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We propose a new effective Monte Carlo (MC) procedure for direct calculation of the free
energy in a single MC run. The partition function of the expanded ensemble is introduced
including a sum of canonical partition functions with a set of temperatures and additive factors
(modification). Random walk in the space of both particle coordinates and temperatures
provides calculation of free energy in a wide range of T. The method was applied to a primitive
model of electrolyte including the region of low temperatures. In similar way other variants of

expanded ensembles are constructed (e.g., over the number of particles ¥ or volume V). Its
facilities in quantum statistics (path integral Monte Carlo) and some other applications are

also discussed.

I. INTRODUCTION

The principal difficulty in the Monte Carlo (MC) cal-
culation of the free energy is the absence of corresponding
microscopic analogue (estimator), i.e., a function of phase
(or configuration) space variables to be averaged to obtain
the required result. In further discussion (excluding Sec. V)
“free energy” will mean its canonical configurational part,
ie.,

F= —kT'lnZ,

Z=(1/N") f dgexp( — BH(q)) —
Vv

configurational integral, 8 = 1/kT, H(q)—potential part of
Hamiltonian, g—configuration variables. Formally one can
write!

F=kTIn[{exp(BH))N/V"], (1n

however, it is practically impossible to calculate the average
of strongly varying quantity exp(8H) in a finite MC run."?

Existing approaches deal with the calculation of the free
energy difference (FED) or, equivalently, the ratio of parti-
tion functions Z,/Z, . A number of methods has been devel-
oped for the calculation of FED: particle insertion,® multi-
stage sampling,* acceptance ratio method,” umbrella
sampling,® perturbation theory,? and some others (e.g., see
review in Ref. 7). The common point of these approaches is
that systems “0”” and “‘1”’ should not be too distantly separat-
ed in the configuration space. Thus for a system strongly
differing from the reference system one should construct a
chain of intermediate states and carry out separate MC sim-
ulations for each of them. The situation becomes worse for
lower temperatures, higher density or greater number of par-
ticles in the MC cell.

We suggest here a new method for free energy calcula-
tion which can be carried out in a single MC run. In Sec. II
we introduce a notion of the expanded (with the respect to
temperature) canonical ensemble and describe the algo-
rithm for computation of the free energy. Application of this
method to restricted primitive model (RPM) of electrolyte
and comparison of our results with those obtained in earlier
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papers is presented in Sec. III. Section IV gives generaliza-
tion of the present approach to other ensembles and shows
the advantages of the suggested method. In Sec. V we discuss
facilities of our approach in quantum statistics (path inte-
gral MC). Finally (Sec. VI) some other possible applica-
tions are discussed.

Il. TEMPERATURE EXPANDED CANONICAL
ENSEMBLE

A. General formulation

Consider an NVT ensemble with the Hamiltonian
H({g,}) and the reciprocal temperature 8. Now introduce a
setof B,,:

0=8,>B,>B,>""">Bu=5 (2)

For each £,, we have a canonical ensemble with the same
Hamiltonian, fixed N and ¥ and the partition function,

1
z, =mh—[dqi exp( — B, Hlg,}). (3)

Next we create an expanded and modified ensemble with the
partition function,

M
Z= mz=o Z,, exp(7,,), 4)

where 7,, are some constants to be discussed and chosen
later. The expansion of NVT ensemble implies the transfer
from single fixed reciprocal temperature § to a set of
{B..}(2). Modification means including of factors
exp(7,, ). Each canonical ensemble with the index (m) be-
comes now a subensemble of the expanded ensemble (4).
It is possible to organize a MC random walk in the en-
semble (4) in accordance with conventional Metropolis al-
gorithm.® Two types of MC steps could occur: (1) usual
displacements of particles at fixed temperature and (2)
changes of reciprocal temperature with fixed positions of
particles. In the second case transition takes place with the
probability min{1, exp[ (8, — B, )H{x,} + 7, — 7: ]}
In the course of the MC procedure we calculate (for
each “m”) n,—the numbers of MC steps for which the
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temperature holds equal to 1/8,,. As a result the estimation
of the probability for the state with this temperature is ob-
tained: p,, ~n,,/n (n—total length of the MC chain). On
the other hand with the account of (3), (4) we have

Pm =2, exp(9,)/Z

and hence
Pm  Zn
— =—exp(9,, — M)
P Z, y
= exp( — B, Fo + BiFi + 1 — M) (5)

Thus we can obtain difference of free energies for any
arbitrary pair of temperatures. The case 8, = 0 corresponds
to the ideal gas (since the interaction is switched off) and the
partition function is known exactly (the case of the hard core
will be discussed later). Therefore putting in (5) m =0,
k=M we get

= - ln(PM/Po) + P — Mo — ln(zo)’ (6)

where Z, = V' /N!—the partition function of the ideal gas.

