
Constant pH Replica Exchange Molecular Dynamics in
Biomolecules Using a Discrete Protonation Model

Yilin Meng and Adrian E. Roitberg*

Department of Chemistry and Quantum Theory Project, UniVersity of Florida,
GainesVille, Florida 32611-8435

Received December 16, 2009

Abstract: A constant pH replica exchange molecular dynamics (REMD) method is proposed
and implemented to improve coupled protonation and conformational state sampling. By mixing
conformational sampling at constant pH (with discrete protonation states) with a temperature
ladder, this method avoids conformational trapping. Our method was tested and applied to seven
different biological systems. The constant pH REMD not only predicted pKa correctly for small,
model compounds but also converged faster than constant pH molecular dynamics (MD). We
further tested our constant pH REMD on a heptapeptide from the ovomucoid third domain
(OMTKY3). Although constant pH REMD and MD produced very close pKa values, the constant
pH REMD showed its advantage in the efficiency of conformational and protonation state
samplings.

Introduction

Solution pH is a very important thermodynamic variable that
affects protein structure, function, and dynamics.1-3 Many
biological phenomena such as protein folding/misfolding,4-6

substrate docking,7,8 and enzyme catalysis9-11 are pH-
dependent. Examples include amyloid fibril formation12 such
as misassembly of prion proteins,13 ATP synthesis,14 and
pH-dependent partial R-helical formation of a 13-residue
N-terminal fragment from ribonuclease A.4,5 This pH-
dependence of structure and dynamics comes from changes
in the ratio of protonation states for the different residues at
different solution pH values.

The pH value at which a particular titratable residue side
chain has equal population of protonated and deprotonated
states is called the pKa value of that side chain.15-18 The
pKa value of a titratable side chain can be highly affected
by the environment of that titratable side chain such as
protein environment polarity. An ionizable side chain in the
interior of a protein can have a different pKa value from the
isolated amino acid in solution.18 For example, Asp26 of
thioredoxin, which lies in a deep pocket of the protein, has
a pKa value of 7.5, while the intrinsic pKa value of aspartic
acid is 4.0.19 Furthermore, a charged side chain can favor
different protonation states in order to stabilize the protein

structure by forming a salt bridge.20 The conformation and
protonation distributions are highly coupled:21-23 changes
in either of them can affect the other one.

Due to the importance of solution pH, Molecular Dynam-
ics (MD) simulations have been used to study its effect on
protein structure and dynamics. Other popular theoretical
methods developed to calculate (predict) pKa values include
the electrostatic continuum dielectric model and the Poisson-
Boltzmann Equation (PBE),17,24-27 free energy calculation
methods,16,28-30 and empirical methods.31,32 More details
on computer simulation of pKa prediction and pH dependence
of protein structure and dynamics can be found in recent
studies.33-51 The traditional way of studying the effect of
pH is setting a constant protonation state before a simulation
is carried out. The major problem with this method is that it
decouples the correlation between conformation and pro-
tonation state, yielding a wrong population of protonation
states, especially when the solution pH is close to the pKa

of that titratable site. Furthermore, assigning protonation
states before a simulation often involves a guess of proton-
ation state based on our experience.

Constant-pH molecular dynamics (constant-pH MD) meth-
ods were developed in order to correlate the protein
conformation and protonation state. The purpose of constant-
pH MD is to describe protonation equilibrium correctly at a
given pH. One category of constant-pH MD methods uses a* Corresponding author e-mail: roitberg@ufl.edu.
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continuous protonation parameter. Earlier models include a
grand canonical MD algorithm developed by Mertz and
Pettitt52 in 1994 and a method introduced by Baptista et al.35

in 1997. In the Mertz and Pettitt model, protons are allowed
to be exchanged between a titratable side chain and water
molecules. Baptista et al. used a potential of mean force to
treat protonation and conformation simultaneously. Later,
Börjesson and Hünenberger53,54 developed a continuous
protonation variable model in which the protonation fraction
is adjusted by weak coupling to a proton bath, using an
explicit solvent. More recently, the continuous protonation
state model was further developed by the Brooks group.39-43,55

