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Peskun's theorem and a modified discrete-state Gibbs sampler

BY JUN S. LIU
Department of Statistics, Stanford University, Stanford, California 94305, U.S.A.

SUMMARY

Attention is drawn to the use of Peskun's theorem in improving statistical efficiency of discrete-
state Gibbs sampling.
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1. PESKUN'S THEOREM

Let X be a discrete random variable following distribution n, and let P be the transition matrix
of a Markov chain with n as its invariant distribution. We call P reversible if

n(x)P(x,y) = n(y)P(y,x).

Following Peskun (1973), we define P2^Pi for any two transition matrices if each of the off-
diagonal elements of P2 is greater than or equal to the corresponding off-diagonal elements of P t .
The following lemma is Theorem 2.1.1 of Peskun (1973).

LEMMA 1-1. Suppose each of the irreducible transition matrices Pt and P2 is reversible for the same
invariant probability distribution n. If P2 ^ P1 then, for any f

v(fn, P1)>i>(/,7t,P2), (1)

where

v(f n, P) = lim N var(fN),

and TN = Jl^if{Xm}/N is an estimator of7 = £„(/) using N consecutive samples from the Markov
chains. Kemeny & Snell (1969, p. 84) gave an expression for v(f, n, P) in terms off, P and n.

Whenever (1) holds, we say that P2 is statistically more efficient than P t .

2. A MODIFIED GIBBS SAMPLER

Suppose that X = (Xu . . . , Xd), where Xt takes m, possible values, and that n(x) is the distribution
of interest. In the random scan Gibbs sampler (Geman & Geman, 1984), each successive step
chooses a coordinate i independently, according to a probability distribution a = (ccl,...,0Ld), and
then the current value x, of Xt is replaced by a value yt, drawn from the corresponding full
conditional distribution. Thus, the nonzero elements of the transition matrix f\ are P^x, y) =
a,rt(3',|x_,), where y = x, except that yt replaces x,; and x_, = x, except that x, is omitted.

Here we consider a modification of the above procedure in which a value yh different from x,,
is drawn with probability
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then yt replaces x, with the Hastings (1970) acceptance probability,

. r i-7t(
m u n i , -

{ l-7iC

else x, is retained. This provides a time-reversible transition matrix P2 with nonzero off-diagonal
elements

D , , . / i(y,|x_,) n(yt\x-j) \
Pi(x,y) = <*< x mm<- — -, — ->

{l-n(xt\x.,) l-n{y,\x-,))

for y, 4= x,, where y is defined as above. It follows that P2 ^ P t and hence Lemma 1 implies the
following.

THEOREM 2 1 . The modified Gibbs sampler for discrete random variables as defined above is statisti-
cally more efficient than the random scan Gibbs sampler.

When m, = 2, the Gibbs sampler is essentially Barker's (1965) method, whereas the modified
procedure becomes a Metropolis et al. (1953) algorithm. Peskun (1973) makes some general com-
parisons between these two samplers. Besag et al. (1995) note that the superiority of Metropolis
for binary systems results from its increased mobility around the state space. This rationale applies
more generally to the modified Gibbs sampler. Although Theorem 21 does not even require mt to
be finite, the modification is likely to be most useful for components with m, rather small.

It is easily shown from (1) that the second largest eigenvalue of Px is greater than or equal to
that of P2. Frigessi et al. (1993) prove that, for the binary Ising model, Metropolis converges faster
than Gibbs for strong interaction, and more slowly for weak interaction. This does not conflict
with our result, which concerns statistical efficiency in equilibrium, rather than rate of convergence.
Whereas the eigenvalues of the Gibbs sampler are necessarily nonnegative (Liu, Wong & Kong,
1995), slow Metropolis convergence under weak interaction is the product of a large negative
eigenvalue.
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