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Abstract: In serial generalized-ensemble simulations, the sampling of a collective coordinate
of a system is enhanced through non-Boltzmann weighting schemes. A popular version of such
methods is certainly the simulated tempering technique, which is based on a random walk in
temperature ensembles to explore the phase space more thoroughly. The most critical aspect
of serial generalized-ensemble methods with respect to their parallel counterparts, such as replica
exchange, is the difficulty of weight determination. Here we propose an adaptive approach to
update the weights on the fly during the simulation. The algorithm is based on generalized forms
of the Bennett acceptance ratio and of the free energy perturbation. It does not require intensive
communication between processors and, therefore, is prone to be used in distributed computing
environments with modest computational cost. We illustrate the method in a series of molecular
dynamics simulations of a model system and compare its performances to two recent
approaches, one based on adaptive Bayesian-weighted histogram analysis and the other based
on initial estimates of weight factors obtained by potential energy averages.

1. Introduction

In computer simulations of complex systems it is often
difficult to obtain accurate canonical distributions by con-
ventional Boltzmann sampling because simulated systems
tend to get trapped in local minimum-energy states. A
strategy to tackle the problem is to perform simulations using
non-Boltzmann probability weight factors, so that a random
walk in energy space can be realized. In this context, a new
class of simulation algorithms, generically termed general-
ized-ensemble algorithms,1 has been developed. In the
multicanonical approach,2,3 for instance, phase space is
sampled with a probability proportional to an approximate
estimate of the inverse potential energy density of states. In
the simulated tempering (ST) technique,4,5 weighted sam-
pling is used to produce a random walk in temperature space
thus allowing the system to overcome energy barriers. An
important limitation of ST is that an evaluation of the free
energy as a function of temperature is needed as input to
ensure equal visitation of temperatures, and eventually a

faster convergence of structural properties.6 The temperature
replica exchange method7-10 (REM), also known as parallel
tempering, was developed as an evolution of ST to eliminate
the need to know a priori temperature-dependent free
energies. Many other methodologies and combinations
thereof have also been proposed,1,11-19 including approaches
based on nonrandom walks in the ensemble space.20,21

The idea of ST and temperature-REM can be readily
extended to other ensemble parameters (e.g., pressure,
interatomic distances, torsional bond angles, switching
coordinate in alchemical transformations, etc.). The term
generalized-ensemble, used to refer to such methods, arises
from this generalization. The further classification of serial
generalized-ensemble (SGE) and parallel generalized-
ensemble algorithms is also used to distinguish between
schemes based on single-replica transitions (like in ST) and
on synchronous double-replica transitions (like in REM),
respectively.22 Among generalized-ensemble algorithms, ST
and temperature-REM allow an extensive exploration of
phase space without configurational restraints. This gives the
possibility of recovering not only the global minimum-energy* Author e-mail: riccardo.chelli@unifi.it.
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state but also any equilibrium thermodynamic quantity as a
function of temperature. The potential of mean force
(PMF)23,24 along a chosen collective coordinate can also be
computed a posteriori by multiple-histogram reweighting
techniques.25,26 In this case, however, many configurations
sampled at high temperatures will give small contribution
to the PMF at low (ordinary) temperature with the result of
making quite ineffective the algorithm. PMF calculation is
instead improved by performing generalized-ensemble ca-
nonical simulations in the space of the collective coordinate
(for example, the space of the end-to-end distance of a
biopolymer). In such a case, all system configurations will
contribute equally to construct the PMF at the given
temperature.17

Comparisons between ST and temperature-REM have been
reported recently.6,27,28 The overall conclusions of these
studies are that ST consistently gives a higher rate of
delivering the system between high- and low-temperature
states as well as a higher rate of transversing the potential
energy space. Moreover, ST is well-suited to distributed
computing environments because synchronization and com-
munication between replicas/processors can be avoided. On
the other side, an effective application of ST and, in general,
of SGE methods requires a uniform exploration of the
ensemble space. In order to satisfy this criterion, acceptance
rates must be not only high but also symmetric between
forward and backward directions of the ensemble space. This
symmetry can be achieved by performing weighted sampling,
where weights are correlated with the dimensionless free
energies of the ensembles. The knowledge of such free
energies is not needed in parallel generalized-ensemble
methods because replica exchanges occur between mi-
crostates of the same extended thermodynamic ensemble.
To achieve rapid sampling of the ensemble space through
high acceptance rates, we need to choose ensembles ap-
propriately so that neighboring ensembles overlap signifi-
cantly. This last requirement is common to both SGE and
parallel generalized-ensemble methods and in general does
not depend on the specific algorithm used in simulation.
Therefore the most critical aspect in applying SGE schemes
is the determination of weight factors (viz. dimensionless
free energy differences between neighboring ensembles).
This issue has been the subject of many studies, especially
addressed to ST simulations. The first attempts are based on
short trial simulations.5,29,30 The proposed procedures are
however quite complicated and computationally expensive
for systems with many degrees of freedom. Later, Mitsutake
and Okamoto suggested to perform a short REM simulation
to estimate ST weight factors31 via multiple-histogram
reweighting.25,26 A further approximated, but very simple,
approach to evaluate weight factors is based on average
energies calculated by means of conventional molecular
dynamics simulations.22 The weight factors obtained by the
average-energy method22 were later demonstrated to cor-
respond to the first term of a cumulant expansion of free
energy differences.27 Huang et al. used approximated esti-
mates of potential energy distribution functions (from short
trial molecular dynamics simulations) to equalize the ac-
ceptance rates of forward and backward transitions between

neighboring temperatures, ultimately leading to a uniform
temperature sampling in ST.32 The techniques illustrated
above have been devised to determine weight factors to be
used without further refinement31 or as an initial guess to
be updated during the simulation.22,32 In the former case,
these approximate factors should (hopefully) guarantee an
almost random walk through the ensemble space. However,
as remarked in ref 6, the estimate of accurate weight factors
may be very difficult for complex systems. Inaccurate
estimates, though unaffecting the basic principles of SGE
methods, do affect the sampling performances in terms of
simulation time needed to achieve convergence of structural
properties.6

As discussed above, dimensionless free energy differences
between ensembles (viz. weight factors) may also be the very
aim of the simulation.17 In such cases, accurate determination
of weight factors is not simply welcome but necessary. This
can be done a posteriori using multiple-histogram reweight-
ing techniques25,26 or using more or less efficient updating
protocols applied during the simulation.6,19,32-34

In this article we present an adaptive method to calculate
weight factors in SGE simulations based on generalized
expressions35,36 of the Bennett method37 and of the free energy
perturbation.38 Although the method may appear as a down-
grading of the multiple-histogram reweighting algorithm,25,26

it is asymptotically exact and requires a low computational
time per updating step. Moreover, since the overlap between
the distribution functions of the generalized dimensionless
work36 spent in the forward and backward transitions
between neighboring ensembles must be not negligible, the
accuracy of the method is comparable to the multiple-
histogram reweighting approach. The algorithm is suited not
only to calculate the free energy on the fly during the
simulation but also as a possible criterion to establish whether
equilibration has been reached. We illustrate the method on
a model system made of two particles interacting through a
double-well potential and solvated by a monatomic fluid. This
model system contains much of condensed-phase physics and
may be viewed as an elementary example of molecular
docking with an energy barrier between the initial and final
states. SGE simulations in temperature space (ST simula-
tions) and in the space of the interparticle distance are carried
out. The performances of our algorithm in recovering free
energies as a function of temperature and interparticle
distance (i.e., the PMF) are compared with those of various
approaches, including multiple-histogram reweighting as
reformulated in ref 39, the recent Bayesian weighted
histogram analysis method34 (ABWHAM), and the method
based on the initial estimates of the weight factors obtained
by averaging the potential energy of short trial simulations.22

The outline of the article follows. In Section 2, SGE
methods are introduced. The algorithm for computing optimal
weights is proposed in Section 3. Technical details on the
simulations and on the system are given in Section 4, while
the simulation results are reported and discussed in Section
5. Concluding remarks can be found in Section 6.
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2. Introduction to Serial
Generalized-Ensemble Methods

A SGE method deals with a set of N ensembles associated
with different dimensionless Hamiltonians hn(x, p), where x
and p denote the atomic coordinates and momenta of a
microstate40 and n ) 1, 2, ..., N denotes the ensemble. Each
ensemble is characterized by a partition function expressed
as

In ST simulations the dimensionless Hamiltonian is

where H(x, p) is the original Hamiltonian and �n ) (kBTn)-1,
with kB being the Boltzmann constant and Tn the temperature
of the nth ensemble. If we express the Hamiltonian as a
function of λ, namely a parameter correlated with an arbitrary
collective coordinate of the system (or even corresponding
to the pressure), then the dimensionless Hamiltonian associ-
ated with the nth λ-ensemble is

Here all ensembles have the same temperature. It is also
possible to construct a generalized ensemble for multiple
parameters41 as

In this example two parameters, T and λ, are employed, but
no restraint is actually given to the number of ensemble
spaces. Generalized-ensemble algorithms have a different
implementation dependent on whether the temperature is
included in the collection of sampling spaces (eqs 2 and 4).
Here we adhere to the most general context without specify-
ing any form of hn(x, p), except when we discuss implemen-
tation of ST (Section 2.1) and of the PMF calculation
(Section 2.2).

