index. Autocorrelation times of trigonometric functions of ¢ and ¥ torsion angles are listed

as Tcosg» Tsings Tcosy» Tsiny - 1he statistical error is given as one standard error of the mean.

State mixing times (ps)

Structural correlation times (ps)

T2 Tac Tend Tcos¢ Tsing Tcos ¥ Tsinyr
Seighbor exchange 82+4 31.0£09 350 £+ 30 47 £2 57+2 264 £0.8 27.1 £0.9
Independence sampling 242403 5.45 +0.06 175+ 6 8.92 +0.09 9.9 +0.1 5.63 + 0.04 6.09 £+ 0.04

thermodynamic state update phase of the algorithms. While
the actual efficiency improvement will depend on the system
and simulation details, we believe there is likely little, if any,
drawback to using these improvements in a broad range of
situations.

For simulated and parallel tempering simulations, in
which only the temperature is varied among the thermody-
namic states, the recommended scheme (independence sam-
pling updates, Secs. III A 2andIII B 2) is simple and inex-
pensive enough to be easily adopted by simulated and parallel
tempering codes. Because calculation of exchange probability
requires no additional energy evaluations, it is effectively free.
Other expanded ensemble or replica exchange simulations
where the potential does not vary between states (such as ex-
change among temperatures and pressures*® or pH values''?)
are also effectively free, as no additional energy evaluations
are required in these cases either. As long as state space evalu-
ations are cheap compared to configuration updates, indepen-
dence sampling will mix more rapidly than neighbor updates,
though this advantage will be reduced as the interval spent be-
tween configuration updates by molecular dynamics or Monte
Carlo simulation or the total time performing these coordinate
updates becomes very small.

In some cases, exchange of information between proces-
sors during replica exchange in tightly coupled parallel codes
may incur some cost, mainly in the form of latency. In many
cases, however, the decrease in mixing times could more than
offset any loss in parallel efficiency. If the recommended in-
dependence sampling schemes would consume a substantial
fraction of the iteration time, or where the parallel implemen-
tation of state updates is already complex, it may still be rela-
tively inexpensive to perform simply the same state update
scheme several times, achieving enhanced mixing with lit-
tle extra coding or computational overhead. Alternatively, the
Gibbs sampling formalism could be used to design some other
scheme that performs frequent state space sampling only on
replicas that are local in the topology of the code.

For simulated scaling!* or Hamiltonian exchange
simulations,”'* independence sampling updates of state per-
mutation vector S requires evaluation of the reduced potential
ur(x) at all K states for the current configuration (in simu-
lated scaling) or all replica configurations x; (for Hamiltonian
exchange), which requires more energy evaluations than the
neighbor exchange scheme. However, if the intent is to make
use of the MBAR estimator,”® which produces optimal esti-
mates of free energy differences and expectations, all of these
energies are required for analysis anyway, and so the com-

putational impact on simulation time is negligible. It is more
computationally efficient to evaluate these additional reduced
potentials during the simulation, instead of post-processing
simulation data, which is especially true if the additional re-
duced potential evaluations are done in parallel. Alternatively,
if a simulated scaling simulation is run and one does not wish
to use MBAR, restricted range state updates (Sec. III A 4) of-
fer improved mixing behavior with minimal additional num-
ber of energy evaluations.

We have found that examining the exchange statistics, the
empirical state transition matrix and its dominant eigenval-
ues, is extremely useful in diagnosing equilibration and con-
vergence, as well as poor choices of thermodynamic states.
It is often very easy to see, from the diagonally dominant
structure of this matrix, where regions of poor state overlap
occur. Poor overlap among sets of thermodynamic states ob-
served early in simulations from the empirical state transi-
tion matrix are likely to also frustrate post-simulation analy-
sis with techniques such as MBAR and histogram reweight-
ing methods,*®%-114 making such metrics useful diagnostic
tools.

For more complex state topologies in expanded ensem-
ble or replica exchange simulations, where, for example, sev-
eral different pressures or temperatures are included simul-
taneously, there may not exist a simple grid of values, or it
may not be easy to identify which states are the most efficient
neighbors. Using independence sampling eliminates the need
to plan efficient exchange schemes among neighbors, or even
to determine which states are neighbors. This may encour-
age the addition of states that aid in reducing the correlation
time of the overall Markov chain solely by speeding decorre-
lation of conformational degrees of freedom, since they will
automatically couple to states with reasonable phase space
overlap.

