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“Extended Ensemble Monte Carlo” is a generic term that indicates a set of algorithms,
which are now popular in a variety of fields in physics and statistical information pro-
cessing. Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering), Sim-
ulated Tempering (Expanded Ensemble Monte Carlo) and Multicanonical Monte Carlo
(Adaptive Umbrella Sampling) are typical members of this family. Here, we give a cross-
disciplinary survey of these algorithms with special emphasis on the great flexibility of
the underlying idea. In Sec. 2, we discuss the background of Extended Ensemble Monte
Carlo. In Secs. 3, 4 and 5, three types of the algorithms, i.e., Exchange Monte Carlo,
Simulated Tempering, Multicanonical Monte Carlo, are introduced. In Sec. 6, we give
an introduction to Replica Monte Carlo algorithm by Swendsen and Wang. Strategies
for the construction of special-purpose extended ensembles are discussed in Sec. 7. We
stress that an extension is not necessary restricted to the space of energy or tempera-
ture. Even unphysical (unrealizable) configurations can be included in the ensemble, if
the resultant fast mixing of the Markov chain offsets the increasing cost of the sampling
procedure. Multivariate (multicomponent) extensions are also useful in many examples.
In Sec. 8, we give a survey on extended ensembles with a state space whose dimension-
ality is dynamically varying. In the appendix, we discuss advantages and disadvantages
of three types of extended ensemble algorithms.

Keywords: Extended Ensemble; Exchange Monte Carlo; Simulated Tempering; Multi-
canonical Monte Carlo; Replica Monte Carlo; Complexity Ladder; Bridge; Multivariate
Extension.

1. Introduction

In this paper, we will give a survey on Extended Ensemble Monte Carlo
algorithms,® which are useful tools in computational physics and in the fields of

*IJMPC has now taken over the book series Annual Reviews of Computational Physics published
before also by World Scientific.

2We choose “Extended Ensemble Monte Carlo” as a generic term to represent a family of algo-
rithms, which we want to discuss here, e.g., Exchange Monte Carlo, Multicanonical Monte Carlo,
etc. Another term, Generalized Ensemble Monte Carlo, is used by some authors. The term
Expanded Ensemble Monte Carlo, which we use here in a more restricted meaning, might
also be used in the generic meaning. However, the original definition! of Expanded Ensemble
Monte Carlo seems not to cover Exchange Monte Carlo.

623



624 Y. Iba

statistical information processing. Well-known algorithms in this family are Ex-
change Monte Carlo (Metropolis-Coupled Chain, Parallel Tempering),? ® Sim-
ulated Tempering (Expanded Ensemble Monte Carlo),"'? and Multicanonical
Monte Carlo (Adaptive Umbrella Sampling).!? 4 These approaches are charac-
terized by modification of ensembles sampled by the algorithm. In this respects, they
contrast with other attempts to overcome the limitation of conventional Dynamical

15,16

Monte Carlo, i.e., improved dynamics that preserve original ensembles and

improved algorithms that maintain original dynamics.'”
These algorithms are useful for the studies of stochastic models in various

12,18 7,13,19—30

fields of physics, e.g., spin models (Potts models, spin glass models,

random field models,” quantum spin models®'), polymer models (lattice poly-
mers,®32 diblock copolymer,®? lattice heteropolymers/proteins,3* 3% off-lattice
polymers,3239741 realistic protein/polypeptide models3842-49)
cules in vacuum or water,'®!1:59 hard core fluid (solid),""®1 %4 Lennard-Jones
fluid, 5556 models of aqueous solution,?”*® Lennard-Jones clusters,? lattice gauge
models,%%:%1 models of quantum gravity.®> They are also successfully used in sta-
tistical inference®53:%4 and combinatorics.%> Our aim here is, however, not to give
a list of references on this subject. Instead, we want to discuss basic ideas behind
algorithms and show relations and differences among the algorithms.

An important issue in this paper is the great flexibility of the idea of extended
ensemble, i.e., an extension is not necessary restricted to the space of energy or
temperature. In fact, extensions in the space of arbitrary macroscopic variables
are possible and useful (note that some authors already noticed this flexibility in
the early stage of the development of extended ensemble methods, e.g., Lyubartsev
et al.,! Kerler and Weber.'® See also the studies on Adaptive Umbrella Sampling
algorithm!®:!1). As we will discuss in Sec. 7, even unphysical (unrealizable) config-
urations can be included in the ensemble, if the fast mixing of the Markov chain
offsets the increasing cost of the sampling procedure. Such an observation enables
us a number of “special purpose” algorithms, which depend on specific properties

, models of mole-

of the model and the computational aims.

We are also careful to cross-disciplinary nature of this subject. The physicists
are no more the only major users of dynamical Monte Carlo algorithms. Many
algorithms have also been developed recently in various areas®6 68 that are often
overlooked by physicists. For example, Exchange Monte Carlo (Metropolis-Coupled
Chain, Parallel Tempering) is independently discovered by computer scientists
working for the fifth-generation computer project,?? a statistician,*® physicists,”
and the author.%

In Sec. 2, we discuss the background of Extended Ensemble Monte Carlo. In the
following three sections, Secs. 3, 4 and 5, three types of algorithms, i.e., Exchange
Monte Carlo, Simulated Tempering, Multicanonical Monte Carlo, are introduced.
In Sec. 6, we give an introduction to Replica Monte Carlo algorithm by Swendsen
and Wang,?®29
Monte Carlo algorithms. Strategies for the construction of special-purpose extended

which interpolates Extended Ensemble Monte Carlo and Cluster
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ensembles are discussed in Sec. 7. In Sec. 8, extended ensembles with a state space
whose dimensionality is dynamically varying are discussed. In the appendix, we
compare three types of extended ensemble algorithms and discuss their advantages
and disadvantages.

This paper was originally written as a part of the Ph.D. thesis by the author, and
then rewritten as an independent review paper. When I was writing the manuscript,
I discovered several interesting surveys on this subject. For example, a lecture note
by Marinari®® gives a survey on this field including Exchange Monte Carlo. The
book5® provides a cross-disciplinary survey on the recent progress of Monte Carlo
methods. Specifically, Berg!'* in Ref. 68 gives a recent review of Multicanonical
Monte Carlo and related topics. A review on the calculation of partition functions
(normalizing constants) by thermodynamic integration and/or Extended Ensem-
ble Monte Carlo from the viewpoint of statisticians is available in Ref. 70. Now,
there are increasing references in this field, but I hope that this review gives fresh
perspectives both for beginners and experts in this field.

2. From Natural Ensemble to Artificial Ensemble

Dynamical Monte Carlo algorithms are useful tools for sampling from non-Gaussian,
highly multivariate distributions. They, however, often suffer from slow mixing of
the Markov chains, or, in terms of physics, slow relaxation. Slow relaxation re-
duces the effective number of samples and sometimes leads to wrong results sen-
sitive to initial states of the Markov chain. There are several different situations
that lead to slow relaxation: (1) “Critical slowing down” near second order
phase transition points; (2) “Nucleation” associated with first order phase tran-
sitions; (3) Trapping in metastable states around local minima in models
with rugged energy landscapes. Difficulties of the category (3) are often encoun-
tered with “random frustrated systems” such as models of spin glasses, interacting
spins in random fields, and heteropolymers. Slow mixing also appears in complex
statistical inference problems, where models (i.e., likelihoods or priors, or both) are
highly non-Gaussian.

In the period 1985-1995, a powerful strategy to overcome the difficulties of
categories (2) and (3), Extended Ensemble Monte Carlo algorithms, has been in-
troduced.” Simulated Tempering (Expanded Ensembles), Exchange Monte Carlo
(Metropolis-Coupled Chain, Parallel Tempering), Multicanonical Monte Carlo
(Adaptive Umbrella Sampling) are well-known members of this family. While con-
ventional Dynamical Monte Carlo algorithms simulate a Markov chain, whose in-
variant distribution is a given target distribution (e.g., a Gibbs distribution for
statistical physics and a posterior distribution for Bayesian inference), Extended

bTt is believed that they are not useful to fight against difficulties of the category (1), critical
slowing down, to which Cluster Monte Carlo algorithms!® and Accelerated Hybrid algorithms6®
are successfully applied.
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Ensemble Monte Carlo algorithms sample from artificial ensembles that are con-
structed as extensions or compositions of the original ensembles. Fast mixing of
the Markov chain in higher temperature (energy, etc.) components of the artifi-
cial ensembles greatly facilitate the mixing in other components. Averages over the
original ensemble are calculated by marginalization (in Exchange Monte Carlo),
conditional sampling (in Simulated Tempering), or, a reweighting procedure (in
Multicanonical Monte Carlo). As we will represent in the next section, Sec. 3,
they can be interpreted as extensions of Simulated Annealing algorithms for finite
temperature simulations.

Acceleration of the relaxation is not the only aim of Extended Ensemble Monte
Carlo. There are at least two more motivations for the introduction of artificial
ensembles.

2.1. Calculation of integrals or summations

Calculation of multivariate integrals or multiple summations (e.g., free energy differ-
ence, marginal likelihood difference) is important in many applications, but cannot
be directly done with conventional Dynamical Monte Carlo algorithms. Extended
Ensemble Monte Carlo methods are particularly suitable for the calculations of
these quantities. As we will show in the following sections, Exchange Monte Carlo
naturally gives samples from a set of distributions necessary for thermodynamic in-
tegration. In Multicanonical Monte Carlo, integrals are calculated by a reweighting
formula. In both cases, we can enjoy the advantage of fast mixing with extended
ensembles without additional computational resources. On the other hand, there
are cases where the use of an extended ensemble is essential for the calculation of
integrals, as we will discuss in the section on Multicanonical Monte Carlo, Sec. 5.