They called their constant-pH MD algorithm continuous
constant-pH molecular dynamics (CPHMD). In the CPHMD
method, Lee et al.55 applied λ-dynamics56 to the protonation
coordinate and used the Generalized Born (GB) implicit
solvent model. They chose a λ variable to control the
protonation fraction and introduced an artificial potential
barrier between protonated and deprotonated states. The
potential is a biasing potential to increase the residency time
close to protonation/deprotonation states, and it centered at
the half-way point of titration (λ ) 1/2). The CPHMD
method was then extended by incorporating an improved GB
model and replica exchange molecular dynamics (REMD)
algorithm for better sampling.40-43 The applications of
CPHMD and replica exchange CPHMD included predicting
pKa values of various proteins,40 studying proton tautomer-
ism39 and pH-dependent protein folding and folding inter-
mediates of the villin headpiece domain.42,43

In addition to continuous protonation state models,
discrete protonation state methods have also been devel-
oped to study the pH dependence of protein structure and
dynamics.36,46-49,57-63 The discrete protonation state
models utilize a hybrid molecular dynamics and Monte
Carlo (hybrid MD/MC) method. Protein conformations are
sampled by molecular dynamics, and protonation states
are sampled using a Monte Carlo scheme periodically
during a MD simulation. A new protonation state is
selected after a user-defined number of MD steps, and
the free energy difference between the old and the new
state is calculated. The Metropolis criterion64 is used to
accept or reject the protonation change. Various solvent
models and protonation state energy algorithms were used
in discrete protonation state constant pH MD simulations.
The Baptista group36,46-49 used the Poisson-Boltzmann
(PB) equation to calculate protonation energies while their
MD was done in explicit solvent. Walczak and An-
tosiewicz63 also employed the PB equation to determine
protonation energy, but they used Langevin dynamics to
propagate coordinates between MC steps. Bürgi et al.57

calculated the transition energy between two protonation
states by using thermodynamic integration (TI) method
and explicit solvent. More recently, Mongan et al.62

developed a method combining the GB model65,66 and the
discrete protonation state model. In Mongan’s method, the
GB model was used in protonation state transition energy
as well as solvation free energy calculations. Therefore,
solvent models in conformational and protonation state
sampling are consistent, and the computational cost is

small. This model was later coupled with accelerated
molecular dynamics67,68 to achieve better conformational
sampling.69 Dlugosz and Antosiewicz also used the
discrete protonation state method to study succinic acid58

and a heptapeptide derived from the ovomucoid third
domain (OMTKY3).60,61 This heptapeptide corresponds
to residue 26-32 of OMTKY3 and has the sequence of
acetyl-Ser-Asp-Asn-Lys-Thr-Tyr-Gly-methylamine.
Nuclear magnetic resonance (NMR) experiments indicated
the pKa of Asp is 3.6, 0.4 pKa unit lower than the value
of blocked Asp dipeptide.61 In their studies, the conven-
tional molecular dynamics (MD) simulations were carried
out to sample peptide conformations. Dlugosz and An-
tosiewicz sampled protonation states using the PB equation
and used analytical continuum electrostatics to treat
solvation effects. Their method predicted the pKa to be
4.24.

Due to the correlation between conformation and proton-
ation sampling, correct sampling of protonation states
requires accurate sampling of protein conformations. Hence,
generalized ensemble methods70-73 such as the multicanoni-
cal ensemble algorithm,74,75 simulated tempering,76 and
replica exchange molecular dynamics (REMD)77 should be
used to avoid kinetic trapping which comes from low rates
of barrier crossing in constant temperature MD simulations.
These methods make the system perform a random walk in
temperature or energy space which allows the system under
study to easily overcome energy barriers and hence reduces
the problem of kinetic trapping. REMD, the MD version of
parallel tempering (PT),78 has the advantage of a-priori
known weight factors, such as Boltzmann weights. REMD
has been used in many studies of protein structure and
dynamics and proven to drastically increase rates of con-
vergence toward a proper equilibrium distribution. Khando-
gin et al. applied the REMD algorithm to the continuous
protonation state constant-pH method and named it REX-
CPHMD. They applied REX-CPHMD to pKa predictions and
pH-dependent protein dynamics such as folding and
aggregations.40-43

