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In replica exchange simulations, a temperature ladder with N rungs spans a given temperature interval.
Considering systems with heat capacities independent of the temperature, here we address the question
of how large N should be chosen for an optimally fast diffusion of the replicas through the temperature
space. Using a simple example we show that choosing average acceptance probabilities of about 45% and
computing N accordingly maximizes the round trip rates r across the given temperature range. This result
differs from previous analyses which suggested smaller average acceptance probabilities of about 23%.
We show that the latter choice maximizes the ratio r=N instead of r.

� 2009 Published by Elsevier B.V.
1. Introduction

At given computer resources, the benefit of replica exchange [1–
3] (RE) simulations crucially depends on the choice of certain
parameters. Having chosen a temperature range ½Tmin; Tmax�, which
should be covered by the RE simulation, the optimal form of the
temperature ladder ðT1 ¼ Tmin; T2; . . . ; TN ¼ TmaxÞ is an important
issue [4–10]. Aiming at a minimal average round trip time of the
replicas in the temperature space and assuming a constant heat
capacity C, which should approximately apply to explicit solvent
simulations [11], Nadler and Hansmann [9] have derived a formula

N � 1þ 0:594
ffiffiffi
C
p

ln ðTmax=TminÞ ð1Þ

for the number N of rungs in the temperature ladder. In Eq. (1) the
(extensive) heat capacity C is given in units of the Boltzmann con-
stant kB and refers to the potential energy part of the total energy.
As suggested by Okamoto et al. [12], from N one can determine the
temperature rungs Ti; i ¼ 1; . . . ;N, in the ladder by

Ti ¼ TminðTmax=TminÞði�1Þ=ðN�1Þ
: ð2Þ

This choice is generally expected [3] to provide equal exchange
probabilities paccðTi; Tiþ1Þ ¼ paccðNÞ along the N-rung ladder.

Defining the function

aðNÞ � ðTmax=TminÞ1=ðN�1Þ
; ð3Þ

one immediately finds that the temperature rungs are given by the
recursion

Tiþ1 ¼ TiaðNÞ: ð4Þ

Thus, for a given N, the ratio Tiþ1=Ti is the constant aðNÞ. For such a
ladder and normally distributed potential energies, which is, along
Elsevier B.V.

. Tavan).
with a constant heat capacity, typical for explicit solvent simulation
systems, the average acceptance probabilities are very well approx-
imated [6] by

paccðNÞ ¼ erfc
ffiffiffi
C
p aðNÞ � 1

aðNÞ þ 1

� �
; ð5Þ

where erfcðx0Þ ¼ 2=
ffiffiffiffi
p
p R1

x0 expð�x2Þdx is the complementary error
function.

In summary, for a ladder spanning the temperature range
½Tmin; Tmax� by the exponential spacing law Eq. (2), the temperature
rungs Ti are uniquely given by N. Assuming a constant heat capac-
ity and normally distributed potential energies, such a ladder then
actually provides equal average acceptance probabilities [Eq. (5)].
Therefore, temperature ladders obeying Eqs. (2) and (5) are un-
iquely specified by choosing either a certain number N of rungs
or a certain average acceptance probability pacc.
2. Methods and simulation set-up

To check whether the formula given in Eq. (1) and suggested by
Nadler and Hansmann [9] actually yields RE temperature ladders
with minimal round trip times, we have designed simple test sys-
tems suited for computationally inexpensive RE Monte Carlo
(REMC) simulations. The systems consist of d independent one-
dimensional and harmonic oscillators in the canonical ensemble
(we have chosen the same potential E ¼ x2 for all oscillators). At
each REMC step the coordinates of all d oscillators in a replica
are randomly drawn from the associated normal distributions,
the total energy Ei of the system at temperature Ti is calculated,
and an exchange of systems at neighboring [3] temperatures is at-
tempted with the Metropolis probability [13] pði; iþ 1Þ ¼
minf1; exp½ð1=kBTiþ1 � 1=kBTiÞðEiþ1 � EiÞ�g. We employed the stan-
dard exchange scheme [1], which alternately attempts exchanges
between ‘even’ ðT2i; T2iþ1Þ and ‘odd’ ðT2i�1; T2iÞ replica pairs. Below
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we call this RE scheme, which combines the standard exchange
with the standard Metropolis criterion, the standard RE set-up.

Note the important fact that the heat capacity of our test system
is independent of the temperature and is given by C ¼ d=2. There-
fore, it matches the conditions assumed in the derivation of Eq. (1).
Note furthermore that the force constants of the harmonic oscilla-
tor potentials are of no concern because the Metropolis probability
solely depends on the overlaps of the energy distributions.

First we consider the case d ¼ 100. As extremal temperatures
we choose Tmin ¼ 300 K and Tmax ¼ 800 K. With these parameters,
Eqs. (1), (2), and (5) yield N ¼ 5, the temperature ladder (300,
383.4, 389.9, 626.0, 800), and the average acceptance probability
pacc � 22%, respectively. Previously also Kone and Kofke [6] and
Rathore et al. [5] have suggested an acceptance probability of
about 23% to be optimal. Thus, choosing the number of rungs
through Eq. (1) seems to yield a reasonable acceptance probability.