2.2. Efficient sampling of “rare events”

Extended Ensemble Monte Carlo methods are also suitable for the calculation of
the frequencies of configurations with small probability in a given ensemble. For
example, we can use them for the calculation of the free energy surface as a func-
tion of one- or two-macroscopic variables. The relative error of the computation is
proportional to 1/ VM, where M is the frequency of independent visits to configu-
rations with a set of values of the macroscopic variables. Thus, with a conventional
Monte Carlo algorithm, the histogram in the log-scale contains large noise in low
probability regions. On the other hand, we can compute free energy surface with
much more uniform accuracy with Extended Ensemble Monte Carlo methods. We
will give some comments on the implementation of this idea in Sec. 7.

Calculation of free energy difference and free energy surface by artificial en-
sembles is especially stressed in the studies on Expanded Ensemble Monte
Carlo!325758 and Adaptive Umbrella Sampling.'%'"50 In this context, Ex-
tended Ensemble Monte Carlo is considered as a descendant of Umbrella Sam-
pling algorithms for the calculation of free energy, which was introduced by Torrie
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and Valleau™ in 1970s. In the original form of Umbrella Sampling algorithms, artifi-
cial ensembles were also used, but systematic ways for the construction of ensembles
had not been implemented. Implementation of such a procedure characterizes
Extended Ensemble Monte Carlo algorithms developed later.

An important feature shared by Extended Ensemble Monte Carlo and Um-
brella Sampling is that they are not designed for the direct simulation of natural
phenomena. Although conventional Dynamical Monte Carlo methods themselves
are something between simulation of physics and numerical methods, they are still
strongly motivated by simulation of physical dynamics — this is a reason why the
use of single-spin flip algorithms that directly sample Gibbs distributions has per-
sisted for half a century. On the other hand, Extended Ensemble Monte Carlo are
free from such restrictions. It does not mean that insight into the physics (or math-
ematics, statistics, etc.) of the problems are unnecessary. On the contrary, they are
essential for the construction of artificial ensembles for efficient computation. More-
over, the performance of simulation with an extended ensemble can be regarded as a
measure of our understanding of the underlying physical phenomena. Our belief is:

If an algorithm based on a physical picture is efficient, it supports the va-
lidity of the picture; if we understand the physics, we can write an efficient
algorithm.

This manifestation is also applicable to other “artificial” algorithms, say, Cluster

Monte Carlo'® or Hybrid Monte Carlo with acceleration.'®

3. Exchange Monte Carlo

A useful way for the search of ground states of complex models is Simulated
Annealing algorithm.”®™ The term “annealing” indicates that we start simulation
at a high temperature and gradually decrease temperature to zero. Then, there are
more chances of escaping from shallow local minima and reaching a deep local
minimum, or, if we are lucky enough, attaining the global minimum of the energy
function. Instead of the inverse temperature 3, we can use an arbitrary parameter
A to interpolate an “easy” problem (a problem with a smooth landscape) to the
original problem (a problem with a rugged landscape).

Simulated Annealing is, however, no more than a prescription for optimization,
i.e., it is useful for the computation of ground states of a system but does not
exactly give finite temperature properties of the system. Then, a question arises:
can we extend it for the sampling from multivariate distributions, e.g., sampling
from Gibbs distribution at finite temperatures? A naive method to achieve this
purpose is to start the simulation at a high temperature and gradually decrease
the temperature to the target temperature and keep it constant through the rest
of the simulation, where we measure the required quantities. This method has,
however, a fatal weak point that the annealing is useful for escaping from shallow
local minima but not for accelerating jumping between deep metastable states.



628 Y. Iba

To facilitate such jumping, we should not monotonically decrease the temperature
but make it “up and down” alternately. However, at a first glance, any attempt
to change the temperature by external programs, periodic or stochastic, seems to
violate the detailed balance condition, which is a foundation of Dynamical Monte
Carlo algorithms.

Here, we introduce Exchange Monte Carlo algorithm (Metropolis-
Coupled Chain algorithm,*® Time-homogeneous Parallel Annealing? (see
also Ref. 3), Multiple Markov Chain algorithm,® Parallel Tempering®’)
as a solution of the dilemma. The algorithm seems to have been independently
discovered by several different groups of authors in the period of 1990-19942:4.6:7
and, as a result, has a variety of different names.¢

Consider a set of the distributions {pj(x)} with different parameters® {\},
k=1,...,K and assume that the parameters are ordered as Ay > Ay > -+ > Ag.
An example is a family of the Gibbs distributions defined with inverse temperatures

A} = {5k}

7,20

(o) = SO, )

where Z(0) is the partition function of the system. If we denote the variables of
kth system (kth replica) as xy, the simultaneous distribution p of {x;} is written
as:

p({ze}) = [ pul@r). (2)
k

We introduce two types of update with which the simultaneous distribution p of
Eq. (2) is invariant. First, we consider conventional updates in a replica k that
satisfy the detailed balance condition for the corresponding factor py(xy), e.g.,
local spin flips in a replica. In addition, we define a replica exchange between repli-
cas, which have neighboring values Ay and Agy; of the parameter. In this step,
candidates of new configurations & and Iy are defined by the exchange of con-
figurations of the replicas: &y = xpy+1 and Tx41 = xp. If we give the acceptance
probability of the replica exchange flip by max{1,r} with r defined by:

i (k) PRyt (Trg1) _ Pr(Trt1)Prt1 (k) 3)

pe(@r)pet1 (@ry1)  pe(Tr)Pig1 (Xp41)

¢J-Walk" 75 algorithm also uses multiple copies of systems. In this method, however, the prop-
agation of configurations is unidirectional, i.e., restricted to that from a higher temperature to
a lower temperature. As a result, the J-Walk algorithm does not exactly produce samples from
the original distribution, unless the correlation between samples from the auxiliary simulations
at a high temperature is negligible (or erased by some off-line manipulation). Another algorithm
closely related to Exchange Monte Carlo is Replica Monte Carlo?8 developed by Swendsen and
Wang in 1986, which we will discuss in Sec. 6.

dA note for the applications to statistical information processing: the “parameter” here often cor-
responds to a “hyperparameter” when hierarchical Bayesian models are treated by the algorithm.
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the simultaneous distribution p of Eq. (2) is invariant under the transition. That
is, the detailed balance condition for the simultaneous distribution p is satisfied.
When {pg(xx)} is a family of the Gibbs distributions, Eq. (1), defined with inverse
temperatures {ﬁk}, we can express the ratio r as:

r=exp((Bk — Br+1) - (E(xk) — E(xk41))) - (4)

The averages taken over each factor pg(xy) exactly reproduce the desired av-
erages at the value A = A\ of the parameter, because the transitions defined by
the algorithm do not change the simultaneous distribution, Eq. (2). On the other
hand, the states of the replicas are effectively propagated from high temperatures
to lower temperatures through replica exchanges and the mixing of Markov chain
is facilitated by the fast relaxation at higher temperatures (or, in general, at the
values of the parameter A\ with which the mixing of the Markov chain is fast and
the entropy of the distribution is large).

A problem is the choice of the points {8} or {\r}. A naive way is that uses
a set of points with regular spacing that contains sufficiently high temperatures
(or, the values of the parameter, where the mixing is fast and the entropy of the
distribution is high). Of course, we should use the interval |Ay11 — Ag| that gives
a sufficiently large frequency of replica exchange. A more sophisticated way is to
allow points of variable spacing and choose them as the exchange rates are uniform
in the prescribed range of the temperature (parameter). Although the naive method
and some tuning by hand is often enough for practical applications, it is instructive
to see how we can determine the spacing with this criterion” (discussions on related
subjects from the viewpoint of computational statistics are found in Refs. 70 and
76). From Eq. (3), the average logr of the logarithm of the ratio r that determines
the exchange rate of the neighboring replicas is:

logr = Z Z Pk(xk)Prs1(Trs1) - log

L Lr+1

{pk(wk+1)pk+1(wk) }’ (5)

Pk(Zk)Prt1 (Trg1)

which is expressed as:

logr = — {Zpk log g(ci, +Zpk+1 pkH( )}~ (6)

& ()

The expression in the braces { } is a “symmetrized” Kullback—Leibler divergence
D(prllpr+1) + D(pr+1llpr) between py and pgy1. When Ap ~ Agiq, it is approxi-
mated by:

logr ~ =I(Ak) - (A1 — Ar)?, (7)

- <a2 105 ;7;\(:1:) >Ak | -

with

2 o €T
=Y el TR

xT
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where (---)», is average over the distribution py(z). I()\) is called Fisher infor-
mation in statistics. For the case of Gibbs distributions, Eq. (1), it is related to
susceptibility 0% = —d(E)z/d3 to inverse temperature (3,° and specific heat
C = (8%/N)o% per system size N as:

9 log Z(B)
032

C

k

B=Bk

I(Br) = 9)

Thus, the interval [A\gy1 — Ag| that gives reasonable and uniform replica exchange
rate is given by:
I(Ak) - | Aegr — Xel* ~ 1. (10)

From the condition, Eq. (10), we have an expression of the density Q(\) of points

{Ak}:

QA) xVI(A), (11)

which is also written as:
x\/oh = \/ (12)
for Gibbs distributions. The expression in Eq. (12) gives two important results.