In SGE simulations, the probability of a microstate (x, p)
in the nth ensemble [from now on denoted as (x, p)n] is
proportional to exp[-hn(x, p) + gn], where gn is a factor,
different for each ensemble, that must ensure almost equal
visitation of the N ensembles. The extended partition function
of this “system of ensembles” is

where Zn is the partition function of the system in the nth
ensemble (eq 1). In practice SGE simulations work as
follows. A single simulation is performed in a specific
ensemble, say n, using Monte Carlo or molecular dynamics
sampling protocols, and after a certain interval, an attempt
is made to change the microstate (x, p)n to another microstate
of a different ensemble (x′, p′)m. Since high acceptance rates
are obtained as the ensembles n and m overlap significantly,
the final ensemble m is typically close to the initial one,
namely m ) n ( 1.42 In principle, the initial and final
microstates can be defined by different coordinates and/or

momenta (x * x′ and/or p * p′), though the condition x )
x′ is usually adopted. The transition probabilities for moving
from (x, p)n to (x′, p′)m and vice versa have to satisfy the
detailed balance condition:

where Pn(x, p) is the probability of the microstate (x, p)n in
the extended canonical ensemble (eq 5):

In eq 6, P(n f m) is a shorthand for the conditional
probability of the transition (x, p)n f (x′, p′)m, given the
system is in the microstate (x, p)n [with analogous meaning
of P(m f n)]. Using eq 7 together with the analogous
expression for Pm(x′, p′) in the detailed balance and applying
the Metropolis’s criterion, we find that the transition (x, p)n

f (x′, p′)m is accepted with probability:

The probability of sampling a given ensemble is

Uniform sampling sets the condition Pn ) N-1 for each
ensemble (n ) 1, ..., N) that leads to the equality:

Equation 10 implies that, to get uniform sampling, the
difference gm - gn in eq 8 must be replaced with fm - fn,
where fn is the dimensionless free energy related to the actual
free energy of the ensemble n by the relation fn ) �Fn )
-ln Zn, where � is the inverse temperature of the ensemble.
Here we are interested in determining such free energy
differences that will be referred as optimal weight factors,
or simply, optimal weights. Accordingly, in the acceptance
ratio we will use fn instead of gn.

2.1. SGE Simulations in Temperature-Space (Simu-
lated Tempering). In SGE Monte Carlo simulations con-
ducted in temperature space (ST simulations), eq 2 holds.
Specifically, since only configurational sampling is per-
formed, we have

where V(x) is the (potential) energy of the configuration x.
Therefore, transitions from n to m ensemble, realized at fixed
configuration, are accepted with probability:

When the system evolution is performed with molecular
dynamics simulations, the situation is slightly more com-
plicated. Suppose we deal with canonical ensembles (to
simplify the treatment and the notation we consider constant-
volume and constant-temperature ensembles, though exten-
sion to constant-pressure and constant-temperature ensembles
is straightforward). Usually, constant temperature is imple-
mented through the Nosé-Hoover method43,44 or extensions

Zn ) ∫ e-hn(x,p)dxdp (1)

hn(x, p) ) �nH(x, p) (2)

hn(x, p) ) �H(x, p;λn) (3)

hnl(x, p) ) �nH(x, p;λl) (4)

Z ) ∑
n)1

N ∫ e-hn(x,p)+gndxdp ) ∑
n)1

N

Zne
gn (5)

Pn(x, p)P(n f m) ) Pm(x', p')P(m f n) (6)

Pn(x, p) ) Z-1e-hn(x,p)+gn (7)

acc[n f m] ) min(1, ehn(x,p)-hm(x',p')+gm-gn) (8)

Pn ) ∫Pn(x, p)dxdp ) ZnZ
-1egn (9)

gn ) -ln Zn + ln( Z
N) (10)

hn(x) ) �nV(x) (11)

acc[n f m] ) min(1, e(�n-�m)V(x)+fm-fn) (12)
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of it.45 With the symbol pt, we will denote the momentum
conjugated to the dynamical variable associated with the
thermostat. Also in this case eq 2 holds, but it takes the form

In this equation, H(x, p, pt) ) V(x) + K(p) + K(pt) is the
extended Hamiltonian of the system, where V(x) is the
potential energy, while K(p) and K(pt) are the kinetic energies
of the particles and thermostat, respectively. As in the Monte
Carlo version, transitions from n to m ensemble are realized
at fixed configuration, while particle momenta are rescaled
as

As in REM,8 the scaling drops the momenta out of the
detailed balance, and the acceptance ratio takes the form of
eq 12. Note that, if more thermostats are adopted,45 then all
additional momenta must be rescaled according to eq 14.

2.2. SGE Simulations in λ-Space. In SGE simulations
conducted in a generic λ-space at constant temperature, the
dimensionless Hamiltonian is given by eq 3. In our molecular
dynamics simulations we use a Hamiltonian aimed to sample
the distance between two target particles. There are several
ways to model such a Hamiltonian. Our choice is

where, as usual, H(x, p, pt) is the extended Hamiltonian. In
eq 15, r is the instantaneous distance between the target
particles, and k is a constant. As in ST simulations, transitions
from n to m ensemble occur at fixed configuration. However,
in this case, there is no need of rescaling momenta because
they drop out of the detailed balance condition naturally.
The resulting acceptance ratio is

The same ratio is obtained using Monte Carlo sampling. In
this kind of simulation, the free energy as a function of λ
corresponds to the biased PMF23,24 along the coordinate
associated with λ. Biasing arises from the harmonic potential
being added to the original Hamiltonian (see eq 15).
However, reweighting schemes are available to recover the
unbiased PMF along the real coordinate.25,26,46,47

3. The Algorithm for Optimal Weights

3.1. Tackling Free Energy Estimates. The algorithm
proposed to calculate the optimal weight factors, namely the
dimensionless free energy differences between ensembles
(see Section 2), is based on the Bennett acceptance ratio37,48

and on the free energy perturbation formula.38 We start by
showing that the difference between the dimensionless
Hamiltonians appearing in the acceptance ratio (see eq 8)
can be viewed as the generalized dimensionless work done
on the system during the transition (x, p)n f (x′, p′)m. The
concept of generalized dimensionless work in systems subject
to mechanical and thermal nonequilibrium changes has been

extensively discussed recently.35,36,49 In particular it has been
shown (see eq 45 in ref 36) that, in a nonequilibrium
realization performed with extended-Lagrangian molecular
dynamics,50 the generalized dimensionless work is

where τ is the duration of the realization and

where H(x, p, pt) is defined in eq 13 and ν(xt) is a linear
function of the configurational variables xt associated with
the thermostat (see eq 42 in ref 36). For simplicity, in eq 18
we have only reported the explicit time dependence of the
temperature. Moreover, we have considered to deal with ther-
mal changes alone using constant-volume and constant-
temperature equations of motion. Extending the treatment
to constant-pressure and constant-temperature algorithms and
to systems subject to generic λ, e.g. mechanical, changes is
straightforward.36 Note that, when no changes are externally
applied to the system, H′ is exactly the quantity conserved
during the constant-volume and constant-temperature simula-
tion. Accordingly, the work W is zero. The above definition
of generalized dimensionless work is valid for arbitrary
values of τ. In the special case of instantaneous thermal
changes and variations of the microstate variables, as it
occurs in ST simulations, the times 0 and τ in eq 17 refer to
the states instantaneously before and after the (x, p)n f
(x′, p′)m transition, respectively. Therefore, according to the
notation introduced above, eq 17 can be rewritten as

where xt and x′t are the values of the configurational
thermostat-variables before and after the (x, p)nf(x′, p′)m

transition, respectively. In the first two terms on the right-
hand side of eq 19, we can recognize the dimensionless
Hamiltonians hm(x′, p′, p′t) and hn(x, p, pt). It is important to
observe that, in generalized-ensemble simulations, an arbi-
trary change of xt during a transition does not affect the
acceptance ratio or the dynamics of the system. Therefore,
by setting x′t ) xt and generalizing to λ changes, we recover
the equality:

This result is general and can be proved to be valid also for
Monte Carlo simulations. Using W[n f m], the acceptance
ratio of eq 8 becomes

where ∆fnfm ) fm - fn. The quantity W[n f m] - ∆fnfm

can be interpreted as the generalized dimensionless work
dissipated in the transformation (see eq 17 in ref 36).