Since for each fixed B,, we simulate distribution in an
ordinary canonical ensemble, averaging over states with
B,. = const yields conventional canonical properties: inter-
nal energy, correlation functions, ete. (for the given 3, ). So
it is possible to get temperature dependences of these quanti-
ties parallel to the free energy calculations in a single MC
run.

B. Choice of parameters n,,

In principle, as it follows from general considerations of
statistical mechanics, the result of calculation (F,,) should
not depend on values of 7,,. However it is evident that prob-
abilities p,, strongly (exponentially) depend on 7,, and
hence in the case of inadequate choice of 77,,, the system will
not visit most of the temperature points during a finite MC
run at all (e.g., if all 7,, = O the system would almost exclu-
sively occupy the states with the lowest temperature). It is
clear that for obtaining good results the probabilities p,,
should be of the same order of magnitude (in any case their
variation should not exceed 2-3 orders). The ideal case
D,, =const = 1/(M + 1) corresponds to

N =B Fo.- (7)
However, F,, are just the values to be determined, so the
optimal values of 77,, are initially unknown [it should be
noted that Egs. (7) do not exactly correspond to the condi-
tion of minimum dispersion, though it is clear that devia-
tions from Eqgs. (7) would not be large; this problem requires
separate investigation].

For the determination of optimal 7,, [corresponding to
Eq. (7)] one has to make some trial MC runs with relatively
small (10*~10°) number of steps. After initial (as a rule un-
successful) choice of 7,, the system can mainly occupy a
single temperature point with rare visits to the neighboring
B,,. However even such a short MC run would provide a
rough estimation of F,, for this narrow temperature range
and we can use them for optimization of 7,, in this region.
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The next trial run gives a wider range of 8,, withnonzerop,,.
The procedure could be easily optimized and made automat-
ic. An example of such fitting of 7, is presented in the next
section. Simulation practice showed that a good set of 7,
{when the system repeatedly visits all temperature points
during the run of ~ 10° MC steps) are obtained already after
2-3 preliminary MC runs even for a strongly nonideal sys-
tem.

C. Hard core in the potential

In the specific case of the hard core (e.g., for PRM-
electrolyte) the suggested algorithm yields difference of the
free energy at given Sand at B = 0 (hard spheres) for which
the exact value of F is unknown. However the case of the
hard core can be readily included in the suggested scheme:
one should attribute index *“m” to the Hamiltonian itself in
Eq. (3). The aim is to remove completely (in the limit
m—0) the hard core in the potential. It could be achieved in
several ways, for instance, decreasing the size of the particles
or making them penetrable. Thus for the hard charged
spheres (RPM electrolyte) one could assume

+ B,/ —r| In—rnl>d
M, <m<M (RPM)
® lry —rl<d
0 lry —rel>d
m=M, (hard spheres)
|ry — il <d
0 |ry — | >d
OKm <M, (penetrable spheres).
En |y —rl <d

(83)
Ey,_, > >E, =0 (m=0corresponds to the ideal gas).

ili. RESULTS FOR THE RPM ELECTROLYTE

The method was tested on a well-known model—RPM
electrolyte in order to compare free energy results with those
obtained earlier*®"'? with the aid of other methods. The usu-
al scheme was applied: MC periodic cubic cell with equal
number (V /2) of positive (Q = 1) and negative (Q = — 1)
charged hard spheres of diameters d [interaction potential
(8) ] and minimum image convention to account for interac-
tions (Evald summation can be readily included if neces-
sary). Transition attempts with displacement of particles
and with the change of “m” were made with probability 0.9
and 0.1 correspondingly.

Simulation results for various N (¥ = 32,64,128,200)
at constant density (the side of the MC cube L varied ac-
cordingly) is presented in Table L. Since the values of the free
energy for this case are known from the previous papers the
values of 7,, were initially chosen close to optimal ones
(only for N = 200 they were corrected once). An example of
MC-walk in the B-space (a piece of MC run ~ 1000 MC
steps; Fig. 1) shows that even during this short interval the
system walked several times between the extreme points, i.e.,
from the minimum temperature to the ideal gas and back.

i ht;139(=g% http://jcp.aip.org/about/rights_and_permissions
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TABLE 1. Simulation results in S-expanded canonical ensemble for RPM electrolyte with different N at constant specific volume ¥ /Nd* = 104.3;8=1,
d = 0.595—in Bjerrum units; (for T'=298 K, € = 78 it corresponds to jon diam 4.2 A and ionic strength 0.1038 M). F,—free energy of the ideal gas.
L = V'*—side of the MC cell. Statistical error is shown under corresponding values.