First, it shows that the number of replicas that is required for Exchange Monte
Carlo increases with v/N when the specific heat is constant. It is easy to understand
the result when we note that the exchange is caused by fluctuation of the energies of
the replicas. Another observation from Eq. (12) is that a larger number of replicas
is required in the region where 0% or I()\) takes larger values, say, near the critical
points of second order transitions.

The rest of the problem is how to determine the density without preliminary
knowledge on the specific heat or Fisher information. The answer?? is that we can
most easily do it through step-by-step tuning of the number and/or positions of the
points {0} or {\;}. After finishing the tuning process, we perform the simulation
for the sampling of desired quantities with fixed values of all simulation parameters.
This idea is an example of a central strategy in Extended Ensemble Monte Carlo
algorithms:

Learn (or tune) the optimal value of parameters of the algorithm by a step-
by-step manner in preliminary runs.

This strategy is more important in Simulated Tempering and Multicanonical Monte
Carlo discussed in the following sections.

Finally, we discuss some concrete results obtained by Exchange Monte Carlo
and show how it works in real problems in physics. A field where Exchange Monte

©The notation 0% indicates that it coincides with the variance of the energy (E2)g — (E)%
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Carlo is effectively used is studies on spin glasses. By using Exchange Monte Carlo,
we can explore large systems considerably below T,,"22724 typically, at T ~ 0.77.
and system size ~ 162 for the 3-dim +J Ising spin glass model. With these cal-
culations, as well as with the use of novel methods for the analysis of the data,
we are approaching the nature of the spin-glass phase of models with short-ranged
interaction, which is a long-standing query in this field. Exchange Monte Carlo is
also successfully used for the study of spin glass models with continuous spins, e.g.,
3-dim Heisenberg spin glass models. Hukushima and Kawamura?! reported a strong
evidence of chiral glass transition for the model, as well as peculiar properties of
the transition. Another, potentially important field of the application of Exchange
Monte Carlo is simulation of protein models. An application to protein folding is
already found in Hirosawa et al.3 (1992). Recent developments and applications to
realistic peptide models are described in Refs. 43, 44, 77-80, as well as attempts to
combine Exchange Monte Carlo with Multicanonical Monte Carlo.

4. Simulated Tempering

Here, we discuss Simulated Tempering algorithm,? 2539

related to Exchange Monte Carlo algorithm. A similar method called Expanded
Ensemble!:32:57,58

an algorithm closely

was introduced by Lyubartsev et al. almost at the same time,
whose main aim is the calculation of free energy. In this approach, the dilemma
of temperature up-down and detailed balance is resolved by treating the temper-
ature itself as a dynamical variable updated in Monte Carlo simulations. That is,
we construct Markov chains whose state vector is a direct product (original states,
temperature). Although the following arguments are easily generalized for an arbi-
trary family of distributions {px(z)} with a parameter A\,! here and hereafter, we
discuss a family of Gibbs distributions:

exp(—fE(x))
zZp)

with a parameter 3, where Z([3) is the partition function. When we treat the inverse
temperature 8 as a dynamical variable, the distribution p(zx, ) in the extended
space (x, 3) is represented as:

p(x, B) x exp(=BE(x) + g(8)) - (14)

Here, we have introduced an arbitrary function g(3) of 8 that controls the distri-
bution of 8. With this definition, it is not difficult to construct Markov chains to
sample from p(x,3). We simply regard —GE(x) + g(03) as the energy of the ex-
tended system and simulate it with ordinary updates of « plus Metropolis update
of the inverse temperature (3. Here and hereafter, we often restrict the value of 3 to
discrete values {8y }. With this restriction, the function g(3) is determined by the
finite set of the values {gr} = {9(Bk)}, k = 1,..., K. It is a convenient property
for the implementation of the algorithm. Then, the distribution p(x, §) in Eq. (14)

p(x) = (13)
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is represented as:

—eXp(;(ﬂ 5,§<w)) s (15)

7 o< exp(gr + log Z(Br)) Zﬁ'k =1. (16)
k

p(xvﬁk) =

Note that the log Z(8x) term in Eq. (16) comes from the normalization constant
(partition function) of each component.

If we use the samples of « at a value of 3 = [, we exactly recover the canonical
average at = 0B, because p(x, 8) conditioned on 8 reduces to the original canon-
ical distributions by its definition. The problem is the choice of the function g(g).
Without a proper choice of g(3), the value of 3 gets stuck around an uncontrolled
value and there is no samples available at the desired values of 5. A naive choice
gr = 0 usually gives unsatisfactory results. A reasonable way is to take

gr = —log Z(B) - (17)

With this choice, the marginal probability > p(x, 5r) = 7, of § is the uniform
distribution on a given set {0} of 3. This means that the temperature varies in a
stochastic way in a prescribed range and the proportion of the time that it stays
at a value of 3 = B is independent of (i in a sufficiently long run.

But, how can we know the value of log Z(83) prior to the simulation? Any algo-
rithm that requires the values of Z(3) as inputs appears unrealistic because Z(0)
is usually an unknown quantity that is computed through the Monte Carlo sim-
ulation. Here, we can use the idea of optimizing the parameters of simulation in
the preliminary run. That is, the algorithm learns the optimal value of {g;} by the
iteration of preliminary runs. Here, we will not discuss the way?® of tuning further.
Instead, we give an account of similar techniques for multicanonical algorithm in
the next section, Sec. 5. Note that the optimal spacing of {8} can also be estimated
in the preliminary runs to enable sufficiently frequent change of (.

The analogy with Exchange Monte Carlo algorithm is clear. The change of
parameter(s) 8 (or, in general, ) in Simulated Tempering algorithm corresponds to
the “replica exchange” procedure in Exchange Monte Carlo algorithm. The mixture
distribution Z,If:l p(x, Bx) in Simulated Tempering has a direct correspondence to
the simultaneous distribution, Eq. (2), in Exchange Monte Carlo, when the set of
inverse temperatures of replicas {;} in Exchange Monte Carlo is the same as {0 }
in Simulated Tempering. Formally, we can write the correspondence as:

K K-1
dop@i ) e > > pileea) ) pr(TeK), (18)
k=1

x2,23,..., £k $=0

where P; is a cyclic shift operator ¥ — mod(k — 1 + s, K) + 1 with a shift s. It
is also easy to show that the rate of temperature flip in Simulated Tempering is
the same order as the exchange rate in Exchange Monte Carlo with the same {3 }.
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In this sense, Exchange Monte Carlo algorithm is a parallel version of Simulated
Tempering (thus, called “Parallel Tempering” by some authors).

In the continuum limit, which is better for conceptual arguments, the mixture
distribution Y, p(z, Bx) in Eq. (18) is represented as':

[ en(-0BE)
[t mas = [ SR wgas. (19)
where
#(9) o explg(6) + log Z(9) + Q). (20)

Here, Q(8) represent the relative number of the points {0;} between 8 < i <
0 + dB in both of Exchange Monte Carlo and Simulated Tempering. Consider the
case g(f) = —log Z(f3) in Eq. (20). If we use Q(8) x /I(3) that gives the uniform
exchange rate for Exchange Monte Carlo and the uniform temperature flip rate
for Simulated Tempering, the mixing distribution #(8) coincides with Jeffreys’

prior®!:

[ taman [ PR s, (1)

Simulated Tempering and related methods are successfully used for various
problems in physics and statistics. For example, a random field Ising model on
a 10° lattice at low temperatures is treated in the original paper of Marinari and

9 Studies32:33:40:4L57.82 haged on the idea of expanded ensembles! will also

Parisi.
be discussed in Secs. 7 and 8. Geyer and Thompson® discussed an application to
statistical inference on propagation of genes of rare recessive disease on a pedigree.
The problem is computation of probability distributions of career status of genes
over a large pedigree from observed data, for which conventional Dynamical Monte
Carlo suffers from slow mixing and nonergodicity of dynamics. By using a version of
Simulated Tempering (see Sec. 7 of this survey), they successfully treated problems
that contain thousands of individuals.

In most situations, however, Exchange Monte Carlo is more convenient than
Simulated Tempering. Some of the advantages of Exchange Monte Carlo are dis-
cussed in Sec. 9. An exception occurs when the dimension of the system is so large
that it is impossible to store a number of replicas in the memory of our computer.
In this case, Simulated Tempering has an obvious advantage. Simulated Tempering
may also be useful for the conceptual studies on extended ensembles.

5. Multicanonical Monte Carlo

The third method is Multicanonical Monte Carlo algorithm.'271483 Meth-
ods based on a similar idea are also known as Adaptive Umbrella Sampling

fThe notation 7(3) is motivated by the analogy to Bayesian statistics. In fact, the distribution #(3)
is at times called a “pseudo prior” by statisticians.? Tt is formally regarded as a prior distribution
for a (hyper)parameter 3, but determined for the convenience of the computation.
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algorithm.!%11:50 In their original forms, Multicanonical Monte Carlo deals with
extensions in the space of the energy, while Adaptive Umbrella Sampling focused
on extensions in the space of a reaction coordinate. Now, they are being merged
and we can freely construct algorithms optimal for our purpose, which will be
discussed in Sec. 7.