In this paper, we present a study of conformation and
protonation state sampling using an REMD algorithm on the
discrete protonation state model proposed by Mongan et al.
We first tested our method on the basis of five dipeptides
and a model peptide having the sequence Ala-Asp-Phe-
Asp-Ala (ADFDA). The two ends of model peptide
ADFDA were not capped, so the two ionizable side chains
would have different environments. Then our method was
applied to a heptapeptide from OMTKY3, the same hep-
tapeptide that Dlugosz and Antosiewicz studied in their
paper.60,61 Our purpose is to show that the REMD algorithm
coupled with a discrete protonation state description can
greatly improve pH-dependent protein conformation and
protonation state sampling.

Methods

A. Constant-pH MD Algorithm in AMBER. A detailed
description of the discrete protonation state model can be
found in the paper of Mongan et al.62 This algorithm employs
discrete protonation states, MC sampling of protonation
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states, and the use of a GB model in MD and MC. Given a
protein with N titratable sites, the discrete protonation state
model means protonation states of a protein are described
by a vector n ) (n1, n2, ..., nN) where each ni is some integer
representing the protonation state of titratable residue i. In
AMBER, five amino acids are designed to be titratable:
aspartate, glutamate, histidine, lysine, and tyrosine. For each
titratable residue, different protonation states have different
partial charges on the side chain. This model also includes
syn and anti forms of protons for the aspartate and glutamate
side chains as well as the δ and ε proton locations for
histidine.

The goal of constant-pH MD is to describe equilibrium
between protonated and deprotonated forms correctly at a
given pH. In the discrete protonation model, the populations
of each form are sampled by the MC method periodically
during a MD simulation. At each Monte Carlo step, a
titratable site and a new protonation state for that site are
chosen randomly, and the transition free energy at this fixed
configuration is used to evaluate the MC move.

Considering a titratable site A in a protein environment,
its protonated form is protA-H and the deprotonated form is
protA-. The equilibrium between the two forms is governed
by their free energy difference. This free energy difference
is the ensemble average of different configurations. However,
the free energy difference cannot be computed by a molecular
mechanics (MM) model since the transition between two
forms deals with bond breaking/forming and solvation of a
proton which involves quantum mechanical effects.

The above problems can be solved by using a reference
compound. The reference compound has the same titratable
side chain as protA-H but with a known pKa value (pKa,ref).
Following Mongan et al.,62 we assume the transition free
energy can be divided into the quantum mechanics (QM)
part and the molecular mechanics (MM) part. We further
assume that the quantum mechanical energy components are
the same between the reference compound and the protA-
H. Since the pKa of the reference compound is known, its
transition free energy from the deprotonated form to the
protonated form at a given pH is

So the QM component of the transition free energy can
be expressed as

where ∆Gref,MM is the molecular mechanics contribution to
the free energy of the protonation reaction for that reference
compound. In practice, the QM component of the transition
free energy also contains errors from MM calculations, so it
is actually better called a non-MM component. Since the
approximation of the QM component of the transition free
energy is

then the transition free energy from protA- to protA-H can
be calculated as

∆G ) kBT ln 10(pH - pKa,ref) + ∆GMM - ∆Gref,MM (4)