N=32L=28.892 N=064L=11202 N=128L=14.114 N=200" L=16.378

10% MC steps 10° MC steps 5% 10> MC steps 3% 10° MC steps

8. /N P (F, —F,)/N —U.J/N p, (Fy—F,)/N —U./N p, (Fy —F,)/N —U,/N (F,—F,)/N ~U,/N
1. 0.0 0.1605 0.1997 0.2819 0.1499 0.1875 0.2715 0.0368 0.1773 0.269 0.1731 0.2656

0.003 0.001 0.005 0.001 0.005 0.002 0.001
0.8 0.05 0.1416 0.1823 0.2587 0.1254 0.1684 0.2535 e e 0.1512 0.2477
0.6 0.1 0.1446 0.1608 0.2363 0.1333 0.1428 0.2315 0.1214 0.2091
0.4 0.14 0.125 0.1298 0.2089 0.109 0.1065 0.1972 0.0839 0.1792
0.2 0.18 0.1362 0.073 0.1745 0.0657 0.033 0.1620 e cee e 0.0029 0.1528
0.0 0.21 0.1303 —0.0168° 0.0 0.0836 — 0.0189° 0.0 0.2065 —0.0203 0.0 —0.0229° 0.0
(H.S)
0.0 0.20 0.1619 0.0 0.0 0.3331 0.0 0.0 0.7569 0.0 0.0 0.0 0.0
(ig) 0.005 0.01 0.01
ratio of succesful attempts
to change m 0.63 0.52 0.05 0.42

* B interval equals to 0.1,
®Shown is S(F, — F)/N.

For N = 128 we used no intermediate S-points in the
interval [0,1]. Though in this case the acceptance probabili-
ty of B transitions decreased, the total computational error
practically did not change since the number of “boxes” cor-
responding to separate canonical subensembles became
smaller. However for a still greater number of particles
(N = 200) the absence of intermediate points decreased the
acceptance ratio below 1%. Data for N =200 in Table I
were obtained in a procedure with 10 intermediate points in
B interval [0,1]; two points with penetrable spheres were
added.

Two interconnected factors influence (in opposite di-
rections) the estimation accuracy for p, and p,,: (1) the

Data of Table I show certain N dependence of the re-
sults. The ultimate values for the macrosystem could be ob-
tained in a usual way by 1/N-extrapolation (they are given
in Table III).

Analogous results for a denser system (¥ /Nd* = 5.5 or
electrolyte concentration 1.96 M) are presented in Table II.

TABLEII. Results of simulation in S-expanded ensemble for RPM electro-
iyte. 8= 1, d = 0.595 (Bjerrum units), N = 64, V'/Nd* = 5.5 (1.966 M).
F,—free energy of the ideal gas. Statistical error is shown under corre-
sponding values.

%

ratio of successful B transitions and (2) the number of inter- Bn  Mm/N Pm B(F, —F,)/N —pBU,/N Successful
mediate S points (number of 3,, “boxes”). So the optimal B transitions
acceptance ratio for B transitions (yielding minimum dis- RPM
persion) could be less than the value of 50%-60% used for 1 0.0 0.0267 0.1037 0.642
configurational steps. 0.005 0.006 4
0.8 0.13 0.0336 —0.0227 0.4757
38
Bn m 0.6 0.25 0.0361 —0.1416 0.3438
1 61 32
’ 0.4 0.37 0.0533 — 0.2555 0.2107
30
08 5 02 048  0.1109 —0.354 0.0907
20
06 4 00 058  0.4206 —0.4332 0.0
(H.S) 2.8
04 3
E, Penctrable spheres
0.2 2 3. 0.53  0.1092 —0.4043 —0.0735
8.4
0. 1 1.5 0.43 0.0551 —0.315 —0.1609
19
La 0 , , 08 033 00514 —0.215 —0.1537
T o0 2500 3000 2
MC steps 04 023 00274 —0.1259 —0.1006
17
0.0 0.12 0.0758 0.0 0.0
FIG. 1. A pattern of a random walk in the space of {ﬂ,,,} for RPM electro- (i.g) 0.01

lyte. N = 32, other parameters—see Table 1.
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TABLE II1. Comparison of results for RPM electrolyte obtained by differ-
ent methods (8= 1).