Until now we have simply restated the acceptance ratio
of SGE simulations in terms of the generalized dimensionless
work W[nf m]. The truly important aspect of this treatment
is that the knowledge of W[n f m] and W[m f n] stored
during the sampling gives us the possibility of evaluating

hn(x, p, pt) ) �nH(x, p, pt) (13)

p' ) p(Tm/Tn)
1/2

p t′ ) pt(Tm/Tn)
1/2 (14)

hn(x, p, pt) ) �[H(x, p, pt) + k(r - λn)
2] (15)

acc[n f m] ) min(1, e�k[(r-λn)2-(r-λm)2]+fm-fn) (16)

W ) �τH'(τ) - �0H'(0) (17)

H'(τ) ) H(x, p, pt) + kBTτν(xt) (18)

W[n f m] ) �mH(x', p', p't) - �nH(x, p, pt) + ν(x't) - ν(xt)
(19)

W[n f m] ) hm(x', p', p't) - hn(x, p, pt) (20)

acc[n f m] ) min(1, e∆fnfm-W[nfm]) (21)
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the optimal weights ∆fnfm using the Bennett method37

reformulated with maximum likelihood arguments.36,48 For
example, in ST simulations we must take memory of the
quantities W[n f m] ) (�m - �n)Vn(x) and W[m f n] )
(�n - �m)Vm(x), where the subscripts of the potential energy
indicate the ensemble at which sampling occurs. Thus, for
each pair of neighboring ensembles n and m, we generate
two collections of “instantaneous generalized dimensionless
works”: W1[m f n], W2[m f n], ..., etc. and W1[n f
m], W2[nf m], ..., etc. Let us denote the number of elements
of such collections with Nmfn and Nnfm. So ∆fnfm can be
calculated by solving the equation (see eq 27 in ref 36):

that just corresponds to the Bennett acceptance ratio for
dimensionless quantities. It is important to point out that eq
22 is valid for nonequilibrium transformations, does not
matter how far from equilibrium, and is rigorous only if the
initial microstates of the transformations are drawn from
equilibrium. Therefore care should be taken in verifying
whether convergence/equilibrium is reached in the adaptive
procedure. It should be noted that eq 22 is a straightforward
generalization (to systems subject to thermal changes) of eq
8 in ref 48 that was specifically derived for systems subject
to mechanical changes.

Shirts et al.48 proposed a way of evaluating the square
uncertainty (variance) of ∆fnfm from maximum likelihood
methods by also correcting the estimate in the case of the
restriction from fixed probability of forward and backward
work measurements to fixed number of forward and back-
ward work measurements. They provided a formula for
systems subject only to mechanical work. However, by
following the arguments in ref 36, it is straightforward to
generalize the variance to a situation in which also thermal
work is performed

where ∆f ′ ) ∆fnfm + ln(Nmfn/Nnfm). The quantity σ2(∆fnfm)
can be calculated once ∆fnfm is recovered from eq 22.

It is obvious that, in order to employ eq 22, both n and m
ensembles must be visited at least one time. If statistics are
instead retrieved from one ensemble alone, say n, then we
have to resort to a different approach. The one we propose
is consistent with the previous treatment. In fact, in the limit
that only one work collection (specifically, the nfm col-
lection) is available, eq 22 becomes48 (compare with eq 21
in ref 36)

thus recovering the well-known fact that the free energy is
the expectation value of the work exponential average.51

3.2. Implementation of Adaptive Free Energy Esti-
mates in SGE Simulations. We now describe how the
machinery introduced in Section 3.1 can be employed in the
context of adaptive algorithms for SGE simulations. Suppose
we deal with N ensembles of a generic Λ-space, be it a
temperature space, a λ-space, or even a multiple-parameter
space. Without loss of generality, we order the ensembles
as Λ1 < Λ2 < ... < ΛN. Thus, N - 1 optimal weights,
∆f1f2, ∆f2f3, ..., ∆fN-1fN, have to be estimated adaptively.

(1) At the beginning of the simulation we assign the
system, i.e., the replica, to a randomly chosen ensemble and
start the phase space sampling with the established simulation
protocol (Monte Carlo or molecular dynamics). Note that
several simulations may run in the generalized-ensemble
space, each yielding an independent trajectory. Analogously
to REM, a single simulated system will be termed “replica”.
For the sake of simplicity, in the following presentation of
the method we will take into account one replica alone. A
discussion regarding multiple-replica simulations is reported
in the final part of this section.

(2) Every La steps and for each ensemble n, we store into
memory the quantities W[n f n + 1] and W[n f n - 1],
computed as described in Section 3.1. There is no well-
established recipe in choosing La, apart from the requirement
that it should ensure (as large as possible) uncorrelation
between work values. During the simulation we must also
record the number of stored W elements, Nnfn+1 and Nnfn-1.

(3) Every Lb steps, such that Lb . La (three orders of
magnitude at least), we try a free energy update on the basis
of eqs 22 or 24. The scheme we propose for ∆fnfn+1 follows:

(a) First of all we check if the conditions Nnfn+1 > N′
and Nn+1fn > N′ are met. In such a case, eq 22 is
applied (setting m ) n + 1) using the stored
dimensionless works (see point 2). The threshold N′
is used as a control parameter for the accuracy of the
calculation. Once ∆fnfn+1 is known, its square uncer-
tainty is computed according to eq 23. Then we set
Nnfn+1 ) 0 and Nn+1fn ) 0 and cancel W[nf n + 1]
and W[n + 1f n] from computer memory. Whenever
the free energy estimate and the correlated uncertainty
are computed, the optimal weight to be used in the
acceptance ratio (eq 21) is determined, applying
standard formulas from maximum likelihood consid-
erations (see Section 3.3). This step is realized for n
) 1, 2, ..., N - 1.

(b) If the criteria needed to apply eq 22 are not met and
no ∆fnfn+1 estimate is still available from point 3a,
then we try to apply eq 24. In particular, two
independent estimates of ∆fnfn+1 are attempted. One
comes from eq 24 by setting m ) n + 1, whereas the
other comes from eq 24 applied in the reverse direction
(replace n with n + 1 and m with n in eq 24). The
two estimates will be invoked in the acceptance ratio
of n f n + 1 and n + 1 f n ensemble transitions,

∑
i)1

Nnfm [1 +
Nnfm

Nmfn
eWi[nfm]-∆fnfm]-1

-

∑
j)1

Nmfn [1 +
Nmfn

Nnfm
eWj[mfn]+∆fnfm]-1

) 0 (22)

σ2(∆fnfm) ) 2{ ∑
i)1

Nnfm

[1 + cosh(Wi[n f m] - ∆f ′)]-1 +

∑
j)1

Nmfn

[1 + cosh(Wj[m f n] + ∆f ′)]-1}-1

- Nnfm
-1 -

Nmfn
-1 (23)

e-∆fnfm ) Nnfm
-1 ∑

i)1

Nnfm

e-Wi[nfm] (24)
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respectively (see next point 4). In the former case, we
need to resort to additional arrays (denoted as Nnfn+1

up

and Wup[nf n + 1]) to store Nnfn+1 and W[nf n +
1]. Separate arrays are necessary because they are
subject to different manipulation during the simulation.
Specifically, if the condition Nnfn+1

up > N′ is satisfied,
then we calculate ∆fnfn+1 via eq 24. This estimate is
employed as such in the acceptance ratio. Then we
set Nnfn+1

up ) 0 and cancel Wup[n f n + 1] from
computer memory. The same protocol is used to
calculate ∆fn+1fn from the quantities Nn+1fn

down and
Wdown[n + 1 f n]. The additional arrays introduced
here are updated as described in point 2. Note that in
this procedure the arrays of step 3a are neither used
nor changed. Note also that the procedure described
here corresponds to the way of calculating the finite
free energy differences in the free energy perturbation
method.38