where ∆GMM is the molecular mechanics contribution
(electrostatic interactions in nature) to the free energy of
the protein titratable site. Hence, by using a reference
compound, the QM effects are not needed. Effectively,
we compute ∆pKa relative to the reference compound.
Computing ∆pKa can also help canceling some errors
introduced by the GB solvation model through the use of
∆Gref,MM. In AMBER, a reference compound is a blocked
dipeptide amino acid possessing a titratable side chain (for
example, acetyl-Asp-methylamine). Five reference com-
pounds were constructed corresponding to five titratable
residues. The values of ∆Gref,MM for each reference
compound are obtained from thermodynamic integration
calculations at 300 K and set as internal parameters in
AMBER.62,79 The ∆GMM is calculated by taking the
difference between the potential energy with the charges
of the current protonation state and the potential energy
with the charges of the new protonation state (i.e., ∆GMM

is approximately ∆H by averaging over configurations).
The ∆G from eq 4 is used to decide if a MC move in

protonation space should be accepted or rejected. If the
transition is accepted, MD steps are carried out to sample
conformational space in the new protonation state. If the MC
attempt is rejected, MD steps are also carried out with no
change to the protonation state.

B. Titration Curve and pKa Prediction Calculation. The
titration curve of an ideal titratable site having no interac-
tion with other titratable groups follows the Henderson-
Hasselbalch (HH) equation:

pKa ) pH - log( [A-]
[HA]) (5)

Molecular dynamics runs are assumed to be ergodic; thus
the ratio of time that a titratable site spends in protonated
and deprotonated states can be used as concentrations. The
analytical form of the titration curve can be obtained by
exponentiating both sides of the HH equation. A more general-
ized form of the HH equation which studies an ionizable residue
interacting with another one can be written as

pKa ) pH - nlog( [A-]
[HA]) (6)

So the titration curve of an interacting ionizable residue
can be expressed as

s ) 1

1 + 10n·(pKa-pH)
(7)

where s is the fraction of deprotonation and n is the Hill
coefficient. A Hill plot, which can be obtained by plotting
log([A-]/[HA]) as a function of pH, is used to study titration
behavior. The HH equation (including its generalized form)
will be represented as a straight line in a Hill plot. The x
intercept is the pKa value, and the slope is the Hill coefficient
which reflects interactions between titratable residues.

C. Replica Exchange Molecular Dynamics (REMD).
A detailed description of the REMD algorithm can be found
in the papers of Sugita and Okamoto.77 In REMD, N
noninteracting copies (replicas) of a system are simulated at

∆Gref ) kBT ln 10(pH - pKa,ref) (1)

∆Gref,QM ) ∆Gref - ∆Gref,MM (2)

∆Gref,QM ) ∆Gprotein,QM (3)
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N different temperatures (one each). Regular molecular
dynamics is performed, and periodically an exchange of
conformation between two (usually adjacent) temperatures
is attempted. Suppose replica i at temperature Tn and replica
j at temperature Tm are attempting to exchange; the following
satisfies the detailed balance condition:

Pn(i) Pm(j) w(i f j) ) Pm(i) Pn(j) w(j f i) (8)

Here, w(ifj) is the transition probability between two states
i and j and Pn(i) is the population of state i at temperature n
(in REMD assumed Boltzmann weighted). If the Metropolis
criterion is applied, the exchange probability is obtained as

w(i f j) ) min{1, exp[(�m - �n)(E(q[i]) - E(q[j]))]}

(9)

Here, q[i] is the molecular configuration of state i, E is the
potential energy, and � ) 1/kBT. If the exchange between
two replicas is accepted, the temperatures of the two replicas
will be swapped and velocities rescaled to the new temper-
atures by multiplying all the old velocities by the square root
of the new temperature to old temperature ratio:

Vnew ) Vold�Tnew

Told
(10)