B(F— F(HS.))/N c=0.1038 M

(see Table I)

c=196M
(see Table IT)

Present method
Multistage sampling (Ref. 4)

—0.1915 4+ 0.0010 — 0.5369 4- 0.0040
—0.1922 4 0.0022 — 0.5236 4- 0.0045

HNC (Ref. 9) —0.195 —-0.52
MEX (Ref. 10) —0.1927 —0.5165
BU/N

Present method —0.271 —0.642
Conventional MC (Ref. 11)  —0.2739 —0.6511

In this case the problem of transition from hard spheres to
the ideal gas already becomes important and we included
four intermediate points with penetrable spheres. Neverthe-
less transitions between hard and penetrable spheres oc-
curred with small probability. It is possible that for denser
systems one should provide a more smooth {than according
to Eq. (8)] switching off the potential, for instance in the
form of a cone with decreasing height: E,, (d — |r, — r;|)
for |r, — .| <d.

In Table III comparison of our results with the multi-
stage sampling data® and analytical [HNC (Ref. 9) and
mode expansion (Ref. 10)] theories is made (compared is

the free energy difference between RPM and hard spheres).
Good coincidence is observed. Data for the internal energy is
also presented. Agreement with recent results obtained by
umbrella sampling'? is also achieved.

The main advantage of our approach possibly is its ap-
plicability to strongly nonideal systems such as RPM at
rather low temperatures (see Table IV and Fig. 2). Table IV
also illustrates the process of fitting the parameters 7. It is
important to stress that after adequate choice of 7, (after
three comparatively short trial runs) the system visited all
the temperature points already during a piece of MC chain
(~10° MC steps), the free energy is determined with high
accuracy ~2% though the statistical error for p,, could be
~20%. Actually, the main contributions to the free energies
are determined by constants 7,,, and the data obtained in
further simulation only ‘“corrects” them [the term

In(p,/py) in Eq. (6)].

IV. GENERALIZATION ON OTHER ENSEMBLES AND
DISCUSSION

The general idea of the proposed method can be dis-
played in the following way. Standard MC simulation in any
specific ensemble does not enable one to determine the corre-
sponding complete partition function but makes it possible
to calculate the ratio of partition functions for any pair of its
subensembles. Really, the partition function of the suben-

TABLE IV. Fitting of 7,, for a strongly nonideal system (RPM for f=20.);d = 1., ¥ /Nd? = 9.85, N = 52. 1-3 preliminary runs.

Run 1 2 4 (final)
MC steps 50 000 50 000 100 000 1 000 000
B Nm/N Prm Nm/N Pm /N Do N/ N Pon —-BF/N —F/N —E/N
20. 0. 0.9944 0. 0 0. 0 0. 0.0052 9.557 0.4778 0.5880
(0.001) (0.007)
19. 0.5 0.0055 0.6 0 0.6 0 0.6 0.0097 8.969 0.4720 0.5811
18. 1 0.0001 1.2 0 1.2 0 1.2 0.0210 8.383 0.4657 0.5760
17. 1.5 0 1.8 0 1.8 0 1.79 0.0350 7.803 0.4590 0.5715
16 2.0 0 2.39 0 2.39 0 2.37 0.0498 7.230 0.4519 0.5652
15 2.45 0 2.97 0 2.97 0 2.93 0.0336 6.663 0.4442 0.5583
14 29 0 3.54 0 3.54 0 349 0.0324 6.102 0.4358 0.5516
13 3.35 0 4.1 0 4.1 0 4.04 0.0334 5.552 0.4271 0.5425
12 3.8 0 4.65 0 4.65 0.0001 4,58 0.0308 5.011 0.4176 0.5363
11 4.2 0 5.19 0 5.19 0.0005 5.11 0.0263 4.478 0.4071 0.5274
10. 4.6 0 5.72 0 5.72 0.0010 5.63 0.0258 3.957 0.3957 0.5141
9. 5. 0 6.24 0 6.23 0.0030 6.14 0.0290 3.450 0.3833 0.5008
8. 5.4 0 6.75 0 6.73 0.0036 6.63 0.0199 2.952 0.3690 0.4870
7. 5.75 0 7.25 0 7.21 0.0066 7.12 0.0259 2.467 0.3525 0.4758
6. 6.1 0 71.74 0.0003 7.69 0.0217 7.59 0.0289 1.999 0.3333 0.4588
5. 6.45 0 8.22 0.0028 8.13 0.0302 8.04 0.0301 1.550 0.3101 0.4381
4. 6.7 0 8.69 0.0075 8.57 0.0691 8.48 0.0508 1.123 0.2806 0.4212
3. 7. 0 9.05 0.1015 8.95 0.0569 8.88 0.0414 0.716 0.2388 0.3937
2. 7.3 0 9.55 0.4312 9.27 0.0154 9.23 0.0136 0,345 0.1725 0.3538
1. 7.55 0 9.9 0.2121 9.61 0.0153 9.57 0.0230 0.015 0.0152 0.3023
0. 7.7 0 10.2 0.2042 9.85 0.0116 9.82 0.0403 —0.224 e 0.0
E, Penetrable spheres
0.8 e 9.79 0.0753 9.74 0.1533 —0.118 — 0.0788
0.2 ser ves e e 9.75 0.1599 9.66 0.1513 —0.039 . — 0.0340
0. 7.5 0 10. 0.0461 9.69 0.5303 9.61 0.0836 0.0 e 0.0
(ig.) (0.01)
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FIG. 2. Free energy (a) and internal energy (b) for RPM electrolyte ob-
tained in expanded ensemble MC simulations. d = 1, specific volume
v= V/Nd? and number of particles N: 1—v = 99.4, N = 50; 2—v =20,
N = 50; 3—p = 9.85, N = 52.