Unlike the algorithms discussed in the previous sections, multicanonical algo-
rithm deals only with an exponential family of distributions. First, we discuss the
case of a family of Gibbs distributions, Eq. (13), with different inverse temperatures
0. The density of state D(FE) on the energy axis is defined so that the number of
the state x satisfying F' < E(z) < E+dFE is D(E)dE. The partition function (the
normalization constant) at inverse temperature [ is written as:

2(9) = [ exp(-E)D(E) dE. (22)

Multicanonical algorithm is defined as Dynamical Monte Carlo sampling with
the weight proportional to D(E(zx))~! instead of the original canonical weight
exp(—BE(x)). The distribution defined with this weight is called multicanoni-
cal ensemble. With the definition of D(E) and D(E) - D(E)~! =1, it is easy to
see that the marginal distribution of F becomes constant within the region where
D(FE) # 0, i.e., the energy E of the system takes the values in £ ~ E + dE with
an equal chance in a long simulation.® This results in a random walk in the en-
ergy space. It is similar to the random walk on the temperature axis in Simulated
Tempering, but there is no explicit temperature variable in Multicanonical Monte
Carlo. When we introduce microcanonical ensemble with an energy Fy defined
by:

(E(x) — Eo)
— 2
multicanonical ensemble pyui(x) < 1/D(E(x)) is considered as the mixture
pua@) = [ dEope, (@)7(Eo) (24)
of microcanonical ensembles with the uniform pseudo prior 7(FEy) = const. for

the energy. In this sense, multicanonical ensemble is a special case of Expanded
Ensemble,! whose components are microcanonical distributions.

How can we recover the canonical averages from the simulation with the weight
D(E(z))~'? A reweighting formula,

X, A(@?) - exp(—BE(x)) - D(E(a’))
~ Xjexp(—BE(2?))  D(E(z7))

(A(z))s (25)

8Note that D(F) is a severely varying function of a macroscopic variable E and the choice of
D(E(x))~! as a weight severely penalized the appearance of the states @ with a large value of
D(E(x)), which are usually nearly random “high temperature” configurations. Multicanonical
sampling corresponds to random selection of @ with a fixed value of E after random sampling of
the energy E. The point is that it is very different from random sampling of @, which gives almost
surely a sample of large E.
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gives an answer, which gives a method for the reconstruction of the canonical aver-
age (A(x))s at [ of an arbitrary quantity A(z). Here, the summation »_; is taken
over the samples {x/} generated by the simulation of a Markov chain, whose in-
variant densities is D(E(x))~!. The Eq. (25) means that each observation A(zx7)
is multiplied by the factor D(E (7)) that cancels the weight D~ (E(x?)) used in
the simulation and reweighted by the canonical weight exp(—3E(x’)). We can also
introduce a reweighting formula for the normalization constant (partition function)

Z(0) as:

2(8) X, ew(~PE) - D(E(@)) o)
Voo >, D(B () |

where V' equals to the total volume of the configuration space or the total num-
ber of the configurations (e.g., 2V for N binary variables). For earlier studies on
reweighting in Dynamical Monte Carlo methods, see Refs. 84—86.

Now, we will discuss an essential part of the algorithm: how to sample with
the weight D(E(x))~! without prior knowledge on D(E). This is a basic problem,
because D(F) is the kind of the quantities, which we want to calculate by the
simulation, just as Z(() in Simulated Tempering algorithm. The answer is, again,
step-by-step learning procedure, which we will discuss in detail here. Note that we
do not need to know the value D(FE) exactly. An approximation D(E) to D(E) in
a region Fyi, < E < Eyax, with which we can safely apply the reweighting proce-
dure, Eqgs. (25) and (26), is enough for our purpose. Note also that multiplication
of a constant factor to D(E) does not change the result. Paying an attention to
these remarks, we introduce an iterative procedure (preliminary runs) to approx-
imate D(E), starting from D° = const. (or some initial guess). Here and hereafter,
we assume that the energy F takes discrete values {Ex}, (k=1,...,K), and D(E)
are represented by the values {Dy} = {D(E})}.

(1) Simulation and Histogram Construction: simulate a Markov chain with the
weight D'(E(x))~! and record the frequencies h!, that the energy F takes the
value Fy, for each k (Histogram Construction). Here, we can use arbitrary
dynamics with which the density Dt(E(a:))_1 is invariant.

(2) Update the weight: define new values of the weight by:

1 1 1
- 27
DY Dbl €’ @7

or, equivalently,
log DI :=log D} + log(hl +¢) . (28)

Here, € is a constant, which is added to remove the divergence with hf, =0 (i.e.,
no visit to E = E}). For example, we can use ¢ = 1.
(3) Normalization:

1
log Dt :=log D} — [7d Zlog Dyt (29)
k
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This normalization procedure is added for the convenience of monitoring con-
vergence and not essential (adding a constant to all log DZH does not change
the simulation).

(4) Set t:=t+1.

After we find an appreciate weight {Djy} with the iteration of the preliminary
runs, a measurement run (production run) is performed. In the measurement
run, we collect samples with a fixed {Dk} and apply reweighting formulae, Eqgs. (25)
and (26), for the calculation of canonical averages, where D(E}) is substituted for
its approximation Dy,.

This simple iterative procedure, sometimes referred to as (the learning stage of)
the entropic sampling method®” is sufficient for many practical problems. When
the system is very large or has a continuous energy spectrum, we should replace
histogram construction by a more sophisticated density estimation method. Another
problem of the above-mentioned procedure is that it is sensitive to the fluctuation
of frequencies of visits to Ej. Some authors proposed estimators of Dy, based on the
ratio hl /hl 41 of the neighboring frequencies (or the frequencies of the transition
Ej — Ep/5183) for the improvement of the performance in the tuning stage. “Flat
Histogram Monte Carlo” (see Refs. 88 and 89 and references therein) can also be
considered as an efficient way to realize Multicanonical Ensemble, although it has
a different origin® and its own perspective.

When we deals with systems with quenched disorders, we usually do not have
prior knowledge of the upper and lower bounds of E. In such cases, we apply the
iterative procedure assuming a sufficiently wide region of Fyin < E < Epax. Then,
we conclude there is no energy level at Fy, if hy = 0 even with a sufficiently large
value of the weight 1/D} and with a long run of the simulation. In principle, we can
neglect regions that do not contribute required canonical averages with Eq. (25),
but should be careful to include a sufficiently high energy region (or, in general,
a high entropy region) to facilitate the relaxation. Determination of lower energy
bound (as well as higher energy bound if entropy is also small there) is often the
most time-consuming part of the algorithm. If the length of each run of preliminary
simulation is not sufficient, we often observe “oscillation” of the histogram at the
extremes of the energy band, i.e., hy that takes a small value in ¢th simulation
becomes large in (¢ 4+ 1)th simulation, and, again become small in (¢ + 2)th step,
etc. and it does not converge.

We emphasis that a single simulation with an approximately multicanonical
weight 1/D(E(z)) is enough to obtain canonical averages at any (. It is because a
random walk with the weight 1/D(FE(x)) covers whole range of the energy and we
can collect information at all possible values of energy using them. An examination
of the reweighting formulae also shows that the efficiency of the reweighting proce-
dure relies on the flatness of the marginal distribution of the energy in the range
of Emin < E < Epax. The flatness ensures that the weight exp(—ﬁE)D(E) of a
sample in reweighting formula (25) is a Gaussian-like distribution with the width
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x 1/ V/N. Thus, the number of the samples that contribute to a canonical aver-
age is proportional to 1/v/N for any value of 3. For the purpose of a comparison,
consider the sampling with the canonical weight exp(—@3' E(x)) with a tempera-
ture 1/ and reweighting to the temperature 1/8 (3 > 3').8* The corresponding
reweighting formula,

2 Al@)exp((8 = B) - E(a?))
o Xexp((f - p) - B(xd)

is formally valid for any pair 3’ and 3, but not useful except when 3’ are close to 3.
In this case, the marginal distribution of the energy of samples is a Gaussian-like
distribution with the width oc 1/v/N, while the factor exp((3’ — ) - E) is quickly
decreasing function of E with a decay constant o N. As a result, an exponentially
small fraction of samples contribute to the required average for a large system
size IN.

So far, we discussed multicanonical algorithm with Gibbs distributions. It is
easy to extend it to a one-parameter exponential family,

pa(a) - B B - So),

(Az))s (30)

(31)

parameterized by A\. We can choose any physical quantity as a function f(x),
e.g., volume, magnetization, dihedral angle, radius of gyration, and replica over-
lap. To define the algorithm, we use D(f(x)) instead of D(E(x)), where D(f)df
is defined as the number of the states that satisfy f < f(x) < f + df. We
can also consider multi-dimensional extensions for a multi-parameter exponential

family,35,36:46,50,91-93

exp (>, A - filx)
where Z(X) = Z(A1, A2, ..., Ar) is the partition function. In this case, we define
a simultaneous density D(f1, fa, ..., fr) and estimate it by multivariate histogram

construction with preliminary runs. Of course, we can treat 3 as one of the pa-
rameters \;. It seems, however, not possible to extend multicanonical algorithm be-
yond exponential family that is determined by a set of sufficient statistics {f;(x)}.
In terms of physics, multicanonical ensemble is defined using extensive quantities
{fi(x)} conjugated to a set of “external force”s {\;} and cannot be generalized
to cases to which we cannot specify such quantities. At this point, it differs from
Exchange Monte Carlo or Simulated Tempering, which can apply to any family of
distributions px(z)."