It is important to stress, however, that expanded ensem-
ble and replica exchange simulations are not a cure-all for
all systems with poor sampling. In the presence of a first-
order or pseudo-first-order phase transition, phase space mix-
ing may still take an exponentially long time even when sim-
ulated or parallel tempering algorithms are used.*? Optimiza-
tion of the state exchange scheme, as described here, can only
help so much; further efficiency gains would require design
of intermediate states that abolish the first-order phase transi-
tion. Schemes for optimal state selection are an area of active
research.?0-32

Finally, we observe that the independence sampling
scheme for a simulated tempering simulation or any
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simulation where the contribution to the reduced potential
is a thermodynamic parameter A multiplying a conjugate
configuration-dependent variable /(x) naturally generalizes to
a continuous limit. As the number K of thermodynamic states
Ay is increased between some fixed lower and upper limits,
this process eventually results in the thermodynamic state in-
dex k effectively becoming a continuous variable 1.2 Such a
continuous tempering simulation would sample from the joint
distribution 7 (x, ) o< exp [— Ah(x) + g(1)], with the contin-
uous log weighting function g(}) replacing the discrete g in
simulated tempering simulations.

The Gibbs sampler and variations on it remain exciting
areas for future exploration, and we hope that our conditional
state space sampling formulation will make it much easier for
other researchers to envision, develop, and implement new
schemes for sampling from multiple thermodynamics states.
We also hope it encourages exploration of further connections
between the two deeply interrelated fields of statistical me-
chanics and statistical inference.

ACKNOWLEDGMENTS

The authors thank Sergio Bacallado (Stanford Univer-
sity), Jed Pitera (IBM Almaden), Adrian Roitberg (University
of Florida), Scott Schmidler (Duke University), and William
Swope (IBM Almaden) for insightful discussions on this
topic, and Imran Haque (Stanford University), David Minh
(Argonne National Labs), Victor Martin-Mayor (Universidad
Complutense de Madrid), and Anna Schnider (University of
California, Berkeley) for a critical reading of the manuscript.
The authors especially thank David M. Rogers (Sandia Na-
tional Labs) who for spotting a key error in an early ver-
sion of the restricted range sampling method, and the anony-
mous referees for constructive comments. Additionally, the
authors are grateful to OPENMM developers Peter Eastman,
Mark Friedrichs, Randy Radmer, and Christopher Bruns, and
project leader Vijay Pande (Stanford University and SimBios)
for their generous help with the OPENMM GPU-accelerated
computing platform and associated PYOPENMM Python wrap-
pers. J.D.C. acknowledges support from a QB3-Berkeley Dis-
tinguished Postdoctoral Fellowship.

T A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers 60, 96 (2001).

2Y. Iba, Int. J. Mod. Phys. C 12, 623 (2001).

3C. 1. Geyer, in Computing Science and Statistics: The 23rd Symposium on
the Interface (Interface Foundation, Fairfax, 1991), pp. 156-163.

4K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996).

5U. H.E. Hansmann, Chem. Phys. Lett. 281, 140 (1997).

0y, Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 (1999).

7Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113, 6042
(2000).

8H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 116, 9058
(2002).

9s. Jang, S. Shin, and Y. Pak, Phys. Rev. Lett. 91, 058305 (2003).

10W. Kwak and U. H.E. Hansmann, Phys. Rev. Lett. 95, 138102 (2005).

A, P Lyubartsev, A. A. Martsinovski, S. V. Shevkunov, and P. N.
Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992).

12E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

13C. J. Geyer and E. A. Thompson, J. Am. Stat. Assoc. 90, 909 (1995).

I4H. Li, M. Fajer, and W. Yang, J. Chem. Phys. 126, 024106 (2007).

158 Park, Phys. Rev. E 77, 016709 (2008).

J. Chem. Phys. 135, 000000 (2011)

lop, Sindhikara, Y. Meng, and A. E. Roitberg, J. Chem. Phys. 128, 024103
(2008).

1"D. Sindhikara, D. J. Emerson, and A. E. Roitberg, J. Chem. Theory Com-
put. 6, 2804 (2010).

18W. Nadler and U. H. E. Hansmann, Phys. Rev. E 76, 057102 (2007).

19y, M. Rhee and V. S. Pande, Biophys. J. 84, 775 (2003).

20D, M. Zuckerman and E. Lyman, J. Chem. Theory Comput. 2, 1200
(2006).