semble is proportional to the probability for the system to
occur in this subensemble [see Eq. (5)]. It shows the way to
direct determination of the partition function, say, for ca-
nonical ensemble: to incorporate it as a subensemble into
another, expanded, ensemble. The latter should include also
exactly determined canonical partition function (reference
system—e.g., the ideal gas). Additional factors exp(7,,)
(modification) enable to equalize approximately probabili-
ties for the simulated system to occur in these subensembles
thus making calculations practically feasible.

A specific case of B expansion of NVT ensemble was
presented in previous sections. As another example we can
treat 1 VT ensemble which includes in a natural way the ref-
erence system-—the case of ¥ = 0 (or N = 1). Constants 1,,,
are connected with the chemical potential: 7, = BuN. Of
course such choice of 77, is very inefficient for our purpose—
determination of the free energy: the system would mostly
occupy the states with the number of particles close to a
certain N, corresponding to the input value of ¢ and would
not walk over the whole given (limited) interval of N: [0,N].
To provide that the system could visit states with all

Lyubartsev et al.: Method of expanded ensembles

numbers of particles in {0,N] with equal probabilities the
constants 77, should be chosen from a recurrent condition
Nws1 — M. = Bu(n) with the special dependence of p(n).
These conditions are analogous to Eq. (7).

So it is possible to formulate another version of expand-
ed-modified canonical ensemble which actually can be
treated as a contracted and modified 4 ¥ T-ensemble with the
partition function

N
Z= "ZOZ,, exp(n, ).

Here Z, [contrary to Eq. (4)] is the canonical partition
function with varied number of particles n at constant S and
V. Contraction of the grand canonical ensemble denotes
summation in the finite range of n =0,...,N (instead of
[0, « 1), and modification—special dependence of i on 7.

This version of our method was also applied to RPM
(Table V) for the same set of parameters as in Table I. A
conventional y-ensemble algorithm!® was used with an ex-
plicit restriction on # (0 < n < N) and a special dependence
p(n). Close results for N = 32 are obtained: 0.1997(10) for
B ~ and 0.1975(55) for N-expanded ensemble.

Comparison of facilities of both variants shows that
though random walk in n requires less computer time for the
same number of MC steps than random walk in £ (since in
the former case the number of particles 7 is mostly less than
N) still dispersion in n-expansion version appears to be
greater even for equal time of both computations. It is caused
primarily by the fact that insertion of a particle is a much
greater perturbation for the system than the temperature
change. However in n-expansion procedure we get at once
the free energy of the system rather than its difference from
that of the hard spheres.

A particular case of the contracted u¥T ensemble in
which the number of particles changed in a single MC run
only by 1 (intheinterval [N,N + 1]), wassuggested in Refs.
14 and 15 for determination of the chemical potential of clus-
ters: & = F(N - 1) — F(N). For the case of dense periodic
systems a similar method with gradual switching on an addi-
tional particle was also suggested in Ref. 15.