(c) If none of the above criteria is met, then optimal
weights are not updated and conventional sampling
continues. Storage of dimensionless works, as de-
scribed at point 2, continues as well.
We point out that, if equilibrium is reached slowly
(as in the case of large viscous systems or systems
with very complex free energy landscape), then the
replicas may tend to get trapped in limited regions of
the ensemble space at the early stages of the simula-
tion. This is basically due to initially inaccurate
determination of ∆fnfn+1 from eq 22 (point 3a). If such
an event occurs, then subsequent free energy estimates
from eq 22 may become very rare or even impossible.
However, we can prevent this unwanted situation by
passing to the updating criteria of point 3b when the
criteria of point 3a are not met for a given (prior
established) number of consecutive times. When
equilibrium will be approached, the criteria of point
3b will favor transitions of the replicas between
neighboring ensembles (this issue will be discussed
in Section 5.3) and eventually the conditions to apply
again the criteria of point 3a.

(4) Every Lc steps, a transition (x, p)n f (x, p′)n(1 is
attempted on the basis of the acceptance ratio of eq 21 and
of the current value of ∆fnfn(1 (properly reweighted accord-
ing to the equations reported in Section 3.3). If the estimate
of ∆fnfn(1 is still not available from the methods described
at points 3a and 3b, then the transition is not realized. The
upward and downward transitions are chosen with equal
probability. If the transition is accepted and the sampling
occurs in the temperature space using molecular dynamics,
then the momenta/velocities of the extended system are
rescaled according to eq 14.

It is worthwhile stressing again that the procedures of point
3b are only aimed to furnish a reliable evaluation of optimal
weights when such factors are still not available from the
bidirectional algorithm (point 3a) or when the system is
trapped in one or few ensembles (point 3c). Moreover, we
remark that the free energy differences estimated via eq 24
tend to give larger acceptance rates in comparison to the
exact free energy differences, thus favoring the transitions

toward the ensemble that has not been visited. This is a well-
known (biasing) effect of exponential averaging,52 leading
to a mean dissipated (dimensionless) work artificially low.
As a matter of fact, this is a positive effect since it makes
easier ensemble transitions during the equilibration phase of
the simulation. This aspect will be further discussed in
Section 5.3.

In the above discussion, we have not mentioned the
number M of (independent) replicas that may run in the space
of the N ensembles. In principle, M can vary from 1 to ∞ on
the basis of our computer facilities. The best performance is
obtainable if a one-to-one correspondence exists between
replicas and computing processors. A rough parallelization
could be obtained performing M independent simulations and
then drawing the data from replicas at the end of the
simulation to get augmented statistics. However, the calcula-
tion of the optimal weights would be much improved if they
were periodically updated on the fly on the basis of the data
drawn from all replicas. This is just what we do. In this
respect, we notice that our version of multiple-replica SGE
algorithm is prone to work efficiently also in distributed
computing environments. The phase of the simulation where
information is exchanged is that described at point 3 (free
energy calculation). It should be noted that, when a free
energy estimate is performed, the work arrays stored for each
replica/processor (see point 2) do not need to be com-
municated to all other replicas/processors. Only the sums
∑i)1

Nnfm[ · ]-1 - ∑j)1
Nmfn[ · ]-1 (case of eq 22), ∑i)1

Nnfm[ · ]-1 +
∑j)1

Nmfn[ · ]-1 (case of eq 23), and ∑i)1
Nnfm exp (-Wi[n f m])

(case of eq 24), together with Nnfm and Nmfn, must be
exchanged for all N - 1 ensemble transitions. Then each
replica/processor “will think by itself” to reassemble the
global sums. Exchanging one information implies to send
M(M - 1)(N - 1) real/integer numbers through the net (∼60
kB of information using 20 replicas and slightly less than 1
MB of information using 50 replicas). Only in the case of
the iterative procedure of eq 22, one information has to be
sent several times per free energy calculation (i.e., the number
of iterations needed for solving the equation). The compu-
tational cost arising from computer communications can
however be reduced updating the free energy rarely. Fur-
thermore, in order to improve the first free energy estimate
and hence to speed up the convergence, the M simulations
should be started by distributing the replicas among neigh-
boring ensembles, namely replica 1 to Λ1, replica 2 to Λ2,
and so on. In the remainder of this paper, we will refer to
the algorithm described in this section as BAR-SGE.

3.3. Free Energy Evaluation from Independent Esti-
mates and Associated Variances. As discussed in Section
3.2, during a SGE simulation, optimal weights are evaluated
using eq 22, and only temporary values are obtained from
eq 24. Therefore, for each optimal weight, the simulation
produces a series of estimates, ∆f1, ∆f2, ..., ∆fP. At a given
time, the current value of P depends, on average, on the time
and the update frequency of optimal weights. In this section,
for convenience, the subscript in ∆fi labels independent
estimates. We also know that each ∆fi value is affected by
an uncertainty quantified by the associated variance δ2(∆fi)
calculated via eq 23. We can then write ∆f̂, the optimal
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estimator of P-1∑i)1
P ∆fi, by a weighted sum of the individual

estimates:53

Note that independent estimates with smaller variances have
greater weight, and if the variances are equal, then the
estimator ∆f̂ is simply the mean value of the estimates. The
uncertainty in the resulting estimate can be computed from
the variances of the single estimates as

4. Details on Methods and System

We illustrate the BAR-SGE method on two series of
simulations, one performed in the temperature space (ST
simulations) and the other in the space of the distance
between two particles, denoted as λ-space. In both cases,
the calculations have been carried out on a model system
made of two “solute” particles immersed into a Lennard-
Jones fluid of 1398 (“solvent”) particles. Additional ST
simulations have been performed on a larger sample made
of two solute particles and 13 998 solvent particles. The
solute particles interact each other through a double-well
potential whose expression is

where x ) |x2 - x1| is the X component of the interparticle
distance vector. Here and in the following all quantities are
in reduced units. The solute particles are also constrained to
move along the X direction through a combination of stiff
harmonic potentials: kyz(y1

2 + z1
2 + y2

2 + z2
2), where (x1, y1,

z1) and (x2, y2, z2) are the Cartesian coordinates of the
particles and kyz ) 5 × 103. With such a stiff potential, the
quantity x appearing into eq 27 well approximates the actual
interparticle distance, eventually eliminating the Jacobian
contribution from the PMF along the interparticle direction.
The same mass is used for both solute and solvent particles.
Unitary Lennard-Jones parameters are employed for solute-
solvent and solvent-solvent interactions, while only V(x)
accounts for the solute-solute interaction. All simulations
have been carried out in constant-volume and constant-
temperature ensembles using a cubic box with standard
periodic boundary conditions. The density is 0.85, while the
temperature is kept fixed by means of the Nosé-Hoover
chain technique45 with four coupled thermostats. Lennard-
Jones interactions are cut off smoothly in the 3.0-3.5
distance range by multiplying the potential energy by a
function s(r) such that s(r) ) 1 for r e 3, s(r) ) 0 for r g
3.5, and s(r) ) 16r3 - 156r2 + 504r - 539 for 3 < r < 3.5.
The time step (t-step) used in the small-sample simulations
is ∼9.15 × 10-3, while in the large-sample simulations t-step
is ∼1.373 × 10-2. For a given replica, initial positions of
the solvent particles are random, while the solute particles

are taken with coordinates (0, 0, 0) and (0.5, 0, 0) in ST
simulations and (0, 0, 0) and (λn, 0, 0) in λ-space SGE
simulations, where λn is the specific λ value associated with
the ensemble from which the replica starts the dynamics.