On the other hand, there are cases that are well treated by Multicanonical Monte
Carlo, but not by the other two methods. Typical examples are provided by models

h An example of nonexponential family of distributions is Cauchy’s distributions py(z) = (\/7) -
1/(x? + \2) parameterized by the scale parameter \.
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with first order phase transition with latent heat. In these cases, there is a region on
the energy axis that cannot be covered by a Gibbs distribution, i.e., for any value
of inverse temperature 3, there is negligible chance of finding a sample x with a
value of E(z) in the region. In the case of multicanonical Monte Carlo, the ensemble
constructed by the iterative learning procedure contains samples with these missing
values of the energy, which make the algorithm work as we expect. On the other
hand, Exchange Monte Carlo and Simulated Tempering do not work in these cases,
because any mixture of canonical ensembles (Gibbs distributions) contains little
portion of samples with an energy in the gap region. In a physical interpretation
that applies to models of liquids and lattice spin models, multicanonical “energy”
—log D(E(x)) contains an artificial correction term to the interfacial tension of a
droplet that makes the critical radius of a droplet zero and also controls the growth
of a droplet after nucleation. While it seems very difficult to design such a term by
hand, multicanonical algorithm automatically learns a term with desired properties
with a histogram construction (or, some alternative iterative tuning methods).!
When there is no first order transition and resultant “phase coexistence regions”,
how can we relate a multicanonical ensemble to a mizture of Gibbs distributions?
At first sight, it may be natural to expect that the mixture with 7(\) o< \/I())
(Jeffreys’ mixture) approximates well the corresponding multicanonical ensembles.
It is, however, not true. In fact, the choice 7(A) o< I(\), which gives larger weight
to high specific heat regions, provides a better approximation to the multicanonical
ensemble. We illustrate the result with a simple example of binomial distribution,

pp(n) = NCp - p" (L= p)" ", (33)
which is expressed as an exponential family,

A =log L (34)

1—p’

pa(n) = 76}(2(()\)\.)@ )

with a parameter A. For this model, Z(\) = 1/5C,,-1/(1 —p)V, I(\) = Np(1 - p),
I(p) = N/(p(1 —p)) and d\/dp = 1/(p(1 — p)). By using them, it is easy to show
that the Jeffreys’ prior 7(\) of A is given by:

F(N)dA oc /TN dA = /T(p) dp = \/% . (35)

On the other hand, the mixture with

#(\)dA oc I(\)dA = Ndp (36)

In some cases, we need additional techniques to estimate the weights for multicanonical calculation
in preliminary runs. In the work!? of Berg and Neuhaus that deals with a Potts model, approximate
weights found in smaller systems is used as an initial guess of the corresponding weights in larger
systems.
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gives the uniform density on n axis, i.e., it is a multicanonical ensemble. It is easily
confirmed with the identity,

[outrdn = [ o= "y = (37)

whose right-hand side does not contain n.

Let us discuss some of the typical results obtained by Multicanonical Monte
Carlo. One of the attractive applications is found in the field of protein fold-
ing 384243 An illustrative example of the ability of avoiding local optima by
Multicanonical Monte Carlo is shown in Figs. 2 and 3 of Ref. 43, where Multicanon-
ical Monte Carlo efficiently realizes a-helical conformations expected by laboratory
experiments while conventional Monte Carlo fails. An advantage of Extended En-
semble Monte Carlo is, however, more clear in the examples, where fluctuation
among the structures are significant. Such examples are also found in literatures,
for example, Refs. 43 and 48. In Ref. 48, a B-hairpin peptide in explicit water
(139 peptide atoms and 1060 water molecules) is simulated, and it is observed
that the peptide takes a number of different conformations even at a physiological
temperature, which are classified into several groups by the authors.

As we have discussed in this section, an advantage of Multicanonical Monte
Carlo over other Extended Ensemble Monte Carlo algorithms is that it enables
the treatment of first-order transitions. In this respects, the paper!? by Berg and
Neuhaus already gave an impressive example, i.e., simulation of 10-state Potts
model up to the size 1002. Multicanonical Monte Carlo and its variants are also
useful for the simulation of liquids and gas®® (see also Sec. 8 of this paper), where
we encounter classical examples of first-order transitions.

6. Replica Monte Carlo

28:29 is one of the pioneer-

Replica Monte Carlo algorithm! by Swendsen and Wang
ing works on Dynamical Monte Carlo algorithms that use multiple copies of the
system. In fact, it includes Exchange Monte Carlo algorithm as a limit and pre-
cedes any study on Exchange Monte Carlo referred in this paper. However, cluster
dynamical aspect of the algorithm is highly stressed in the original representation®®
and it seems not trivial to extract Exchange Monte Carlo algorithm from it. Cluster
identification using a pair of replicas is a really ingenious and attractive idea itself,
but it severely restricts the application of the algorithm when we persist in it.

In this section, we give an introduction to cluster dynamics of Replica Monte
Carlo algorithm and clarify the relation between Replica Monte Carlo and Ex-
change Monte Carlo. It seems that there has been no concrete attempt to gener-
alize the idea of cluster dynamics in Replica Monte Carlo beyond Ising models,
although some suggestions are given in Ref. 28. Thus, we restrict our attention

INote that a similar term “Replica Exchange Monte Carlo” is sometimes used as a synonym
of “Exchange Monte Carlo”.
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to Ising models with inhomogeneous couplings {J;;}. For this class of models, the
Gibbs distribution is written as:
exp (8 2 ij) Jijwix;)

plfn)) = ——— B

where x; € {£1} is a Ising spin variable that is defined on the vertex i of a graph
G (e.g., a square lattice) and Z(3) is the partition function. The summation }_,
runs over the all pairs (i7), where ¢ and j are neighboring on G, i.e., the edge (4, j) €
G. Consider a set of the Gibbs distributions, Eq. (38), defined with temperatures
{Bk}. We denote the spin variables of kth system as {z;}*. Then, the simultaneous
distribution p of {{x;}*, k=1,..., K} is written as:

exp (ﬂk Z(m) Jija; xk)
Z(Br) ’

p({{zi}*}) = Hpk {z:}%) (40)

(38)

pr({zi}¥) = (39)

where Z(0) is the partition function of the kth system (kth replica).

So far, the construction is the same as the one for Exchange Monte Carlo. In
Replica Monte Carlo by Swendsen and Wang, nonlocal cluster update is used as well
as usual single-spin flip update in each replica. It is defined for a pair of replicas,
which have neighboring values of temperatures 8y and Siy1. To define clusters in
a pair of configurations {z;}* and {z;}**!, we introduce variables t; = zFa’*!
and define an equivalence relation = among the vertices of G: If (i,j) € G and
t; = tj;, then i = j. We define clusters as the equivalence classes with the relation
=. Note that there are two types of clusters distinguished by the values of ¢;. In this
paper, we call them parallel clusters (t; = 1) and anti-parallel clusters (t; = —1),
respectively. Then, we define cluster flip as simultaneous flips of spins in a cluster
in both replicas. That is, we choose a cluster ¢ defined with configurations {;}*,
{x;}F*1 and generate Candidates of new configurations {#;}* and {Z;}**! defined
by: #F = —ak if i € ¢, else 2F = aF; 35T = 2Pt if i € ¢, else 28T = 281 With
this {7;}* and {7} the acceptance probability of the cluster flip is given by
max{1,r}, where,

_ Pk({fi}k)]?kﬂ({fi}kﬂ)
pr({zi}F)prr ({ai }r L)

When we define the boundary dc of a cluster c as the set of edges (i, j) that satisfy
j € c and i € ¢, the logarithm of the ratio r is expressed as:

logr =—=2-(6k — Br+1) - Z Jijak x (42)

(i,j)€0c

(41)

This expression gives r ~ 1 for B ~ Br+1, i-e., a cluster flip is accepted with a high
probability for a pair of replicas with sufficiently close temperatures, even when
|BrJij| are large. These cluster flips share some characteristics with crossover in
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Genetic algorithms in the sense that they generate a mew configuration from
two existing configurations. However, in contrast to random crossover that is rarely
accepted with a large cluster exchange, cluster flips in Replica Monte Carlo are de-
signed to realize high acceptance ratio while satisfying a detailed balance condition.

Let us discuss connections to Exchange Monte Carlo algorithm introduced in
Sec. 3. In the case of Exchange Monte Carlo, we also consider the simultaneous
distribution p of Eq. (2) and define replica exchange between replicas, which have
neighboring values of temperatures 8 and [41. The identification of clusters is,
however, not necessary in Exchange Monte Carlo. Instead, we define candidates of
new configurations {Z;}* and {#;}**1 by the exchange of configurations of replicas:
for all 4, 7% = xf“ and 56?“ = z¥. Then, the acceptance probability of the cluster
flip is given by max{1,r} with r defined by Eq. (3). The explicit form of logr for
the present model is given by:

logr = =2+ (Bk — Bryr) - »_ Jij - (afaf — afHalth), (43)
(4,9)

Although the implementation of Exchange Monte Carlo does not require the cluster
identification procedure, it is useful for our purpose to rewrite it with the language
of the clusters defined in Replica Monte Carlo. We define the sets ¢t = |, ¢ M, Cm
and ¢~ = {J,,cas_ C¢m as joint sets of parallel and anti-parallel clusters, respectively.
Here, M4 indicates the set of indices of parallel/anti-parallel clusters. Then, the
replica exchange is equivalent to flipping of the joint of all anti-parallel clusters ¢~ :

i = —akificc, else 38 = ok 2 = —2Mif i € ¢, else 25T = 2! Thus,
Eq. (43) is written as:
logr =—2- (8 — Brt+1) Z Jijxfxf ) (44)

(,)€dc™

where the boundary dc* of ¢* is defined as the sets (4,5) that i € ¢* and j & c*
(with this definition, dc™ = dc~ = Um€M+ Ocm = U,pear. Ocm). Note that the
flip of the set ¢t of all parallel clusters is essentially equivalent to the flip of ¢~ for
an Ising model with up-down symmetry. It reduces to the exchange of the replicas
when the flip of all spins in replicas ¥ = —&F and #81 = —7 is added after
the cluster flip.