In the case of constant pH molecular dynamics, the
potential energy of the system depends not only on the
protein structure but also on the protein protonation state.
Likewise, when coupling the REMD algorithm with constant-
pH MD, one can either attempt to exchange molecular
structures only or swap both structures and protonation states
at the same time. For simplicity, let us consider two replicas
where replica 0 has temperature T0, protein structure q0, and
protonation state n0, while replica 1 has temperature T1,
structure q1, and protonation state n1. A diagrammatic
description of the two exchange algorithms is shown in
Figure 1. The first way of performing an exchange attempt
is that replica 0 tries to jump from state (q0, n0) to state (q1,
n0) at temperature T0 in one Monte Carlo step. Similarly,

replica 1 attempts to transit from state (q1, n1) to state (q0,
n1) at temperature T1. Protonation states are kept at exchange
attempts and only change during dynamics. Therefore, the
detailed balance equation now becomes

w(�0q0n0, �1q1n1 f �0q1n0, �1q0n1)

w(�0q1n0, �1q0n1 f �0q0n0, �1q1n1)
)

exp(-�0E(q0, n0)) exp(-�1E(q1, n1))

exp(-�0E(q1, n0)) exp(-�1E(q0, n1))
(11)

Here, w(�0q0n0,�1q1n1f�0q1n0,�1q0n1) is the transition prob-
ability of swapping structures. If the Metropolis criterion is
used, this exchange probability can be written as

w(�0q0n0, �1q1n1 f �0q1n0, �1q0n1) ) min{1, exp(-∆)}

(12)

and

∆ ) �0(E(q0, n0) - E(q1, n0)) - �1(E(q0, n1) - E(q1, n1))

(13)

where �0 ) 1/kBT0, �1 ) 1/kBT1, and E is the potential energy.
Here, if the protonation states of two adjacent replicas at an
exchange attempt are the same, the exchange probability of
our constant pH REMD will be equivalent to the conven-
tional REMD exchange probability. However, if it is not the
case, four potential energy terms are needed to calculate
exchange probability. Under this circumstance, the constant-
pH REMD becomes a REMD algorithm that combines both
temperature and Hamiltonian REMD algorithms.

One possible concern of exchanging only structures would
be the role of kinetic energy, especially when n0 and n1 are
different. In the REMD algorithm developed by Sugita and
Okamoto, the kinetic energy terms in the Boltzmann factors
cancel each other on average through velocity rescaling (eq
10). Only potential energies are required to compute ex-
change probabilities. There is a problem in canceling kinetic
energy terms when the numbers of particles of two systems
attempting to exchange are not the same. However, according
to the constant-pH MD algorithm proposed by Mongan et
al.,62 a proton does not leave the molecule but becomes a
dummy atom when an ionizable side chain is in a deprotonated
state. Furthermore, that dummy atom retains its position and
velocity, which are controlled by molecular dynamics. Hence,
the kinetic energy contributions to the Boltzmann weight will
be canceled out during exchange probability calculation, leaving
only potential energy useful for the calculation.

The second possibility consists of exchanging protonation
states as well as molecular structures at REMD Monte Carlo
moves. For instance, replica 0 attempts to move from state
(q0, n0) to state (q1, n1) at temperatures T0 in one MC move,
and replica 1 attempts to jump from state (q1, n1) to state
(q0, n0) at temperature T1. The detailed balance equation now
can be written as

w(�0q0n0, �1q1n1 f �0q1n1, �1q0n0)

w(�0q1n1, �1q0n0 f �0q0n0, �1q1n1)
)

w(�1q1n1 f �1q0n0)

w(�1q0n0 f �1q1n1)
·
w(�0q0n0 f �0q1n1)

w(�0q1n1 f �0q0n0)
(14)

Figure 1. Diagrams displaying exchanging algorithms in
constant-pH REMD. (A) Only molecular structures (denoted as
q) are attempted to exchange. In this case, protonation states
are not touched at an exchange attempt. (B) Both molecular
structures (denoted as q) and protonation states (denoted as n)
are attempted to exchange at the same time. Metropolis criterion
is applied in both algorithms to evaluate transitions.
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This equation states that the exchange probability is the
product of MC transition probabilities at temperatures T0 and
T1. If the protonation states of two adjacent replicas are the
same at an exchange attempt, the exchange probability of
constant-pH REMD becomes the exchange probability of
conventional temperature-based REMD. If n0 and n1 are
different, then each MC transition is essentially the proton-
ation state change step in constant-pH MD, plus a structural
transition. For example, consider the MC transition at
temperature T0

w(�0q0n0 f �0q1n1) ) min{1, exp(-∆1)} (15)

where

∆1 ) �0[E(q1, n0) - E(q0, n0)] + (pH - pKa,ref) +
�0[Eelec(q1, n1) - Eelec(q1, n0)] - �0∆Gref,MM (16)