Analogously it is possible to expand (and modify) NVT
ensemble with respect to volume obtaining this way con-
tracted (finite range of volume V) and modified (modifica-
tion of P) NPT ensemble.

It is possible, in general, to create any successive set of
points in the space of (¥,¥,T) and to follow this set from a
given initial point to any final point, corresponding to the
ideal system, e.g., at N = 0,1; 8 = 0 or V' — 0. Other combi-
nations with expansion, contraction, and modification of en-
sembles are also possible. Thus, expansion of the NPT en-
semble with respect to T or N can be used for calculation of
the Gibbs potential.

Some of such modifications with “contraction” of grand
ensembles (stationary and nonstationary methods) were
suggested in fact in Refs. 14 and 15 for calculation of the
Gibbs free energy and chemical potential both for clusters
and for macrosystems (the term “expanded ensemble” was
not yet introduced).

The most close to our approach is the method suggested

J. Chem. Phys., Vol. 96, No. 3, 1 February 1992
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TABLE V. Simulation results for RPM electrolyte in N-expanded canonical ensemble. For N_,, = 32 (ionic

strength 0.1038 M) the parameters correspond to Table I.

N In/N NV Pwn B(Fy — Fy)/N —BUy/N
0 0.0 0.0 0.0278 0.0 0.0
0.001
2 —0.02 0.0028 0.0308 0.1605 0.1488
4 —0.04 0.0057 0.0426 0.1464 0.1601
6 — 0.055 0.0085 0.0471 0.1427 0.1782
8 - 0.07 0.0114 0.0510 0.1457 0.18389
10 —0.083 0.0142 0.0595 0.1591 0.1992
12 —0.095 0.0171 0.0607 0.1601 0.2132
14 —0.105 0.0199 0.0616 0.1618 0.2222
16 —0.114 0.0228 0.0636 0.1657 0.2298
18 —0.123 0.0256 0.0635 0.1689 0.2394
20 —0.132 0.0284 0.0660 0.1752 0.2445
22 —0.14 0.0313 0.0691 0.1814 0.2537
24 —0.147 0.0341 0.0678 0.1842 0.2618
26 —0.153 0.037 0.0727 0.1902 0.2677
28 —0.158 0.0398 0.0693 0.1923 0.2717
30 - 0.163 0.0427 0.0711 0.1941 0.2807
32 —0.168 0.0455 0.0695 0.1975 0.2854
0.004 0.0055

by Bennet in Ref. 5 and called “acceptance ratio method.” If
we consider an expanded ensemble composed of systems “0”
and “1” it follows from the detailed balance principle for
transitions 0 1:

P(0)  P(1-0)

P(l)  P(O=1)

Hence for calculations of P(0)/P(1) it is possible to
carry out MC simulation separately both for systems “0”
and “1” and only to calculate the transition probabilities to
the neighboring ensemble (in our terms to subensemble of
the expanded ensemble). Actual transitions in Ref. 5 are not
made, the only thing done in Ref. 5 is averaging the Metro-
polis function min{1, exp( — A(BH))} or another function
of the same type which directs MC process. However this

flu f(ﬁz;li) %%m F

(i u)

U2

FIG. 3, Schematic diagram of energy distribution shift in S-expanded en-
semble.

approach has the same shortage as the others: averaging of
an exponent. The consequence is that the states with maxi-
mum contribution occur rarely and the dispersion is great.

Therefore we strongly believe that actual transitions be-
tween subensembles should be made. Consider Fig. 3 where
energy distributions for different temperatures are present-
ed. Inclusion of appropriate factors exp(7,, ) shifts them all
approximately to the same energy region, the best coinci-
dence being achieved for

AU) = A(y/B). (9)

However the optimal choice of %,, corresponding to the
uniform distribution over subensembles p,, is achieved un-
der condition (7) which differs from (9) by the entropy
contribution. However since AF makes as a rule the main
contribution to AU (at least it is valid for PRM electrolyte—
see Tables I, II, IV and Fig. 2) addition of %,,/8,, = F,,
shifts the energy distributions practically to the same region
on the energy axis and transitions with the change of tem-
perature occur with sufficiently high probability. The proper
choice of 7,, solves the problem of optimal sampling distri-
bution: for successful free energy calculation the distribution
covering all important points of configurational space for the
whole set of 3,, is necessary. Our method under condition
(7) provides such distribution.