The analogy between Eq. (42) and Eq. (44) is obvious. If there are only two
clusters, one is parallel and the other is anti-parallel, both algorithms give essen-
tially the same dynamics. In this case, Exchange Monte Carlo has an advantage,
because it does not require a cluster identification procedure. On the other hand,
with this observation, it is not difficult to construct a family of algorithms that
interpolate Replica Monte Carlo and Exchange Monte Carlo.X In these algorithms,

KIn the original paper,2® there is no specification on the dynamics for cluster flips in Replica Monte
Carlo. In this sense, Replica Monte Carlo virtually contains these interpolations. However, there
seems no explicit suggestion on naive multi-spin flips in the references of Replica Monte Carlo (a
comment on the use of percolation representation for cluster update is found in Ref. 29).
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we construct clusters just the same way as that in Replica Monte Carlo, but flip
more than one cluster simultaneously with the restriction of only the same types of
clusters can be flipped at one time. That is, we generate a new candidate of config-
urations by the flip of the union of a set of parallel clusters, or, a set of anti-parallel
clusters. It is easy to see that Replica Monte Carlo and Exchange Monte Carlo is
regarded as two extremes of the algorithm, where the number of clusters updated
in a single trial is one and mazimum, respectively. Again, there is a discontinuity in
the performance between Exchange Monte Carlo and the Exchange Monte Carlo-
like limit of generalized Replica Monte Carlo, which is caused by the cost of the
cluster identification procedure.

A weakness of the cluster identification procedure in Replica Monte Carlo is
that it is not easy to generalize it for complicated models, e.g., lattice or off-lattice
protein models. Another weak point might be found in the way of defining clusters
itself. In Replica Monte Carlo, a cluster is defined with a pair of replicas that
is mutually independent, possibly coming from very different regions of the phase
space. Whether the clusters identified by such a way have adequate properties will
depend on the model to be examined. On the other hand, Exchange Monte Carlo
algorithm without cluster dynamics is much more robust and has been applied to
a variety of models in various fields.

In the literature, two-dimensional +J Ising spin glass models seem to be the
only example with which the efficiency of Replica Monte Carlo is quantitatively
discussed.?83% A recent study by Houdayer®® treated the model on 122 ~ 1002
lattices by a modification of Replica Monte Carlo.! The paper reports that the
algorithm performs much better than Exchange Monte Carlo for the model and
thermal equilibrium is attained even at very low temperatures. Although we should
be careful to check outputs from such a complicated algorithm, the reported results,
which are averaged over 100—400 realizations of disorder, is very attractive and likely
to be decisive one for this model. Replica Monte Carlo is also applied to higher
dimensional spin glass models.?? The performance of cluster dynamics, however,
seems not a remarkable one for these models. Houdayer3® argued that the inability
of cluster dynamics for three-dimensional spin glass models is a consequence of a
mismatch between the structure of phase space of the model and the definition of
a cluster in the algorithm.

7. Designing Special Purpose Ensembles

In the previous sections, we introduced three algorithms, Exchange Monte Carlo,
Simulated Tempering and Multicanonical Monte Carlo. We also discuss cluster dy-
namics in Replica Monte Carlo. In all cases, an ensemble with extension in the
temperature or energy axis is useful in the sense that they have straightforward

'Houdayer’s algorithm uses multiple series of replicas with the same set of temperatures. Cluster
dynamics is defined only with pairs of replicas with same temperatures, while Exchange Monte
Carlo is applied to replicas with different temperatures.
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applications to various problems in statistical physics. On the other hand, we can
introduce extensions specially designed for a target distribution and our computa-
tional aims. The use of such ensembles is already discussed in the pioneering paper
on Expanded Ensembles by Lyubartsev et al.' and in the studies on Adaptive Um-

10,11 (and also in the earlier studies on Umbrella sampling, where

brella Sampling
the weight is manually determined). Here, we discuss designing principle and utility

of such “special purpose” ensembles.

7.1. Complexity ladder

To obtain a fast mixing Markov chain and evaluate the free energy (multiple inte-
grals), it is reasonable to construct an ensemble composed of a sequence of distri-
butions that interpolates a “complex/unknown” distribution to a “simple/known”

distribution.»®70,94

Wong?* called such a structure as a “complexity ladder”.
Here, the “simple/known” components should have sufficient entropy to obtain the
required diversity of paths to the “complex/unknown” states (the ferromagnetic
state is an example of the state simple but does not have sufficient entropy). The
canonical distributions with different temperatures give an example of such struc-
tures, where components of higher temperatures correspond to simpler components.
At the infinite temperature, it reduces to a known distribution that described a com-
pletely disordered state. Another example is provided by “Multi-System-Size”-type
ensembles, which consists of distributions of different system size N. Here, com-
ponents with small N fill the role of simple components.™ We will discuss them
further in Sec. 8. We can proceed more along this way. For example, we can intro-
duce an extended ensemble with “soft spin”s. At an extreme, its component is a
distribution with discrete (or constrained) variables, say, Ising spins or rigid plane
rotators. At the other extreme, its component reduces to a Gaussian distribution,
whose samples are easily generated with Cholesky decomposition of the covariance
matrix. This method is not implemented yet, but might be useful for some hard
problems in the study of spin glass and combinatorics.

7.2. Bridge

A way to design artificial ensemble for efficient computation is the inclusion of
nonphysical configurations (states prohibited in the original problem).® The above-
mentioned soft-spin algorithm is regarded as an example. Another example is
ensembles for lattice polymers, which contain conformations that violate the self-
avoiding condition.}:3235:36 Specifically, Multi-Self-Overlap Ensemble (MSOE) in-
troduced by Iba, Chikenji and Kikuchi?® had a remarkable success in the calculation
of ground states and thermodynamic properties of lattice protein models.?6 Similar

™It is clear that N = 0 component has not sufficient entropy. The intermediate states, however,
can have enough entropy at moderate temperatures. Algorithms with Multi-System-Size ensemble
will not be efficient or biased at very low temperatures, where these states have not enough entropy.
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approaches for off-lattice polymers with truncated Lennard—Jones cores are dis-
cussed in Refs. 32, 36, 95 and 96. The other examples are ensembles that relax hard
core condition of hard core fluid (solid)!52:53® and ensembles for gene-propagation
analysis (pedigree analysis)® that contain configurations violating Mendel’s law
of genealogy.

These ensembles often result in great enhancement of the efficiency, because
“bridges”® provided by the nonphysical configurations give a lot of additional
paths between the configurations that are separated in the original problem. An
instructive example of such “stepping stones” is shown in Fig. 1 of Ref. 36. Of
course, a drawback of such an approach is that we “lose” the nonphysical samples.
It is thus necessary for the improvement in the mixing rate to be large enough to
overcome this loss.

For Multi-Self-Overlap ensemble for the HP model of lattice heteropolymers,
this requirement is checked by Iba et al® For a chain of length 56 with highly
degenerate ground states, simulation with Multi-Self-Overlap ensemble produces
more independent samples than a conventional Multicanonical Monte Carlo within
the same number of MCS, despite the loss of nonphysical samples that violate
the self-avoiding condition. Chikenji et al.?® successfully applied Multi-Self-Overlap
Monte Carlo to problems biophysically more interesting, e.g., generation of the
lowest energy state of a chain of length 100 and calculation of thermodynamic
properties of a protein-like chain of length 42. Exploration of thermal states of such
a long heterogeneous chain have rarely been reported in this field. Based on the
results of these calculations, Chikenji et al. proposed a hypothesis on the relation
between the order of the phase transition and ground state degeneracy.

Besides slow mixing of “mathematically correct” algorithms, genuine nonergod-
icity of dynamics, i.e., lack of the connectivity of the graph defined by the transition
matrix, is often an annoying problem in Dynamical Monte Carlo. It is not always
easy to prove the ergodicity of a given Markov chain (we should carefully check
unexpected appearance of isolated configurations. See Fig. 2.10-2.12 in Ref. 99 for
examples of such configurations in self-avoiding walk simulations). The introduction
of unphysical states as bridges provides a simple way to resolve the difficulty of non-

ergodicity. Examples are seen in the studies on self-avoiding lattice polymers,32:35-36

pedigrees,® and Latin squares.”®

The inclusion of the forbidden states as bridges is a natural idea to improve

98,100,101

relaxation and has been used in pre-extended-ensemble stages. It is, how-

ever, not always easy to set the penalty for putting adequate part of samples into

"Hard core fluid is also treated by a multicanonical-type extension in the space of volume occupied
by the fluid,?! which is equivalent to an extension with varying diameter of hard cores in athermal
models.