The question as to whether the above choice actually entails
minimal round trip times in REMC simulations can be addressed
by comparing the set-up outlined above with alternatives defined
by different choices of N. We tested ladders with
N 2 f3;4; . . . ;9;10;12; . . . ;18;20g each spanning the same temper-
ature range [300 K, 800 K]. Every associated REMC simulation cov-
ered S = 500000 MC steps. From each of these REMC simulations
we determined the number of round trips MðNÞ. Here, a round trip
was counted whenever a selected replica that started at Tmin sub-
sequently reached Tmax and eventually returned to Tmin. Consider-
ing instead of the round trip time sðNÞ of a replica its inverse, the
round trip rate rðNÞ � MðNÞ=S, we asked which acceptance proba-
bility paccðNÞ [cf. Eq. (5)] belongs to the maximal rate rðNÞ mea-
sured in any of our simulations.

3. Results

Fig. 1 shows the measured round trip rate r as a function rðpaccÞ
of the average acceptance probability pacc. Two data points are
additionally marked by the numbers of rungs in the associated lad-
ders ðN ¼ 5;N ¼ 7Þ. According to the graph the round trip rate r is
maximal at pacc � 0:42 belonging to the N ¼ 7 rung ladder. This re-
sult differs from the expectation voiced above that r should be
maximal at pacc � 0:22 or N ¼ 5, respectively.

This surprising result raises the question why Eq. (1) yields a
prediction for the optimal N (or pacc) differing from the measured
one. Nadler and Hansmann [9] started the derivation of Eq. (1)
by assuming for the round trip rate the plausible relation
rðpacc;NÞ ¼ kpacc=NðN � 1Þ with a certain constant k > 0. Using this
assumption, one predicts that the rate rð0:22;5Þ ¼ k0:22=
5ð5� 1Þ � 0:011k should be larger than the rate rð0:42;7Þ ¼
k0:42=7ð7� 1Þ � 0:010k, which is clearly at variance with the re-
sults of our simulation. Thus, the quoted relation does not yield
Fig. 1. Measured round trip rates r as a function of the average acceptance
probability pacc.
the correct round trip rate rðpaccÞ and, correspondingly, the choice
of the ladder size N through Eq. (1) does not maximize r, if the stan-
dard RE set-up is used.

To understand how r depends on pacc we introduce the average
(and relative) temperature move

jðTi; Tiþ1Þ � paccðTi; Tiþ1Þ
Tiþ1 � Ti

Ti
ð6Þ

of a replica per exchange trial (here one MC step). j measures the
average velocity of the replicas in a properly scaled temperature
space. This definition is motivated by our assumption that the aver-
age replica velocity j should be proportional to the round trip rate,
i.e. that j ¼ fr with a constant f > 0. Thus, we expect the largest
round trip rates r for the largest velocities j.

Using Eq. (4) and inverting Eq. (5) one finds for the average rep-
lica velocity

jðpaccÞ ¼ pacc
2erfc�1ðpaccÞffiffiffi
C
p
� erfc�1ðpaccÞ

; ð7Þ

where erfc�1 denotes the inverse of the complementary error func-
tion. Thus, in contrast to the impression evoked by the definition in
Eq. (6), j is a constant within a given temperature ladder (because
pacc is a constant across each ladder).

The lines in Fig. 2 are the graphs of the function jðpaccÞ given by
Eq. (7) for systems with small and large heat capacities C ¼ d=2.
For d ¼ 100 (solid) the velocity j becomes maximal at pacc � 0:42
(i.e. at N ¼ 7) and for d ¼ 1000 (dashed) at pacc � 0:44 (i.e. at
N ¼ 22). Fig. 2 additionally displays scaled round trip rates fr mea-
sured for the small ðf ¼ 9:71Þ and the large system ðf ¼ 24:6Þ,
respectively. The good match of the scaled rates frðpaccÞ (circles/
squares) with the respective graphs jðpaccÞ verifies our assumption
that the average velocity jðpaccÞ of the replicas in scaled tempera-
ture space is proportional to the round trip rate rðpaccÞ. Note that
the value of the optimal average acceptance rate, at which the
round trip rate r becomes maximal, depends only weakly on the
system size d.