2y, Zheng, M. Andrec, E. Gallicchio, and R. M. Levy, Proc. Natl. Acad.
Sci. U.S.A. 104, 15340 (2007).

22H. Nymeyer, J. Chem. Theory Comput. 4, 626 (2008).

BR. Denschlag, M. Lingenheil, and P. Tavan, Chem. Phys. Lett. 458, 244
(2008).

24E. Rosta and G. Hummer, J. Chem. Phys. 131, 165102 (2009).

25E. Rosta and G. Hummer, J. Chem. Phys. 132, 034102 (2010).

26D, A. Kofke, J. Chem. Phys. 117, 6911 (2002).

277Y. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer, J. Stat. Mech.:
Theory Exp. 2006, 03018 (2006).

283, Trebst, M. Troyer, and U. H. E. Hansmann, J. Chem. Phys. 124, 174903
(2006).

29W. Nadler and U. H. E. Hansmann, Phys. Rev. E 75, 026109 (2007).

30D, Gront and A. Kolinski, J. Phys.: Condens. Matter 19, 036225 (2007).

318, Park and V. S. Pande, Phys. Rev. E 76, 016703 (2007).

32D, K. Shenfeld, H. Xu, M. P. Eastwood, R. O. Dror, and D. E. Shaw, “H,”
Phys. Rev. E (to be published).

3T, Neuhaus, M. P. Magiera, and U. H. E. Hansmann, Phys. Rev. E 76,
045701 (2007).

34J. Kim, T. Keyes, and J. E. Straub, J. Chem. Phys. 132, 224107 (2010).

35M. K. Fenwick and F. A. Escobedo, J. Chem. Phys. 119, 11998 (2003).

36 A. Mitsutake and Y. Okamoto, J. Chem. Phys. 121, 2491 (2004).

37A. Mitsutake, Y. Sugita, and Y. Okamoto, J. Chem. Phys. 118, 6664
(2003).

3A. Okur, D. R. Roe, G. Cui, V. Hornak, and C. Simmerling, J. Chem.
Theory Comput. 3, 557 (2007).

39E. Gallicchio, R. M. Levy, and M. Parashar, J. Comput. Chem. 29, 288
(2008).

40y, H. E. Hansmann, Physica A 389, 1400 (2010).

4IN. Madras and D. Randall, Ann. Appl. Probab. 12, 581 (2002).

4N. Bhatnagar and D. Randall, in SODA 2004: Proceedings of the Fif-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms (Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004),
pp. 478-487.

43D. B. Woodard, Ann. Appl. Probab. 19, 617 (2009).

“D. B. Woodard, S. C. Schmidler, and M. Huber, Electron. J. Probab. 14,
780 (2009).

43]. Machta, Phys. Rev. E 80, 056706 (2009).

46p, Brenner, C. R. Sweet, D. VonHandorf, and Jesus A. Izaguirre, J. Chem.
Phys. 126, 074103 (2007).

4TM. Lingenheil, R. Denschlag, G. Mathias, and P. Tavan, Chem. Phys. Lett.
478, 80 (2009).

48D, Paschek and Angel E. Garcia, Phys. Rev. Lett. 93, 238105 (2004).

49W. Jiang and B. Roux, J. Chem. Theory Comput. 6, 2559 (2010).

303, Rudnick and G. Gaspari, Elements of the Random Walk: An introduction
for Advanced Students and Researchers, 1st ed. (Cambridge University
Press, Cambridge, England, 2010).

51S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell 6, 721
(1984).

521.'S. Liu, Monte Carlo strategies in Scientific Computing, 2nd ed.
(Springer, New York, 2002).

33 A. Panagiotopoulos, Mol. Phys. 61, 813 (1987).

AL Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J. Tildesley, Mol.
Phys. 63, 527 (1988).

331t is ironic that although J. Willard Gibbs invented a large number of im-
portant thermodynamic concepts and methods, neither Gibbs sampling nor
the Gibbs ensemble are among them.

M. R. Shirts and J. D. Chodera, J. Chem. Phys. 129, 124105 (2008).

57E. Mezei., J. Comp. Phys. 68, 237 (1987).

8C. Tsallis, J. Stat. Phys. 52, 479 (1988).

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, J. Chem. Phys. 21, 1087 (1953).

0w, K. Hastings, Biometrika 57, 97 (1970).