Small-sample ST simulations have been carried out using
15 ensembles covering the temperature interval 0.6-1.2. The
temperatures are spaced out on the basis of uniform steps of
T-1, namely T n

-1 - T n+1
-1 ) 5.95 × 10-2. In large-sample

simulations the same interval of temperature has been taken.
However preliminary simulations have revealed that the
above distribution of temperature provides negligible ac-
ceptance ratios. In order to get acceptance ratios greater than
10%, 30 ensembles/temperatures have been found necessary.
Moreover it has been shown54 that a better efficiency in terms
of acceptance ratios is obtainable by distributing the tem-
perature on the basis of the rule Tn+1 ) aTn, where a is a
constant dependent on the number of ensembles/temperatures
and on the difference between maximum and minimum
temperatures (in our case a ) 1.02419). The acceptance ratio
for ST simulations is given by eq 12.

SGE simulations in the λ-space have been carried out using
21 ensembles at T ) 0.6 covering the distance interval
0.5-3.5 with a constant step size, λn+1 - λn ) 0.15. In this
case, the acceptance ratio is given by eq 16 with a force
constant k of 25. The k value has been chosen on the basis
of short preliminary simulations to ensure overlap between
neighboring ensembles.

All SGE and small-sample ST simulations have been
carried out for a time of 1.5 × 106 t-steps per replica, while
the large-sample ST simulations have been carried out for a
time of 105 t-steps per replica. The various replicas in
multiple-replica simulations are initially distributed in order
of increasing temperature (ST simulations) or increasing λ
(λ-space SGE simulations). Other details, such as the number
of replicas M and the relevant parameters La, Lb, Lc, and N′
(see Section 3.2), will be reported below.

5. Applications

5.1. Simulated Tempering Simulations. 5.1.1. Small-
Sample Case. In the context of ST, we report on the results
of four multiple-replica simulations differing in the number
of replicas, i.e., M ) 1, 5, 10, and 15. The simulation
parameters in t-step units are La ) 2, Lb ) 2000, Lc ) 10,
and N′ ) 1000 (see Section 3.2 for details). Note that, in
the following, the 0 time corresponds to the starting random
configuration, generated as described in Section 4. In Figure
1 we report four representative optimal weights, ∆f1f2,
∆f6f7, ∆f10f11, and ∆f14f15, as a function of time per replica
(only the values computed by eq 22 are actually reported).
These weights are associated with the temperature transitions
T1 ) 0.600h T2 ) 0.622, T6 ) 0.730h T7 ) 0.764, T10 )
0.884 h T11 ) 0.933, and T14 ) 1.120 h T15 ) 1.200. In
Figure 1, the optimal weights calculated using the multiple
Bennett acceptance ratio (MBAR) estimator39 are also
plotted. MBAR is equivalent to the multiple-histogram
reweighting method25,26 in the limit that histogram bin widths
are shrunk to 0 and corresponds to the Bennett acceptance
ratio (eq 22) when only two states are considered. The

∆̂f )
∑
i)1

P

[δ2(∆fi)]
-1∆fi

∑
j)1

P

[δ2(∆fj)]
-1

(25)

δ2(∆̂f) ) { ∑
j)1

P

[δ2(∆fj)]
-1}-1

(26)

V(x) ) 6[(x - 1)2 - 0.1](x - 3)2 (27)
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potential energy employed in MBAR has been sampled with
a frequency of 50 t-steps from 15 independent equilibrium
simulations (one per ensemble/temperature) lasting 2.5 ×
106 t-steps each (for a total of 7.5 × 105 configurations).
The convergence of the MBAR optimal weights has been
verified by calculations realized with an increasing number
of analyzed configurations (the time-dependent MBAR
optimal weights are available upon request). Hence, sup-
ported by the statistical sound, we may reasonably assume
the MBAR weights as the “reference optimal weights”.
Overall, it is encouraging that BAR-SGE weights converge
to the reference ones already in the early stages of the
simulations (note the scale on the ordinate axis in Figure 1),
the number of replicas does not matter. In this respect, it is

important to consider that no initial guess for optimal weights
is actually employed.

For a more global view of the data, in Figure 2 we report
the difference ∆fnfn+1 - ∆f nfn+1

ref between BAR-SGE and
MBAR optimal weights as a function of n. Specifically, we
consider the differences obtained at the early stages and at
the end of the simulations (up to 1.5 × 104 and 1.5 × 106

t-steps, respectively). For understanding the quantities into
play, one should consider the large range of change of
∆f nfn+1

ref , which goes from ∼454 at n ) 14 to ∼503 at n )
1. For both times, |∆fnfn+1 - ∆f nfn+1

ref | does not exceed 0.1%
of ∆f nfn+1

ref . In general, the performances of the algorithm
increase with increasing the number of replicas, i.e., with
improving the statistics, above all at short times. It is

Figure 1. Representative BAR-SGE optimal weights as a function of time per replica obtained from small-sample ST simulations.
Panels a-d: ∆f1f2, ∆f6f7, ∆f10f11, and ∆f14f15. Black, red, magenta, and blue colors refer to multiple-replica simulations with
M ) 1, 5, 10, and 15, respectively. Dashed lines represent reference values calculated with MBAR method.39

Figure 2. Differences ∆fnfn+1 - ∆f nfn+1
ref between BAR-SGE optimal weights, ∆fnfn+1, and the reference ones, ∆f nfn+1

ref (from
MBAR39), as a function of n, computed from small-sample ST simulations. Panels a-d: M ) 1, 5, 10, and 15. The values for
two sampling times are reported (0: 1.5 × 104 t-steps and b: 1.5 × 106 t-steps). Dashed lines are drawn to highlight the zero.
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worthwhile observing the absence of several points in Figure
2 due to the fact that weight estimates are still not available.
This occurs at the shortest time (1.5 × 104 t-steps), for large
n and small M. Such a feature is explained considering that
replicas are initially distributed in order of increasing
temperature. This implies that the first available weight
estimates are associated with transitions between ensembles
at low temperature, corresponding to small n values. The
remaining weights are obtained when ensembles at high
temperature (large n values) start to be populated. In
particular, for M ) 15, optimal weights are available very
soon because all ensembles are populated at the beginning
of the simulation. This can be better appreciated in Figure
3, where we report the temperature of few replicas as a
function of time per replica. In the single-replica simulation,
a complete random walk in temperature is observable starting
from about 6 × 104 t-steps. This time is reduced to 2 ×
104, 1.5 × 104, and virtually, to 0 t-steps for M ) 5, 10, and
15, respectively. An interesting feature observable in Figure
3 is the stair-like increase of the temperature in the initial
part of the simulations. The step size is clearly correlated,
but not necessarily equal, to the update frequency of optimal
weights. After the highest temperature is reached, all replicas
start to move through the ensembles with typical random
walk. This can be observed for any M, though for large M,
random walk may start well before the highest temperature
ensemble is populated. This behavior highlights how the free
energy perturbation approach (point 3b in Section 3.2) may
enhance the exploration of ensembles in the early stages of
the simulation.

It is also insightful to compare BAR-SGE method with
other schemes, self-adaptive in principle, devised to update
the optimal weights in SGE simulations. Recently, an
interesting algorithm has been developed by Park, Ensign,
and Pande34 (ABWHAM) within the framework of Bayesian
inference. ABWHAM is based on an updated scheme in
which the information from previous data is stored in a prior

distribution, which is then updated to a posterior distribu-
tion according to the new data. The basic parameters of
ABWHAM are the frequency of the histogram update
(temperature histogram in ST and λ-histogram in a generic
SGE simulation), the duration of the cycle of adaptation and
sampling, the Ω factor which regulates the refresh of some
variables of the method,34 and most importantly, the initial
guess for optimal weights. In our tests the temperature
histogram is updated every 2 t-steps, while analysis is
performed every 2000 t-steps. According to ref 34, we set
Ω ) 1. No initial guess is actually used in ABWHAM,
namely fn ) 0 for n ) 1, 2, ..., 15. Transitions between
ensembles are attempted every 10 t-steps, while the simula-
tion time is 5 × 106 t-steps per replica. We remark that our
analysis is not aimed at establishing the superiority of one
approach over the other (indeed, a systematic analysis on
more complex systems would be needed) but rather to show
how the choice of simulation parameters in the BAR-SGE
method might not be as crucial for reaching convergence as
it seems to be in the ABWHAM. The numerical comparison
is shown in Figure 4. We observe that, while BAR-SGE
algorithm gives accurate weights much before 5 × 105 t-steps
(also see previous discussion), ABWHAM converges at very
large times. In the latter method, we note a two-fold behavior.
Noisy estimates are obtained up until a given threshold time,
after which convergence is achieved in a very short period.
This threshold time is variable and corresponds to the last
refresh step.34 The iterations before the last refresh step
improve the initial guess and those after refine the posterior
distribution. This feature was also observed in ST simulations
of other simple models.34 From Figure 4 we realize that
statistical sampling is fundamental in reducing the threshold
time. In fact, in the M ) 15 simulation, it occurs at about
1.8 × 106 t-steps, while in the single-replica simulation, it
is never reached during the whole simulation period. One
could reduce the threshold time, and hence get a faster
convergence, by increasing Ω.34 A thorough analysis of this