°I borrow the keyword bridge from Lin and Thompson,®” while the term stepping-stones have
appeared in Refs. 36 and 98. Catalytic Tempering algorithm proposed in Ref. 96 is also based
on a similar idea.
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“bridges” without the idea of learning in preliminary runs (or the use of mul-
tiple replicas). Now, we can use any of three types of implementations for this
purpose, i.e., Exchange Monte Carlo, Simulated Tempering, and Multicanonical
Monte Carlo. Extended Ensemble Monte Carlo with nonphysical bridges is also
considered as a finite temperature version of constrained optimization algorithm by
Geman et al.'9?

7.3. Calculation of a free energy surface

An important motivation to special purpose ensembles is the observation of
rare events and calculation of free energy surfaces. When we want to calculate
free-energy surface as a function of one- or two-macroscopic variables, we can use

an ensemble extended in the dimensions of these variables.10:11:50,91,92,103 oy oy

1.9 design an ensemble for the study of the free-energy surface

ample, Sheto et a
of an Ising model on the energy-magnetization plane. Similar approaches are ex-
tensively used in the studies with Adaptive Umbrella Sampling!'®11:5° for the cal-
culation of free energy as a function of reaction coordinates (e.g., dihedral angles
of polypeptides). Multioverlap ensemble?® designed for the calculation of the
distribution of “replica overlap” between two independent samples is also based on
a modification of this strategy.

Note that the extension required for the measurement often does not provide
large entropy states that are necessary for fast mixing of the Markov chain. For this
reason, some of the calculations by Adaptive Umbrella Sampling or Multioverlap
ensemble might possibly be affected by the slow mixing of the Markov chain. It is
often covered by fast tunneling between the states that have extreme values of the
reaction coordinate, but such tunneling does not ensure unbiased sampling from all
metastable states. Multidimensional extensions provide a way to circumvent this
difficulty. We will discuss them in the next paragraph.

7.4. Multivariate extensions

To implement special purpose ensembles, the idea of ensembles extended in mul-
35-37,46,50,80,91-93) plavs an

important role. Since the use of too many dimensions is not realistic, bivariate

tidimensions (multivariate/multicomponent extensions

or three-variate extensions are usually most useful. For example, in the case of

35,36 we use an ensemble defined

Multi-Self-Overlap ensemble for lattice polymers,
by uniform density on two-dimensional space (degree of self-overlap, energy). It seems
essential for heteropolymers with attractive interactions to include the extension in
the space of the energy, because the relaxation of the self-avoiding constraint often
causes collapse of polymers at low temperature.

As we have already remarked in the previous paragraph, two-dimensional exten-
sion is especially useful for extended ensembles for the measurement of rare events

(see Sec. 2). That is, two-dimensional extensions, say, (an axis for the measurement,
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the axis of the temperature) or (an axis for the measurement, the axis of the energy)
improve the efficiency (and safety) of the algorithms for the calculation of free
energy surfaces on the axis of measurement. Examples are found in Refs. 37, 80,
91-93.

For example, Chikenji and Kikuchi®” explored the entropy density of a lattice
protein model (a Go model) using an extension of Multi-Self-Overlap ensemble de-
fined by the uniform density in a three-dimensional space spanned by (the degree
of self-overlap, the number of native contacts, the number of total contacts). Their
motivation is the study of the curious folding mechanism of 8-lactoglobulin, where
a-helix rich intermediates tentatively appears before it finally folds into a stable [3-
sheet rich conformation. Entropy density on the space (the number of native contacts,
the number of total contacts) calculated by the method vividly illustrates the role
of entropy in the folding.

How can we construct ensemble with multi-dimensional extensions? We have
already discussed it for the case of multicanonical ensembles (Sec. 5). For Ex-
change Monte Carlo and Simulated Tempering, the introduction of a multipara-
meter family is also straightforward. In the case of Exchange Monte Carlo,?0-35-80
a two-dimensional version of the simultaneous distribution of replicas is expressed
as:

p{or;}) = H Prj(rj) (45)

(k,5)eG

where the values of two parameters are indexed by k and j. There is a degree of
freedom in the choice of a Graph G that defines the way of the extension. A way is
the use of a “lattice type” configuration of (k, j) in the two-dimensional parameter
space.8 Another possibility is the use of a “quasi one-dimensional” configuration
where (k, j) are points on a curve in the parameter space.?’ The former corresponds
to two-dimensional multicanonical algorithms. The latter saves computational re-
sources, but it is not easy to tune the large degree of freedom of setting a curve in
the two-dimensional space.

8. Multi-System-Size Ensembles

As we have discussed in the previous sections, we can freely choose the space of
extension in Extended Ensemble Monte Carlo. An interesting possibility is the use
of an extension in a “space of size of the system” (or, in general, in a “space of
dimensionality of the state space”), which corresponds to sampling from a mixture
of systems of different sizes. A simulation that realizes such an ensemble is con-
sidered as a “growth/diminish (construction/destruction) method” for sampling a
probability distribution. Note that monotonic growth of the system is prohibited
by the detailed-balance condition.

In Iba (1999),27 I discuss a simulation of spin glass with an ensemble extended
in the space of system-size, Multi-System-Size Ensemble. After I completed the
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work, I came to know references with similar ideas in various fields of physics and
statistical sciences. Here, we will give a cross-disciplinary survey on this subject.

We begin with simulations of fluids with a varying number of particles. We
know an ensemble corresponding to such a simulation. It is grandcanonical en-
semble found in any textbook of statistical physics. It is interesting to introduce
multicanonical or other types of extensions in the space of particle number (par-
ticle density, chemical potential) as a generalization of grandcanonical ensemble.
While the number of particles fluctuates in a limited range in conventional grand-
canonical ensemble, it can fluctuate in an arbitrary wide range, say, zero to 1000
in the extended ensemble. In the literature, Lyubartsev et al.' already discussed it
in the context of free energy calculation. An application to Lennard—Jones fluid is
found in Wilding,?® which explored the subcritical coexistence region of Lennard—
Jones fluid by a multicanonical ensemble defined by the uniform density on the
space of the particle density.

There is a variation on this idea. When we are interested in the calculation of
the chemical potential, an ensemble that gives an interpolation between size N and
size N + 1 systems is often required. It is precisely realized by an extended ensemble
that contains components corresponding to systems with partial decoupling between
a particle and other N particles. Examples of such a “ghost particle” (ghost poly-
mer) method are found in Refs. 57 and 82. In the former study,?” solvation free
energies of methane and alkali halide ions are calculated, and the results are com-
pared to experimental data. These ensembles are also considered as examples of
the extended ensembles that consist of nonphysical systems. Similar idea with an
umbrella method is also found in Ref. 104.

Another application in physics, where extension in the space of system-size is
naturally introduced is simulation of polymers. It is considered as a variation of
grandcanonical simulation of self-avoiding walk,”® where monomers are added and
removed at the both ends of a polymer chain. In the conventional grandcanonical
simulation, the length of polymers fluctuates around an equilibrium length. Intro-
ducing the idea of extended ensembles, we can systematically enhance the fluctu-
ation and perform practical calculations for intricate models, such as self-avoiding
walks in a restricted geometry or with complex interactions between monomers. For
example, an adaptive, multicanonical-like method for self-avoiding walk is given by

105 while grandcanonical simulation with a length dependent chemical

Grassberger,
potential is already seen in earlier works, e.g., Ref. 106. In Ref. 105, self-avoiding
walks on a lattice with random obstacles (i.e., randomly chosen excluded sites) up
to the length 100 are efficiently generated by the method, and it is shown that the
universality class of the problem is different from the one of the corresponding uni-
form lattice. Escobedo and de Pablo®#! reported a systematic study of expanded
ensemble simulation of polymers, where the length of polymers are dynamically
changed. Their method is recently applied to diblock copolymer.?? It might be in-

107

teresting to point out that a preliminary work on multicanonical ensemble™”" also

treated a size-variable system, an ensemble of random surfaces.
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Extended Ensemble Monte Carlo algorithms with a state space of varying di-
mension is also of current interest in statistical sciences. It is natural to apply
them to the problems with a built-in sequential structure, say, time-series mod-
eling and gene-propagation analysis. On the other hand, they have an interesting
motivation in statistics, i.e., they are useful for the simulation of a (posterior) dis-

108,109 (here

tribution over the space of models with different number of parameters
a “parameter” means an element of a model to be estimated from data.).P After a
pioneering comment by Wong,''® Wong and Liang®* gave applications of their idea
in various types of the problems, including a Traveling Salesman Problem. Liu and
Sabbati® extensively discussed applications of “Simulated Sintering” algorithm
in statistics.4

Finally, we will touch on a related idea, extended ensemble that consists of
systems of variable types of dynamical variables. Kerler and Weber!'® discussed
an extended ensemble simulation of Potts model, where the number g of possible
states of a spin (“colors”) is dynamically changed in a run. They implement the
idea in combination with cluster dynamics. A corresponding situation in statistics
is found in Richardson and Green,''? which deals with simulation-based Bayesian
classification of objects to an unknown number of clusters.” They treated problems
like “How many Gaussian components are identified in a given experimental data?”,
and designed a Monte Carlo procedure for computation of probabilities. In their
work, the cluster to which each object belongs is indicated by the state of a Potts
spin corresponding to the object. Then, dynamical changes of the number ¢ of the
clusters corresponds to variation of the number ¢ of the states of Potts spins.