6lg, Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, Phys. Lett. B
195, 216 (1987).

62H. Miiller-Krumbhaar and K. Binder, J. Stat. Phys. 8, 1 (1973).

1168
1169
1170
171
172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185 Q3
1186
1187
1188
1189
1190
1191
1192 Q4
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212 Q5
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241


http://dx.doi.org/10.1002/1097-0282(2001)60:2<96::AID-BIP1007>3.0.CO;2-F
http://dx.doi.org/10.1142/S0129183101001912
http://dx.doi.org/10.1143/JPSJ.65.1604
http://dx.doi.org/10.1016/S0009-2614(97)01198-6
http://dx.doi.org/10.1016/S0009-2614(99)01123-9
http://dx.doi.org/10.1063/1.1308516
http://dx.doi.org/10.1063/1.1472510
http://dx.doi.org/10.1103/PhysRevLett.91.058305
http://dx.doi.org/10.1103/PhysRevLett.95.138102
http://dx.doi.org/10.1063/1.462133
http://dx.doi.org/10.1209/0295-5075/19/6/002
http://dx.doi.org/10.2307/2291325
http://dx.doi.org/10.1063/1.2424700
http://dx.doi.org/10.1103/PhysRevE.77.016709
http://dx.doi.org/10.1063/1.2816560
http://dx.doi.org/10.1021/ct100281c
http://dx.doi.org/10.1021/ct100281c
http://dx.doi.org/10.1103/PhysRevE.76.057102
http://dx.doi.org/10.1016/S0006-3495(03)74897-8
http://dx.doi.org/10.1021/ct0600464
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1021/ct7003337
http://dx.doi.org/10.1016/j.cplett.2008.04.114
http://dx.doi.org/10.1063/1.3249608
http://dx.doi.org/10.1063/1.3290767
http://dx.doi.org/10.1063/1.1507776
http://dx.doi.org/10.1088/1742-5468/2006/03/P03018
http://dx.doi.org/10.1088/1742-5468/2006/03/P03018
http://dx.doi.org/10.1063/1.2186639
http://dx.doi.org/10.1103/PhysRevE.75.026109
http://dx.doi.org/10.1088/0953-8984/19/3/036225
http://dx.doi.org/10.1103/PhysRevE.76.016703
http://dx.doi.org/10.1103/PhysRevE.76.045701
http://dx.doi.org/10.1063/1.3432176
http://dx.doi.org/10.1063/1.1624822
http://dx.doi.org/10.1063/1.1766015
http://dx.doi.org/10.1063/1.1555847
http://dx.doi.org/10.1021/ct600263e
http://dx.doi.org/10.1021/ct600263e
http://dx.doi.org/10.1002/jcc.20839
http://dx.doi.org/10.1016/j.physa.2009.12.027
http://dx.doi.org/10.1214/aoap/1026915617
http://dx.doi.org/10.1214/08-AAP555
http://dx.doi.org/10.1103/PhysRevE.80.056706
http://dx.doi.org/10.1063/1.2436872
http://dx.doi.org/10.1063/1.2436872
http://dx.doi.org/10.1016/j.cplett.2009.07.039
http://dx.doi.org/10.1103/PhysRevLett.93.238105
http://dx.doi.org/10.1021/ct1001768
http://dx.doi.org/10.1109/TPAMI.1984.4767596
http://dx.doi.org/10.1080/00268978700101491
http://dx.doi.org/10.1080/00268978800100361
http://dx.doi.org/10.1080/00268978800100361
http://dx.doi.org/10.1063/1.2978177
http://dx.doi.org/10.1016/0021-9991(87)90054-4
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.1007/BF01008440

1242
1243
1244

Q61245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

000000-15  Simulations as Gibbs sampling

63W. Janke, in Quantum Simulations of Complex Many-Body Systems: From
Theory to Algorithms, edited by J. Grotendorst, D. Marx, and A. Murmatsu
(John von Neumann Institute for Computing, Jiilich, Germany, 2002), Vol.
10, pp. 423-445.

%An even more general class of samplers, the so-called hit-and-run
schemes, explore this notion further. See also Ref. 115.

65V, 1. Manousiouthakis and M. W. Deem, J. Chem. Phys. 110, 2753 (1999).

60, Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

67S. Park, D. L. Ensign, and V. S. Pande, Phys. Rev. E 74, 066703
(2006).

%8R. Chelli, J. Chem. Theory Comput. 6, 1935 (2010).