Figure 3. Temperature of selected replicas as a function of time per replica obtained from small-sample ST simulations. Panels
a-d: M ) 1, 5 (black and red replicas start from temperatures T1 and T5, respectively), 10 (black and red replicas start from
temperatures T1 and T10, respectively), and 15 (black and red replicas start from temperatures T1 and T15, respectively).
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aspect would require a separate investigation and is far from
the aim of the present work. Anyway, the most critical aspect
of ABWHAM is the choice of the initial guess. If weights
are comparable, then fast convergence can be achieved
without initial guess.34 However, when the optimal weights
differ significantly, other methods, such as preliminary
conventional simulations, are needed to obtain accurate initial
guess and eventually to improve the convergence.22 De facto,
this makes ABWHAM not fully self-consistent. On the other
side, BAR-SGE algorithm allows to reach convergence
without resorting to preliminary simulations. A good com-
promise between computational cost and convergence rate
is roughly obtained when the number of replicas is compa-
rable to the number of ensembles, a requirement that can be
satisfied also with distributed computing clusters of modest
size. Moreover, a positive fact is that the method is quite
insensitive to the La and Lb parameters, provided N′ is of
the order of a few thousands. No significant differences are
observed in convergence features by increasing N′ (data not
shown).

Concerning the computational cost of BAR-SGE, two
important aspects must be remarked. First we note that no
significant overhead is observed with respect to standard
molecular dynamics simulations. The most time demanding
task is the application of eq 22, which roughly takes a
computer time comparable to that of a simulation step. From
this point of view, ABWHAM is more efficient. However,
since the update of the optimal weights is realized rarely,
the overall elapsed times of BAR-SGE and ABWHAM
simulations are comparable. Second, it is remarkable that,
for a given simulation time per replica, the 5, 10, and 15
replica simulations are only 1.001, 1.002, and 1.003 slower
than the single replica simulation.55 These quite unexpected
ratios come from two opposite effects. From one side, the
use of many replicas/processors makes the simulation
globally slower due to net communications between proces-

sors. From the other side, the simulation becomes faster
because the sums of eqs 22-24 are distributed among the
replicas/processors. Since the computational cost per replica
is almost independent of the number of replicas/processors
used in the simulation, we infer that the two competing
effects are nearly balanced in our case. However, it is obvious
that multiple replicas are preferable to single replica simula-
tions if we want to enhance sampling for a given computer
elapsed time.

5.1.2. Large-Sample Case. The biochemical systems typi-
cally investigated with molecular dynamics simulations are
quite complex, not only because of the roughness of their
free energy landscape but also due to the large number of
degrees of freedom. Both aspects contribute to slow down
the rate of convergence of any equilibrium sampling scheme,
including generalized-ensemble methods. The complexity of
the free energy landscape is intrinsically related to the
kinetics of the sampling mechanisms, because strong struc-
tural rearrangements are often required. On the other side,
the system size affects directly our capabilities of performing
simulations long enough to produce adequate sampling. In
ST simulations of large systems, an additional problem
occurs. In order to get non-negligible acceptance ratios, a
large number of ensembles/temperatures must be employed,54

making the average transition rate between lowest and
highest temperatures, and hence between free energy minima,
slower. This is essentially due to the fact that the overlap of
the potential energy distributions at two different tempera-
tures decreases with increasing system size. Simulated solute
tempering18,19 was just devised to reduce the number of
atoms contributing to the potential energy distributions thus
enhancing their overlap and eventually increasing the ac-
ceptance ratios. As a matter of fact, this could be a drawback
when a SGE method, such as ABWHAM, is based on a
thorough exploration of the temperature space. Moreover, it
is unclear if ST simulations based on approximate estimates

Figure 4. Comparison between BAR-SGE and ABWHAM optimal weights as a function of time per replica obtained from small-
sample ST simulations (as in Figure 1). Red: BAR-SGE; black: ABWHAM. From top to bottom: ∆f1f2, ∆f6f7, ∆f10f11, and ∆f14f15.
Panels a-d: M ) 1, 5, 10, and 15. Dotted lines represent extensions of the last-time weights calculated with BAR-SGE approach;
they are drawn to make easier the comparison.
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of weight factors may yield effective sampling in the
necessarily limited time of the simulation (think, e.g., to
the replica exchange simulated tempering method31 or to the
method based on potential energy averaging proposed in ref
22). In the present section, we address these issues by
analyzing ST simulations of a medium-large sample (14 000
particles) realized with three sampling schemes, namely
BAR-SGE, ABWHAM, and the standard method employing
fixed weights obtained by averaging the potential energy
from short preliminary simulations22 (from now on denoted
with FW-SGE). In all cases, 30 ensembles/temperatures have
been used (N ) 30) with the temperature distribution rule
reported in Section 4. To speed up the sampling, we have
decided to use 30 replicas (M ) 30), initially distributed over
all ensembles (one replica per ensemble). The parameters
for the BAR-SGE simulation are La ) 1, Lb ) 1000, Lc )
10, and N′ ) 1000. In the ABWHAM simulation, the
temperature-histogram is updated every 1 t-step, while
analysis is performed every 1000 t-steps. The other param-
eters of ABWHAM are those adopted in small-sample
simulations. Reference optimal weights have also been
calculated using MBAR.39 Analogously to the small-sample
case, in MBAR calculations the potential energy has been
sampled with a frequency of 1 t-step from 30 independent
equilibrium simulations (one per ensemble/temperature)
lasting 5 × 105 t-steps each (five times longer than the ST
simulations). The reference optimal weights, ∆f nfn+1

ref , are
reported in Table 1. The weight factors used in the FW-
SGE simulations have been obtained following ref 22

for n ) 1, ..., N - 1. The quantities En and En+1 are average
potential energies estimated from standard simulations at the
temperatures Tn and Tn+1. Here we report on the results of
three FW-SGE simulations, indicated as FW-SGE-a, -b, and
-c, whose weight factors are calculated by averaging the
potential energy over 300, 1000, and 3000 t-steps, respec-
tively. The deviations of the three sets of weight factors from
the reference ones, gn+1 - gn - ∆f nfn+1

ref , are shown in Figure
5. We note that the absolute deviations are globally ordered
as FW-SGE-a > -b > -c. This is simply due to the time
interval considered for computing the average potential
energies, which follows the reverse order. It is also important
to note the almost systematic negative deviation of the

estimated weights from the reference ones, which is larger
at lower temperature (small n values in Figure 5). This feature
is clearly correlated with the fact that equilibrium is obtained
in longer time at low temperatures. Lack of equilibrium is
generally accompanied by an overestimate of the potential
energy and, according to eq 28, by an underestimate of gn+1

- gn. In spite of this, it is however worth noting that the
weight factors of the FW-SGE-c simulation well approximate
the reference ones, being the difference in most cases much
lower than 0.5. Also the weight factors for the FW-SGE-b
simulation approximate the reference weights quite satisfac-
torily, especially for temperatures higher than 0.744 (i.e., n
> 10). Marked deviations from the ideal conditions are
instead observed for the FW-SGE-a weights. In order to
evaluate the efficiency of the average energy approach
(summarized by eq 28) in producing random walks in
temperature space, temperature histograms have been cal-
culated from the FW-SGE-a, -b, and -c simulations. In
particular, four histograms related to different time intervals
are reported in Figure 6. The histograms obtained from a
ST simulation performed with fixed optimal weights (those
of Table 1) are also plotted for comparison (FW-SGE-ref in
the figure). As expected, the FW-SGE-ref simulation yields
almost flat histograms apart from the 0-25% time interval.
Probably, in this case, the histogram keeps significant
memory of the early stages of the simulation where equi-
librium is still not attained. The features of the histograms
computed from the FW-SGE-a, -b, and -c simulations are
consistent with the estimated weight factors. The ensemble
populations are inhomogeneous because weight factors
deviate from the reference ones. Considering the (negative)
deviations of gn+1 - gn (see Figure 5), we may also explain
the large population of the low-temperature states. In fact,
the apparent free energy difference between adjacent states,
corresponding to gn+1 - gn, is systematically smaller than
the real (reference) value, fn+1 - fn. As a consequence, the
state with higher free energy, namely the n + 1 state, is
sampled with a lower weight factor with respect to the ideal