The noted weak dependence of the optimal average acceptance
probability pacc on the system size d ¼ 2C can be understood by
considering the limit of large systems ðC !1Þ. Using Mathematica
[14] we have determined the derivative j0ðpaccÞ � dj=dpacc and its
first order Taylor expansion j0ðpaccÞ ¼ a0 þ a1pacc þ Oðp2

accÞ at
pacc ¼ 0:5. In linear approximation j0 vanishes at p0

acc ¼ �a0=a1

which is given by

p0
acc � 0:45þ g=

ffiffiffi
C
p

ð8Þ
Fig. 2. Average replica velocity j in scaled temperature space as a function of the
average acceptance probability pacc. The lines are graphs of jðpaccÞ calculated from
Eq. (7) for d ¼ 100 (solid) and d ¼ 1000 (dashed). The dots are the round trip rates r
of Fig. 1 scaled by the factor f ¼ 9:71. The squares are round trip rates scaled by
f ¼ 24:6 and resulting from REMC simulations of d ¼ 1000 oscillators. Here, the
rung numbers N 2 f10;14;18;22;30;40g increase from left to right.



Fig. 3. k ¼ j=N as a function of the average acceptance probability pacc. The lines are
the graphs of Eq. (10) for d ¼ 100 (solid) and d ¼ 1000 (dashed).
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with the constant g being of the order of �0.1. Thus for large sys-
tems the location p0

acc of the maximum of j approaches 0.45 from
below. Note that we have also checked the limiting value 0.45 by
numerically analyzing Eq. (7) for very large C.

The thus established limiting value of the optimal average
acceptance probability leads to a new estimate

N � 1þ ð
ffiffiffi
C
p

=ð2� 0:534Þ � 1=2Þ lnðTmax=TminÞ ð9Þ

for the optimal number of rungs in the associated temperature
ladder. For computing Eq. (9) we have used Eq. (5), erfc�1ð0:45Þ �
0:534, and ln½1þ 2� 0:534=ð

ffiffiffi
C
p
� 0:534Þ� � 2� 0:534=ð

ffiffiffi
C
p
� 0:534Þ

for large C.
In summary, to maximize the round trip rate or minimize the

round trip time, respectively, Eq. (9) has to be used instead of Eq.
(1). From a practical point of view, however, instead of aiming at
the maximal round trip rate, one may be content with a subopti-
mal rate if this choice is associated with a reduced computational
effort. Instead of maximizing j one may therefore consider the
quantity

kðpaccÞ � jðpaccÞ=NðpaccÞ; ð10Þ

which exhibits a penalty linear in the number N of rungs. Fig. 3
shows the graphs of kðpaccÞ for d ¼ 100 (solid line) and d ¼ 1000
(dashed line). In both cases k is maximal at pacc � 0:23. Applying
once again the reasoning used in the derivation of Eq. (8) one finds
that the optimal pacc approaches 0.234 for C !1. This result leads
to the estimate

N � 1þ ð0:594
ffiffiffi
C
p
� 1=2Þ lnðTmax=TminÞ ð11Þ

for the number of rungs optimizing the specific compromise
k ¼ j=N between the round trip rate r and the number N of replicas.

Note here that Eqs. (11) and (1) become identical for large C.
Thus, the number of rungs resulting from Eq. (1) effectively maxi-
mizes k instead of j (or, equivalently, a ladder size penalized round
trip rate r=N instead of the round trip rate r). That Nadler and
Hansmann [9] have effectively maximized k instead of r can be
alternatively understood by inserting the definition Eq. (6) into
(10). Using subsequently Eq. (4) and the approximation
ðTmax=TminÞ1=ðN�1Þ � 1þ lnðTmax=TminÞ=ðN � 1Þ, which holds for large
N, one finds k � pacc lnðTmax=TminÞ=½NðN � 1Þ� such that k / pacc=

½NðN � 1Þ�. Recall now that Nadler and Hansmann erroneously as-
sumed a relation of this kind for the round trip rate r (i.e. for j).

We would like to remark that our results are transferable to
simulated tempering [15,16] (ST) simulations. For ST, the average
acceptance probability is given by

pST
accðNÞ ¼ erfc

ffiffiffiffiffiffiffiffiffi
C=2

p aðNÞ � 1
aðNÞ þ 1

� �
: ð12Þ

which is obtained from the RE expression Eq. (5) through replacing
C by C=2 [5,17]. In the limit of large systems also C=2 becomes large
and the optimal value of pST

acc is likewise at 45% or 23% depending on
the optimized quantity. Similarly, the optimal N is given by Eqs. (9)
or (11), respectively, through replacing C by C=2.

4. Summary

For simulations employing the standard RE set-up, we have de-
rived with Eqs. (9) and (11) two formulas for the optimal sizes N of
temperature ladders obeying Eqs. (2) and (5). Here, optimal means
that either the round trip rate r or the compromise r=N with com-
putational effort is maximized. We have furthermore shown that
the suggestion Eq. (1) of Nadler and Hansmann [9] maximizes
the compromise r=N and not r, as claimed by the authors. An opti-
mal r is obtained with average acceptance probabilities of about
45%, whereas an optimal r=N requires values of 23% matching ear-
lier suggestions [6,5]. As a practical consequence of our study one
sees that average acceptance probabilities chosen in the range
from 20% to 45% are definitely ‘good’ choices featuring, however,
slightly different merits.
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