% Caution must be exercised when using molecular dynamics to sample from
7 (x|k), as the phase space distribution actually sampled will deviate from
the distribution 7 (x|k) o e~“®) in a timestep-dependent manner unless
the integration scheme is wrapped in a Monte Carlo acceptance step, as in
hybrid Monte Carlo (see also Ref. 61), metropolized Langevin, or general-
ized hybrid Monte Carlo (see also Refs. 116 and 117) integration schemes.
If this deviation is significant, it could result in significant errors in sam-
pling the overall (x, k) Markov chain that could exceed the statistical error
in computed properties.

70A. E. Roitberg, A. Okur, and C. Simmerling, J. Phys. Chem. B 111, 2415
(2007).

7I'The denominator, in fact, is the matrix permanent of a K x K matrix A
= (a;j) witha;; = e i), computation of which is known to be sharp-P-
complete, and hence too inefficient for our purposes except for very small
K.

72M. A. Miller, L. M. Amon, and W. P. Reinhardt, Chem. Phys. Lett. 331,
278 (2000).

3G. Bussi, A. Laio, and M. Parrinello, Phys. Rev. Lett. 96, 090601
(2006).

74U. H. E. Hansmann and Y. Okamoto, Phys. Rev. E 54, 5863 (1996).

5T, Rodinger, P. L. Howell, and R. Pomes, J. Chem. Phys. 129, 155102
(2008).

76J. S. Liu, Biometrika 83, 681 (1996).

7"t is again common to consider the set of K states to lie on a torus, such
that exchanges of (K, 1) are also attempted.

78D. Aldous and P. Diaconis, Am. Math. Monthly 93, 333 (1986).

79C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

803, W. Pitera and W. Swope, Proc. Natl. Acad. Sci. U.S.A. 100, 7587
(2003).

811, A. Fernandez, V. Martin-Mayor, S. Perez-Gaviro, A. Tarancon, and
A. P. Young, Phys. Rev. B 80, 024422 (2009).

825, T. Garren and R. L. Smith, Bernoulli 6, 215 (2000).

83X. Zhang, D. Bhatt, and D. M. Zuckerman, J. Chem. Theory Comput. 6,
3048 (2010).

84p Diaconis and P. Hanlon, Contemp. Math. 138, 99 (1992).

85C, Schiitte, A. Fischer, W. Huisinga, and P. Deuflhard, J. Comput. Phys.
151, 146 (1999).

86C. Schiitte and W. Huisinga, in Handbook of Numerical Analysis - Spe-
cial Volume on Computational Chemistry, edited by P. G. Ciaret and J.-L.
Lions (Elsevier, New York, 2002), Vol. 10.

87X, Huang, G. R. Bowman, S. Bacallado, and V. S. Pande, Proc. Natl. Acad.
Sci. U.S.A. 106, 19765 (2009).

83p. Deuflhard and M. Weber, Linear Algebr. Appl. 398, 161 (2005).

J. Chem. Phys. 135, 000000 (2011)

89J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill, J. Chem.
Theory Comput. 3, 26 (2007).

9F A. Escobedo and F. J. Martinez-Veracoechea, J. Chem. Phys. 129,
154107 (2009).

IR, Denschlag, M. Lingenheil, and P. Tavan, Chem. Phys. Lett. 473, 193
(2009).

2W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and
M. L. Klein, J. Chem. Phys. 79, 926 (1983).

93B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory
Comput. 4, 435 (2008).

94Please contact the corresponding author for instructions on accessing this
version. Alternatively, this functionality is also being prepared for inclu-
sion in GROMACS 4.6.

SBW. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, J. Chem.
Phys. 76, 637 (1982).

9G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635
(1992).

9T. Yu, J. Alejandre, R. Lopez-Rendén, G. J. Martyna, and M. E. Tucker-
man, Chem. Phys. 370, 294 (2010).

98M. E. Tuckerman, J. Alejandre, R. Lopez-Rendén, A. L. Jochim, and
G. J. Martyna, J. Phys. A 39, 5629 (2006).

99S. Miyamoto and P. A. Kollman, J. Comput. Chem. 13, 952 (1992).

100N, R. Shirts, D. L. Mobley, J. D. Chodera, and V. S. Pande, J. Phys. Chem.
B 111, 13052 (2007).

10TM. R. Shirts and V. S. Pande, J. Chem. Phys. 122, 134508 (2005).