Table 1. Reference Optimal Weightsa

n ∆f nfn+1
ref n ∆f nfn+1

ref n ∆f nfn+1
ref

1 3328.53 11 2536.52 21 1919.51
2 3240.23 12 2467.65 22 1865.84
3 3153.97 13 2400.49 23 1813.54
4 3069.99 14 2334.93 24 1762.54
5 2988.03 15 2270.98 25 1712.85
6 2907.98 16 2208.72 26 1664.35
7 2829.99 17 2147.93 27 1617.10
8 2753.77 18 2088.59 28 1571.02
9 2679.59 19 2030.86 29 1526.09
10 2607.14 20 1974.37

a Calculated from 30 independent equilibrium simulations using
MBAR.39 The temperatures are distributed following the rule Tn+1

) 1.02419 Tn, where T1 ) 0.6.

gn+1 - gn ) 1
2

(�n+1 - �n)(En + En+1) (28)

Figure 5. Deviations of the weight factors used in the fixed-
weight ST simulations of the large sample from the reference
ones calculated using MBAR39 (the latter from Table 1). The
weight factors have been calculated from eq 28, averaging
the potential energy over 300 (FW-SGE-a: /), 1000 (FW-SGE-
b: 9), and 3000 (FW-SGE-c: O) t-steps in 30 standard
simulations (one for each temperature). Dashed line repre-
sents the zero. Lines are drawn as a guide for eyes.
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case, ultimately leading to underpopulation of the state itself.
A quite surprising aspect of the histograms of Figure 6 is
instead the extent of inhomogeneity as compared to the
observed deviations gn+1 - gn - ∆f nfn+1

ref . In the FW-SGE-a
simulation, the population of states corresponding to n > 2
is practically 0. The flattening of the histograms slightly
enhances passing to FW-SGE-b and then to FW-SGE-c
simulations. However, also in the last case, although accurate
weight factors are employed, the inhomogeneity remains
significant. Note that the histograms observed in the 0-25%
time interval keep strong memory of the initial homogeneous
distribution of the replicas. The above observations suggest
that, in order to get homogeneous sampling in ST simulations
of large systems with fixed weight factors, temperature-
dependent free energies (viz. weight factors) need to be
estimated very accurately. Unluckily, adequate accuracy
cannot be gained without efficient sampling. This vicious
cycle supports the idea that only refinement protocols, such
as BAR-SGE or ABWHAM, may ensure exhaustive sam-
pling through the ensembles/temperatures. In the ABWHAM
simulation reported here, the initial weight factors are those
of the FW-SGE-b simulation, while no initial guess is
employed for the BAR-SGE simulation. In Figure 7 we
report the difference ∆fnfn+1 - ∆f nfn+1

ref between BAR-SGE/
ABWHAM and MBAR optimal weights as a function of n
(as resulting at the end of the simulations). The dispersion
of ∆fnfn+1 - ∆f nfn+1

ref about the zero obtained from AB-
WHAM is due to the occurrence of refresh steps (see also
discussion in Section 5.1.1). However, although full con-
vergence is not reached with ABWHAM, the weights
calculated by averaging the estimates over the whole
simulation run provide much better agreement with the
reference (see asterisks in Figure 7). The optimal weights
estimated from BAR-SGE are instead very accurate. These
convergence features are pretty mirrored by the temperature
histograms obtained from the two methods (see Figure 8).
The flattening of the histogram during the progress of the

simulation is more evident for BAR-SGE than for AB-
WHAM, consistently with the noisy trend of the ABWHAM
weights. Finally, it is remarkable that in the last time interval
(75-100%), BAR-SGE and FW-SGE-ref give comparable
results.

In BAR-SGE, the refinement of the optimal weights,
∆fnfn+1 (for n ) 1, ..., N - 1), is based on the periodic
estimate of free energy uncertainties (eq 23), employed in
the weighted average of eq 25 (see Section 3.3). For each
∆fnfn+1, the set of uncertainties calculated during the
simulation provides also the global error, δ(∆fnfn+1), via eq
26. In the present case, all δ(∆fnfn+1) fall in the range
0.0077-0.0105, the average value being 0.0092. The errors
on the optimal weights can give information about the
probabilities of visiting the various ensembles/temperatures.
We know that, if ∆fnfn+1 were not affected by error, then
all ensembles/temperatures would be populated with the same
probability. In such a situation, the ratio between the
probabilities of two ensembles, say n and m, can be written
as Pn/Pm ) Zn/Zm exp(∆fmfn) ) 1 (see eq 9). If ∆fmfn is

Figure 6. Ensemble/temperature populations as a function
of the temperature label, n, computed from the fixed-weight
ST simulations of the large sample. Panels a-d are FW-SGE-
a, -b, -c, and -ref, respectively.The colors refer to the
populations calculated in different time intervals (given as
percentage of the total simulation time per replica).

Figure 7. Differences ∆f nfn+1 - ∆f nfn+1
ref between BAR-SGE/

ABWHAM optimal weights, ∆fnfn+1, and the reference ones,
∆fnfn+1

ref (from MBAR39) as a function of n, computed from
large-sample ST simulations. The full circles (b) indicate the
differences of the BAR-SGE estimates. The open squares (0)
indicate the differences of the ABWHAM estimates performed
at the last simulation step. The asterisks (/) indicate the
differences calculated by averaging the ABWHAM estimates
done at each analysis (see text for details). Dashed line is
drawn to highlight the zero.

Figure 8. Ensemble/temperature populations as a function
of the temperature label, n, computed from the BAR-SGE/
ABWHAM ST simulations of the large sample. Panels a and
b are BAR-SGE and ABWHAM, respectively. The colors refer
to the populations calculated in different time intervals (given
as percentage of the total simulation time per replica).
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affected by the error δ(∆fmfn), then the ratio Pn/Pm will vary
the most in the range:

In the previous equation the error coming from histogram
sampling has been assumed negligible. Therefore, it repre-
sents the error associated with inaccurate determination of
the optimal weights rather than with inaccurate sampling of
the temperature space. From eq 29 we infer that errors in
determining optimal weights do affect the ratio in asymmetric
way. Symmetry is obtained in the limit of small δ(∆fmfn)
(expand the exponential of eq 29 in Taylor’s series about
the zero). Considering the maximum error on ∆fnfn+1 in our
simulation, i.e. 0.0105, the previous equation establishes that
the ratio Pn/Pn+1 ranges in the interval 0.99-1.01 (difference
of ∼1% with respect to the theoretical value of 1). An
overestimate of the maximum change in the ratio PN/P1

involving the end states can also be gained from eq 29
assuming that

We have found PN/P1 ) 0.77-1.31, which corresponds to a
maximum deviation from 1 by 31%.