The first term in ∆1 derives from the transition in
configuration at fixed protonation state n0, and the rest
corresponds to protonation state change at fixed structure
q1. Eelec represents the electrostatic component of potential
energy. Similarly, the transition probability of a MC jump
at T1 can be expressed as

w(�1q1n1 f �1q0n0) ) min{1, exp(-∆2)} (17)

where

∆2 ) �1[E(q0, n1) - E(q1, n1)] - (pH - pKa,ref) -
�1[Eelec(q0, n1) - Eelec(q0, n0)] + �1∆Gref,MM (18)

Therefore, according to eq 14, the exchange probability can
be written as

w(�0q0n0, �1q1n1 f �0q1n1, �1q0n0) ) min{1, exp(-∆′)}
(19)

and

∆′ ) ∆ + �0[Eelec(q1, n1) - Eelec(q1, n0)] -
�1[Eelec(q0, n1) - Eelec(q0, n0)] + (�0 - �1)·∆Gref,MM (20)

where ∆ is the same quantity as in eq 13.
The exchange probability calculation in the second method

of coupling REMD and constant-pH MD utilizes the same
number of energy evaluations required by the first method
since obtaining electrostatic potential energies does not
require extra energy calculations. The advantage of imple-
menting the second exchanging protocol (exchange both
structures and protonation states) over the first one (exchange
structures only) should not be significant because it is the
conformational sampling at higher temperature that greatly
improves conformational sampling at lower temperatures.
Allowing protonation states to change at exchange attempts
does not provide extra gains in conformational sampling
since the protonation state space is well sampled during the

MD propagation. Therefore, only the first method of
performing exchanges was implemented.

D. Simulation Details. For our study, constant pH REMD
simulations were carried out first on five reference com-
pounds: blocked aspartate, glutamate, histidine, lysine, and
tyrosine, to test our method and implementation. The
experimental pKa values of those reference compounds are
known80 and listed in Table 1. We later performed constant
pH REMD simulations on a model peptide ADFDA
(Ala-Asp-Phe-Asp-Ala, unblocked termini) and a hep-
tapeptide derived from OMTKY3 (residues 26 to 32 with
blocked termini). Four replicas were used in the reference
compounds and ADFDA REMD simulations. The temper-
atures were 240, 300, 370, and 460 K for all six molecules.
The pH range for the study of acidic side chains was sampled
from 2.5 to 6, and the pH range of histidine is from 5.5 to
8. The basic side chains were titrated from pH 9 to 12. An
interval of 0.5 was chosen for all titrations.

Eight replicas were chosen for the heptapeptide with a
temperature range from 250 to 480 K. A total of 10 ns was
used for each replica in all REMD simulations, and an
exchange was attempted every 2 ps. A MC move to change
the protonation state was attempted every 10 fs. A second
set of REMD runs was done with the same overall conditions
but different initial structures in order to check simulation
convergence.

To compare conformational and protonation state sam-
pling, 100 ns of constant pH MD simulations were carried
out for the aspartate reference compound and ADFDA, at
the same pH values as in the REMD runs. For the
heptapeptide, one set of 10 ns constant pH MD simulations
was done at each pH value simulated by the REMD method.