In the proposed method the ultimate result for the free
energy is expressed as a ratio of values well determined in the
MC process: numbers of “hits” n,, into definite separate
“boxes” (subensembles), the number of boxes being not
great (ten or so). It allows one, as it is testified by data in Sec.
I11, to achieve the same level of efficiency in free energy
estimation as in MC calculations of conventional canonical
averages (e.g., internal energy)—three decimal figures in a
MC chain of about one million steps.

Another attractive feature of the expanded ensemble
method especially important for strongly nonideal systems is
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the increase of “connectivity” of different parts of the con-
figurational space. Actually, in conventional MC simula-
tions at low temperatures there often emerges a problem of
metastable states. In the case of an expanded ensemble [let it
be Bexpansion (4)] the system can easily get into the suben-
semble with higher temperature where the configuration can
change drastically in a short time; so after the next decrease
of temperature the system may get into the configuration
space region far from the initial one, in the vicinity of an-
other minimum. Such a feature of the method could be use-
ful even in MC calculations of conventional canonical aver-
ages.

V. USE OF EXPANDED ENSEMBLES IN PATH
INTEGRAL MONTE CARLO PROCEDURE FOR
QUANTUM SYSTEMS

The idea of expanded ensembles in free energy calcula-
tions can be also developed in quantum statistics. MC simu-
lation in this case is based on Feynman integrals over closed
cyclic or (in the case of a system with the permutational
symmetry) linked trajectories.'® Numerical realization im-
plies the use of sublimit approximation of the partition func-
tion expressed by a product of high temperature density ma-
trices in coordinate representation:!7-2

Y = Trlexp( —BK+ 2))]

= lim Tr[exp( — BK /1) exp( — BV /D]

N
zf dQ(1)---dQ(J) H (ym;/2aph*)> 2
i=1

Jm;

N
2 g U+ —a DT

7
Xexp( ->
i=1

B J
~£ 3 vien) us,

j=1
where K ) P—kinetic and potential energy operators of the N-
particle system of (distinguishable) particles with masses
m;, Q(J) = [4,()),-,qn () ]—aset of “simultaneous” (/)
vertices of the Feynman trajectories. In terms of Eq. (10)
quantum particles are isomorphous with classical cyclic
“polymer” chains with J vertices linked by harmonic forces

(10)

Jm; . ,
W [¢:.(/+ 1) _‘QI(J)]Z-

Interparticle interaction is expressed as interaction of ver-
tices with the same index “4.”” This quantum-classical iso-
morphism makes it possible to apply here all the above dis-
cussed facilities of expanded ensembles.

Contrary to the classical statistics where the mass de-
pendence in the partition function is trivial and hence it is
excluded from Z (3), in the expression ( 10) for Y thekinetic
part of the partition function is present and includes nontri-
vial parameters m; which yields additional possibilities for
creating expanded ensembles.

Consider an expanded ensemble with variable masses of
particles /7, = am,, where «a is the parameter with a set of
values O<a; '<a; 1<+ <ay'=1; in the limit @ — o«
the system becomes “classical” with the trajectories in Eq.

v =
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(10) collapsing into points. The maximum (finite) value of
a in each specific calculation could be chosen in such a way
that A; €7 (classical regime) where A, = #/(2mam kT)"?
—thermal wavelength determining the average size of the
corresponding trajectory; 7—mean interparticle distance.
Suppose that for such a system the partition function and the
free energy is determined by the method described in Sec. I1.
Then

N
—In(Yerass) = —In(Z) + 3 In(4;%)

i=1
and the ratio
Y(a, =1) _ Y(a,) Y(a3)m Y(a,)
Y(al) Y(al) Y(a,) Y(ay..1)

with the condition Y (e, )= Y 455 yields contribution to
the free energy caused by the quantum effects:

—kTIn[Y(ay =1)] — [ — kT In(¥cpass) |-

Calculation of Eq. (11) could be carried out in the same
way as in classical statistics with the use of modifying factors
exp(7,,) equalizing statistical sums of the subensembles
with different a,,,. It is important to stress that (similar to
the classical case) Markov steps from one subensemble to
the neighboring ones do not require large calculations: in
such a step the trajectory configuration does not change, the
change occurs only in the kinetic part of the functional in the
exponent (10):

J N
@y 3 r()=al{gh
i=1i=1
The transition probability matrix can be chosen from the
detailed balance condition:
Pim-m+1)
Pim+1-m)

(11)

= exp((a,, — a,, , 1)BT{O})

XCXP(Wm+1 _nm)’ (12)

where 77,, have the same meaning as in Eq. (4).