9. Summary and Future Perspectives

In this paper, we review three types of Extended Ensemble Monte Carlo algorithm,
i.e., Exchange Monte Carlo, Simulated Tempering, and Multicanonical Monte Carlo
and discuss approaches with special purpose ensembles. We also give a guide to
extended ensembles with variable dimension of state spaces and Replica Monte
Carlo algorithm. Throughout the paper, the possibility of various type of extensions
is stressed. They are not only useful for the calculation of free energy, but also
efficient for acceleration of the relaxation. Our idea is summarized in the following
“correspondence principle”:

PWe note that models with a large number of parameters do not necessarily show better perfor-
mance with finite number of data. It is rather evident when we consider extreme cases, such as
fitting of 10 data points by 9th order polynomials and classification of 100 samples into 100 clus-
ters. Thus, we need to select a model (or mix models) with an appreciate number of parameters.
AIn these works, a “Dynamic Weighting” technique proposed in Refs. 94 and 111 is used, which
does not belong to the class of Extended Ensemble Monte Carlo defined in this paper.

"The work does not seem to use an iterative learning procedure to improve the sampling scheme.
In this sense, it is not Extended Ensemble Monte Carlo defined in this paper. A reason that we
refer to the study here is that it provides a good example of the application of Dynamical Monte
Carlo in computational statistics.
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If we have an annealing strategy for searching ground states, we can de-
sign an FExtended Ensemble Monte Carlo algorithm for sampling from the
corresponding distribution.

With this principle, we can translate optimization algorithms to algorithms for
the calculation of thermodynamic properties. Note that this is only true for simu-
lated annealing-type algorithms, and not applicable to more intricate/sophisticated
optimization algorithms, e.g., algorithms with “genetic crossover” or with other
heuristics that violate detailed-balance, methods based on the use of the corre-
spondence between ground states of different systems. The principle, however, still
provides a useful guideline for the construction of sampling schemes.

With Extended Ensemble Monte Carlo algorithms, we can attack difficult prob-
lems, where conventional Dynamical Monte Carlo algorithms are too slow even with
the most powerful computers. Up to now, the most significant applications are found
in computational physics and statistical information processing. But I believe that
Extended Ensemble Monte Carlo is also a key to any field that requires sampling
from complex distributions and estimation of the entropy. The introduction of Dy-
namical Monte Carlo — in 1950s for physics and in 1990s for statistics — gave
great impacts on these fields. I hope that Extended Ensemble Monte Carlo will
give second impacts on the study of the fields, where we are interested in the prop-
erties of probabilistic distributions and large deviation from nonweighted averages,
including computational physics and statistics as special examples.

Appendix. Comparison of the Methods

In this appendix, we discuss issues on relative advantages of the three (types
of) algorithms, Exchange Monte Carlo (Metropolis-Coupled Chain, Parallel Tem-
pering), Simulated Tempering (Expanded Ensemble Monte Carlo), and Multi-
canonical Monte Carlo (Adaptive Umbrella). The results are summarized in the
following table:

Comment Exchange Simulated Multicanonical
# Monte Carlo Tempering Monte Carlo
Subjects [Sec. 3] [Sec. 4] [Sec. 5]

First Order Trans.
NonExp. Family
Replica Overlap
Learning Speed

Molecular Dynamics

~ 0O ~»x x O

00000 x
00 ~x O x

Step Size Control
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While the symbol () indicate that the algorithm has an advantage on the sub-

ject, X means that the algorithm has severe disadvantage on the subject. The sym-

bols ? means “still controversial”. The number in “comment #” column indicates

the item number (#) of the discussion on the corresponding subject.

(1)

We will give remarks on the subjects in the table in the following:

First Order Transition

As we have discussed in the previous sections, a remarkable advantage of
Multicanonical Monte Carlo is that it can treat systems with first-order-like
transitions.

NonExponential Family

On the other hand, nonexponential family of distributions is not suitable for
multicanonical-type treatment, as we remarked in Sec. 5. While the signifi-
cance of nonexponential family is not clear in statistical physics, they are often
important in the applications in statistical sciences.

Calculation of Replica Overlap

In the study of statistical physics of random systems, it is often required to
calculate the distribution of a quantity defined with two independent samples
from a Gibbs distribution. An example of such quantities is “replica overlap” q,
which is defined as an overlap of mutually independent samples « and =’ from
a given distribution. An easy way to compute such a quantity is to simulate
two independent Markov chains S, S’ and use a pair (z, ") of samples where @
and z’ are sampled from S and S’, respectively. Then, independence of x from
x’ is assured even with slow mixing of the Markov chains S and 5’.

This simple method, however, does not work well when we use Simulated
Tempering, because the states in two chains have different values of temper-
ature for most part of the simulation — they coincide with each other with
probability 1/K when the number of discretized temperatures is K, which re-
sults in severe waste of samples. The situation is essentially the same when we
use multicanonical-type algorithms, or, when any parameter is used for the con-
struction of the extended ensemble. For Simulated Tempering, we can use two
copies of the system with a common temperature variable, but it lowers the
performance of the algorithm. A few other methods have been proposed up
to now, but all of them have some drawbacks, e.g., they cause slow relaxation
of system (Berg and Celik!'?) or introduce additional complexity (multioverlap
ensemble?®).

On the other hand, calculation of the overlap ¢ and other quantities defined
with two independent samples from the original distribution is straightfor-
ward with Exchange Monte Carlo algorithm. We just simulate two indepen-
dent Markov chains each of which consists of K replicas with the same set
of temperature {0;}. Then, we calculate and record the overlap of two repli-
cas with the same temperature whose time evolution is governed by mutually
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independent Markov chains. This is a significant advantage of Exchange Monte
Carlo algorithm.

(4) Learning Speed in Preliminary Runs

Exchange Monte Carlo algorithm seems to show better performance and less
complexity in the learning phase. It does not require simultaneous tuning of
the strength of the penalty and discretization of the temperature required in
Simulated Tempering. The tuning of the values of the temperature (parameter)
of replicas is still required, but we can enjoy a benefit from the use of the
exchange rate between replicas.

On the other hand, Simulated Tempering and Multicanonical Monte Carlo
have a handicap in the learning stage, if we use the naive method of tuning based
on the frequency of the visits to a temperature or an energy. It is because a
random walk on the temperature or energy axis causes fluctuation of the visiting
frequencies, which directly induces instability of the calculated weights.

Some authors,?®! however, proposed tuning methods based on transition
probabilities, which will reduce the instability of this type. Recent development
of Flat Histogram Monte Carlo and related algorithms88 90
the efficiency of the learning stage. On the other hand, experiences on difficult
cases suggest that the most difficult part of the tuning phase is often the deter-

can also improve

mination of several weights near ground states of the system (and ground states
themselves). We need more experiences and carefully designed experiments to
evaluate these factors — this is the reason why we give “?” to this subject.

(5) Molecular Dynamics, Hybrid Monte Carlo, Langevin Equation

Molecular Dynamics is a useful tool for the simulation of continuous systems,
say, simulation of realistic protein models, even when we are interested only in
equilibrium properties. Specifically, combinations of Dynamical Monte Carlo
and Molecular Dynamics (Hybrid Monte Carlo) are convenient tools for the
sampling from Gibbs distributions. There are also methods based on Langevin
Equation, which can be regarded as a version of Hybrid Monte Carlo.

Here, we consider how to combine these methods with the idea of Ex-
tended Ensemble Monte Carlo. At first sight, Exchange Monte Carlo and
Simulated Tempering have an advantage, because implementation is quite
straightforward.32:39:57:59,61,78 Eor example, the addition of an exchange pro-
cedure is enough for the combination of Exchange Monte Carlo and Hybrid
Monte Carlo, where the states of replicas are swapped with fixed values of the
corresponding demons (i.e., momentum part of Hamiltonian).®

On the other hand, multicanonical-type implementation requires the esti-
mation of the derivative dlog D(FE)/dE of the logarithm of the density of state,

SSugita and Okamoto’® have proposed a different method, where demons and replicas are ex-
changed simultaneously with rescaling of momenta of the demons. Another approach is introducing
an exchange procedure to microcanonical ensembles in which demons are integrated out.%?



652 Y. Iba

which causes additional complexity in the tuning stage. However, studies by
several authors!!4%:46,49,50,60,113 haye proved that it is not difficult despite the

apparent difficulty.
(6) Step-Size Control

For continuous systems, step-size of trial moves (or, in general, the distribution
of sizes and directions of trial moves) is an important factor in the fast mixing of
the Markov chain governed by Metropolis dynamics. The optimal step-size de-
pends on temperature and other parameters of the target distribution. There is
no established way for the determination of optimal step-size, but there are
some “rules of thumb”, e.g., step-size with moderate acceptance ratio (say,
~50%) usually gives good results.

For Exchange Monte Carlo and Simulated Tempering, step-size can depend
upon the temperature (or any parameter used for the construction of extended
ensemble). It does not spoil the detailed balance condition because flips in a
replica (flips with a fixed temperature) are separated from replica exchanges
(temperature changes) in these algorithms.

It is not the case with Multicanonical Monte Carlo. If we use energy depen-
dent step-size in a multicanonical simulation of a continuous system, it usually
gives wrong results, because it results in violation of the detailed balance con-
dition. Introduction of additional weights that compensate the bias caused by
energy dependent step-size seems not easy.

This disadvantage, however, can be solved by using a “patchwork” of ensem-
bles proposed by several authors.® For example, consider an ensemble composed
by several multicanonical-type ensembles, each of which is defined on an inter-
val on the energy axis. These intervals are assumed to partly overlap each other
and we use a method like Exchange Monte Carlo for the integration of them.
In this setting, we can safely use different step sizes in different components.
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