102\, R. Shirts, J. W. Pitera, W. C. Swope, and V. S. Pande, J. Chem. Phys.
119, 5740 (2003).

103y, Zhang, T. Hou, C. Schafmeister, W. S. Ross, and D. A. Case,
“AMBERTOOLS 1.2: LEaP” (2008).

104p A, Kollman, R. Dixon, W. Cornell, T. Vox, C. Chipot, and
A. Pohorille, in Computer Simulation of Biomolecular Systems, edited
by A. Wilkinson, P. Weiner, and W. F. van Gunsteren (Kluwer/Escom,
The Netherlands/Virginia, 1997), Vol. 3, pp. 83-96.

105 A Onufriev, D. Bashford, and D. A. Case, Proteins: Struct., Funct., Genet.
55, 383 (2004).

106\, S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand,
A. L. Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande, J. Comput.
Chem. 30, 864 (2009).

107p Eastman and V. S. Pande, Comput. Sci. Eng. 12, 34 (2010).

108p, Eastman and V. S. Pande, J. Comput. Chem. 31, 1268 (2010).

109C_ M. Bruns, R. A. Radmer, J. D. Chodera, and V. S. Pande, “PyOpenMM”
(2010).

0L, Verlet, Phys. Rev. 159, 98 (1967).

1L, Verlet, Phys. Rev. 165, 201 (1968).

12 D. Chodera, W. C. Swope, J. W. Pitera, and K. A. Dill, Multiscale
Model. Simul. 5, 1214 (2006).

113y, Meng and A. E. Roitberg, J. Chem. Theory Comput. 6, 1401 (2010).

1145 Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M.
Rosenberg, J. Comput. Chem. 13, 1011 (1992).

HSH. C. Andersen and P. Diaconis, Journal de la Société Frangaise de Statis-
tique 148, 5 (2007).

116 A M. Horowitz, Phys. Lett. B 268, 247 (1991).

7T Lelievre, M. Rousset, and G. Stoltz, Free Energy Computations
(Imperial College, London, 2010).

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348


http://dx.doi.org/10.1063/1.477973
http://dx.doi.org/10.1103/PhysRevLett.86.2050
http://dx.doi.org/10.1103/PhysRevE.74.066703
http://dx.doi.org/10.1021/ct100105z
http://dx.doi.org/10.1021/jp068335b
http://dx.doi.org/10.1016/S0009-2614(00)01217-3
http://dx.doi.org/10.1103/PhysRevLett.96.090601
http://dx.doi.org/10.1103/PhysRevE.54.5863
http://dx.doi.org/10.1063/1.2989800
http://dx.doi.org/10.1093/biomet/83.3.681
http://dx.doi.org/10.2307/2323590
http://dx.doi.org/10.1016/0021-9991(76)90078-4
http://dx.doi.org/10.1073/pnas.1330954100
http://dx.doi.org/10.1103/PhysRevB.80.024422
http://dx.doi.org/10.2307/3318575
http://dx.doi.org/10.1021/ct1002384
http://dx.doi.org/10.1006/jcph.1999.6231
http://dx.doi.org/10.1016/j.laa.2004.10.026
http://dx.doi.org/10.1021/ct0502864
http://dx.doi.org/10.1021/ct0502864
http://dx.doi.org/10.1063/1.2994717
http://dx.doi.org/10.1016/j.cplett.2009.03.053
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.442716
http://dx.doi.org/10.1063/1.463940
http://dx.doi.org/10.1016/j.chemphys.2010.02.014
http://dx.doi.org/10.1088/0305-4470/39/19/S18
http://dx.doi.org/10.1002/jcc.540130805
http://dx.doi.org/10.1021/jp0735987
http://dx.doi.org/10.1021/jp0735987
http://dx.doi.org/10.1063/1.1877132
http://dx.doi.org/10.1063/1.1587119
http://dx.doi.org/10.1002/prot.20033
http://dx.doi.org/10.1002/jcc.21209
http://dx.doi.org/10.1002/jcc.21209
http://dx.doi.org/10.1109/MCSE.2010.27
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.165.201
http://dx.doi.org/10.1137/06065146X
http://dx.doi.org/10.1137/06065146X
http://dx.doi.org/10.1021/ct900676b
http://dx.doi.org/10.1002/jcc.540130812
http://dx.doi.org/10.1016/0370-2693(91)90812-5