5.2. SGE Simulations in λ-Space. As previously stated,
we also report on the results of a SGE simulation performed
in ensembles associated with a parameter, λ, bound to the
distance between two particles (λ-ensembles). Although
various SGE simulations have been carried out (M ) 1, 5,
and 10), we decided to report only the outcomes of the 10-
replica simulation, because the features dependent on M are
similar to those discussed for ST simulations. The relevant
parameters in t-step units are La ) 10, Lb ) 2 × 104, Lc )
100, and N′ ) 2000. The convergence features of the method

are shown in Figure 9, where we report four representative
optimal weights corresponding to the ensemble transitions
λ1 ) 0.5 h λ2 ) 0.65, λ10 ) 1.85 h λ11 ) 2.0, λ16 ) 2.75
h λ17 ) 2.9, and λ20 ) 3.35 h λ21 ) 3.5. Results from a
10-replica simulation using ABWHAM are also reported in
the figure for comparison. In this last simulation, the
λ-histogram is updated every 10 t-steps, while weight
analysis is performed every 2 × 104 t-steps. As usual, Ω )
1. Transitions between ensembles are attempted every 100
t-steps, while the simulation time is 1.5 × 106 t-steps per
replica. At variance with the ST case, in this ABWHAM
simulation we have used an initial guess for optimal weights,
drawn from a prior ABWHAM-based simulation of 1.5 ×
106 t-steps per replica, during which refresh was active. Note
that, in the present simulation, no refresh steps were
necessary. Reference optimal weights from thermodynamic
integration23 are also plotted in Figure 9. Thermodynamic
integration data are recovered from canonical simulations
of 5 × 106 t-steps (density ) 0.85 and temperature ) 0.6).
The dimensionless Hamiltonian associated with the various
ensembles is reported in eq 15, with a force constant k of
25. The λ-step size for numerical integration is 0.05. From
Figure 9 we note that the two update methods give
comparable convergence. We must, however, remember that
ABWHAM weights come from a longer simulation history
targeted to the initial guess. It is remarkable that, in the BAR-
SGE method, even the early estimates well agree with the
values obtained from thermodynamic integration and from
ABWHAM. Comparable to ST simulations, λ-ensembles are
populated very quickly. This is clearly shown in Figure 10,
where we report λ as a function of time per replica. The
features of Figure 10 strongly resemble those of Figure 3,
whether in the random walk through the various ensembles
or in the stair-like trend characterizing the λ evolution at
early times.

Figure 9. Representative optimal weights as a function of time per replica obtained in 10-replica SGE simulations in λ-space.
Panels a-d: ∆f1f2, ∆f10f11, ∆f16f17, and ∆f20f21. Solid and dot-dashed lines are obtained from simulations using BAR-SGE
scheme and ABWHAM, respectively. Dashed lines represent reference values calculated by thermodynamic integration.

Pn
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)
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Furthermore, it is instructive to analyze how the PMF
along the λ coordinate is built up during the sampling. The
PMF is recovered from the optimal weights as

In Figure 11, we plot the PMF calculated at various times
with BAR-SGE and ABWHAM approaches and compare
such profiles to the reference one. The most evident feature
is that BAR-SGE method, at variance with ABWHAM,
needs a certain time to complete PMF construction. This time
may depend on the system type and, in general, can be
reduced by increasing the number of walking replicas (see
discussion in Section 5.1). On the other side, the PMF curve
at early times (see t ) 0.1 curve in Figure 11a), although
incomplete, is very accurate and would not seem to require
further refinement. However, for better evaluating the relative
(though not optimized) performances of the BAR-SGE
scheme and the ABWHAM, we must remember that in the
latter case a preliminary simulation has been carried out to
recover an initial guess. We finally note that the errors on

the free energy differences between adjacent states calculated
by eq 26 fall well below 0.01. The maximum error on the
free energy difference between the end states calculated from
eq 30 is 0.07.

Unbiased PMF profiles along the collective coordinate
associated with λ (the interparticle distance in our case) can
also be calculated in posterior analysis (data not shown) using
multiple-histogram reweighting techniques25,26 or other
recent approaches developed in the framework of nonequi-
librium statistical mechanics.46,47

5.3. How Eq 24 Does Affect the Acceptance Ratio in
SGE Simulations. The effect of using eq 24 in SGE
simulations is that of enhancing the acceptance ratio for those
transitions that promote a replica toward ensembles that have
not been visited. Suppose, for instance, to set up a M-replica
ST simulation with N ensembles (with N > M) by associating
replica 1 to the ensemble with temperature T1, replica 2 to
the ensemble with temperature T2, and so on, until the
ensemble with temperature TM. As usual, we assume that
the temperatures are in order of increasing index and that
transitions occur only between neighboring temperatures. On
the basis of the BAR-SGE scheme, the transition TMf TM+1

can be attempted only using an estimate of ∆fMfM+1 from
eq 24. In fact, works W[M + 1 f M], needed to employ eq
22, are not available because the ensemble M + 1 has never
been visited. A similar situation would occur if the replicas
were distributed with reverse order. Therefore, the free
energy estimates provided by eq 24 are important in the early
stages of the simulation because they affect directly the
diffusion of replicas through the ensembles.

As an example, we calculate the distribution function of
the acceptance ratio for the transition T13f T14 in our model
system. To this aim, we consider all W[13f14] work values
recorded during the 15-replica ST simulation. For our
purpose, since we are interested only in a set of work values,
M does not matter. Then we have partitioned the set of works
in several independent subsets, each made of D elements
(here D ) 100, 300, and 1000). For each subset we have
calculated ∆f13f14 according to eq 24, thus obtaining a
collection of reliable optimal weights. These weights have
then been employed to compute the average acceptance ratio
from the whole original set of works. In such a way it is
possible to construct distribution functions of average ac-
ceptance ratios. The distribution functions recovered using
D ) 100, 300, and 1000 are plotted in Figure 12. They are
very broad, but the relevant fact is the shift toward higher
values of the acceptance ratio with decreasing D, namely
the number of work samples used for calculating ∆f13f14.
The average acceptance ratio is 0.31, 0.27, and 0.24 for D
) 100, 300, and 1000, respectively. These differences arise
from the fact that ∆f13f14 is as much overestimated as D is
smaller, in agreement with previous observations on the
convergence properties of work exponential averages.52

When D increases, ∆f13f14 approaches the exact value as
well as the resulting acceptance ratio. This conclusion is also
supported from the average acceptance ratio obtained using
the reference optimal weight (from MBAR). Its value, 0.22,
is ∼9% smaller than that obtained from 1000 samples. This
difference, though not negligible, reveals that already 1000

Figure 10. Value of λ as a function of time per replica for
two replicas taken from the BAR-SGE-based 10-replica
simulation. Black and red lines are related to replicas starting
from λ1 and λ10, respectively.

Figure 11. Potential of mean force (adimensional units) as
a function of λ calculated from 10-replica SGE simulations at
various times (in 106 units). Open circles (O): data from SGE
simulations, and solid lines: data from thermodynamic integra-
tion. Panels a and b: simulations adopting BAR-SGE scheme
and ABWHAM, respectively. For the sake of clarity PMF
profiles are shifted.

f(λn) ) ∑
i)1

n-1

∆fifi+1 (31)

1948 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Chelli



samples are sufficient to get good free energy estimates from
eq 24. In fact, the reference value of ∆f13f14, 459.79, is only
0.12 smaller than the average value calculated using D )
1000.

6. Concluding Remarks

In serial generalized-ensemble simulations, such as simulated
tempering, weight factors must be determined somehow to
allow a random walk in the space of the chosen collective
coordinate (the temperature in simulated tempering). In this
respect, adaptive methods, such as BAR-serial generalized-
ensemble (BAR-SGE) and Bayesian weighted histogram
analysis method (ABWHAM), may provide effective routes
to the fast determination of weight factors without resorting
to preliminary simulations. This is indeed an advantageous
feature of BAR-SGE and ABWHAM because, as we have
shown in the present work (Section 5.1.2), initial estimates
of weight factors from preliminary simulations must be very
accurate to ensure an almost random walk of the replicas
through the ensemble space. Even a small underestimate of
the weight factors, which typically occurs as equilibrium is
still not achieved, may lead to significant inhomogeneous
sampling. In this respect, the BAR-SGE method offers
interesting perspectives in enhancing the convergence of
optimal weights with minimal introduction of tunable
parameters. The truly relevant parameter entering into play
is the update frequency of weights, which must ensure the
storage of a sufficient number of work samples (see eq 20)
needed to get accurate free energy estimates (see eq 22).
The minimum value of the number of samples ranges from
one thousand to a few thousand. It is also important to remark
that in a suitable adaptive method, each update should in
principle account for the uncertainty associated with the
individual estimates. BAR-SGE scheme includes such a
feature by a variance-weighted sum of the individual
estimates (Section 3.3). In SGE simulations realized in the
space of a collective coordinate of the system, the possibility
of calculating the uncertainties of the free energy differences
between neighboring ensembles provides a way of estimating
the error in the potential of mean force. Furthermore, since
the update of a single weight involves data from only two

neighboring ensembles, the computational cost of BAR-SGE
is much smaller than that of multiple-histogram reweighting.
In the case of our BAR-SGE simulations, using 5, 10, and
15 replicas leads to an increase of the elapsed time per replica
by only 1.001, 1.002, and 1.003, respectively, with respect
to the single-replica simulation. This put forward the BAR-
SGE algorithm as a suitable methodology for large comput-
ing distributed environments.
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