It may seem that the ensemble with fluctuating mass
{m-expanded ensemble) yields nothing new in comparison
with the S-expanded ensemble. Actually, calculation of the
free energy for quantum systems can be, in principle, carried
out also in the ensemble with fluctuating temperature (4),
3 = 0being chosen as a reference subensemble. However in
this case all the route from £ = O up to the given value of 8
should be passed in the regime of quantum statistical simula-
tion representing each particle by a trajectory while a consid-
erable and may be even the greater part of this route could be
passed in the classical simulation regime [Feynman trajec-
tories are strongly localized and can be substituted by classi-
cal particles, but the system is nonideal—the potential part
in Eq. (10) can not be neglected]. Moreover the separation
of quantum effects in the free energy could present an inde-
pendent interest.

The ensemble with fluctuating mass provides also an
alternative approach to another important problem of quan-
tum statistical simulation—the averaging of the kinetic ener-
gy operator which (contrary to the potential energy opera-
tor) is nondiagonal in the coordinate representation. The
problem is the following. The initial kinetic energy estimator
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which can be obtained by formal differentiation of free ener-
gy on the basis of Eq. (10).

(K= — N m; dlnY
i=1 ﬁ ami
=<ﬂ_ J ﬁmii [q,-(j+1)—q,-(j)]2>
28 2B & =1

(13)

is a difference of two values close to each other, the second of
which fluctuates with dispersion rising proportionally to J.
So the dispersion of (K ) deviates with J— o which prevents
application of Eq. (13) at low temperatures. The virial esti-
mator of the kinetic energy'®?° is free from this fault but has
another weak point—neglecting of surface contributions. It
imposes additional restrictions on the behavior of the wave
function [in fact the virial estimator gives correct results for
sufficiently bound mixted states lest the potential at the bor-
der should be made “soft” and included into V(Q)].

On the other hand using the idea of expanded ensembles
we can directly calculate the derivative (13) from the profile
of Y(am,). The dispersion of the corresponding ratios (11)
determined by transition frequencies m<>(m 4 1) could be
lowered by optimal choice of factors exp(7,,). An impor-
tant point influencing the decrease of dispersion is deter-
mined by the fact that transitions m<>(m + 1) occur with-
out change of trajectory configurations and hence between
corresponding points on hypersurfaces exp( — e, I'{Q})
and exp( —a,, ., '{@}). In other words, though I'(Q)
(for J» 1) can fluctuate during MC process in considerable
limits, variations of a,, T'{Q} and a,, , , ['{Q} are “synchro-
nized”, thus eliminating great deviations of derivative in Eq.
(13). The increase of accuracy can be achieved by the opti-
mal preliminary choice of ,, values corresponding to initial
rough estimate of the derivative (13) in the same way as for
classical systems (see Sec. II B).

Vi. CONCLUSION

Finally we can suggest some other possible applications
of our method.

Calculation of the mean force potentials, e.g., for two
ions in water.?"?? Actually, the potential of mean force
W(r) is the free energy of two ions fixed at an interionic
distance r in water environment at certain temperature.
Function W(r) obtained by expanded ensemble method can
be used later for more adequate simulation of electrolyte
solution instead of RPM potential.

Another field is the polymer statistics. Calculation of
the polymer partition function is also the problem which had
not been accurately solved yet: the conventional Metropolis
algorithm does not allow to calculate it due to the same rea-
sons as for systems of small particles. Rosenbluth algo-
rithm?® becomes inefficient for polymer lengths exceeding

1783

several hundred monomers. To solve the problem one can
introduce [analogous to Eq. (8) ] “penetrable polymer” and
construct an expanded-modified ensemble in which the
height of potential level E changes from infinity (self-avoid-
ing polymer) to zero (Gaussian chain). For the latter case
the partition function is known exactly to allow one to calcu-
late the partition function of the self-avoiding chain.
Suggested method can be applied also to the study of
conformational transitions in the macromolecules caused by
the change of environment (e.g., many conformational tran-
sitions in proteins, DNA, take place when temperature or
salt concentration is changed”?*). There are two ways for
calculation FED for a pair of its forms. The first is to create
an “expanded over conformations” ensemble in which the
initial conformation gradually turns into the final one (the
intermediate conformations could be chosen nonphysical).
If this way is found to be difficult for realization (due to
technical reasons, e.g., for complicated macromolecules)
the S-expansion variant can be used. Its advantage is that
conformation of the macromolecule in this version is fixed.
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