Constant pH REMD and MD simulations were done using
the AMBER 10 molecular simulation suite.81 The AMBER
ff99SB force field82 was used in all the simulations. The
SHAKE algorithm83 was used to constrain the bonds
connecting hydrogen atoms in all the simulations which
allowed use of a 2 fs time step. The OBC generalized Born
implicit solvent model66 was used to model the water
environment in all our calculations. The Berendsen thermo-
stat,84 with a relaxation time of 2 ps, was used to keep the
replica temperatures around their target values. The salt
concentration (Debye-Huckel based) was set at 0.1 M. The
cutoff for nonbonded interaction and the Born radii was 30
Å.

E. Cluster Analysis. Cluster analysis was done using the
Moil-View program85 in order to compare conformational
sampling.86,87 The MD and REMD trajectories (having same
number of frames) at 300 K and under the same solvent pH
were combined following a procedure introduced in the paper
of Okur et al. Then, the combined trajectory was clustered
on the basis of peptide backbone atoms’ root-mean-square

Table 1. The REMD pKa Predictions of Reference Compoundsa

pKa aspartate glutamate histidine lysine tyrosine

REMD 3.97 (0.01) 4.41 (0.01) 6.40 (0.03) 10.42 (0.01) 9.61 (0.01)
reference 4.0 4.4 6.5 10.4 9.6

a The numbers in parentheses are the standard errors.
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deviations (RMSDs). The population fraction corresponding
to each cluster was obtained for MD and REMD simulation.
The correlation coefficient values which represent the cor-
relations between MD and REMD cluster population were
calculated at each solution pH value by doing linear
regression. A high correlation between MD and REMD
cluster populations indicates that the structure ensembles are
close to each other. This method provides a direct comparison
of global conformational sampling between MD and REMD
simulations. The same technique was used when studying
the convergence of constant pH REMD and MD trajectories.
A cluster cutoff RMSD of 1.5 Å is chosen for both ADFDA
and the heptapeptide during our analysis.

F. Local Conformational Sampling and Its Conver-
gence to the Final State. In our study, the local conforma-
tional sampling was examined by comparing the probability
density of the backbone dihedral angle pair (�, Ψ). Es-
sentially, we are comparing the Ramachandran plot of a
residue. Each (�, Ψ) probability density was computed by
binning � and Ψ angle pairs 10° × 10°. These two-
dimensional histograms were normalized into populations,
and the contours were plotted. The metric used to evaluate
(�, Ψ) probability density convergence was the root-mean-
squared deviation (RMSD) between the cumulative (�, Ψ)
histogram and the one produced by using all configurations.
Each cumulative histogram was constructed by using (�, Ψ)
pairs up to the current time and following the same algorithm
mentioned earlier in this section.

Results and Discussion

A. Reference Compounds. We first applied our constant
pH REMD method to the reference compounds. Table 1
shows the pKa values predicted by REMD simulations (10
ns for each replica) as well as the reference pKa values. All
our pKa values were calculated by fitting to the HH equation.
Agreement between constant pH REMD predictions and the
reference values can be seen.

The pH titration curves of the same reference compounds
showed agreement between MD (100 ns) and REMD
simulations. Figure 2 demonstrates the REMD and MD
titration curves of aspartic acid reference compound as an
example.

We further studied the convergence of protonation states
sampling. REMD and MD protonation fractions were plotted
with respect to MC attempts for the aspartate reference
compound at all pH values. Figure 3A demonstrates the
protonated fraction versus time at pH 4 as one example.
According to Figure 3A, it suggests that, although the final
pKa predictions are the same for REMD and MD simulations,
the protonation state sampling during REMD simulations
clearly converges faster than that in a MD run.

B. Model Peptide ADFDA. The model peptide ADFDA
(as zwitterion) was chosen as a more stringent test of our
constant pH REMD method. The charged termini will
provide a different electrostatic environment for each titrat-
able Asp residue, and hence a correct constant pH REMD
model should reflect this difference between titration curves
of the two Asp residues. The Asp2 residue is closer to the
NH3

+, so the deprotonated state is favored, and the pKa value
of Asp2 residue should shift below 4.0 (which is the pKa of
the reference aspartic dipeptide). The Asp4 residue is closer

Figure 2. Titration curves of blocked aspartate amino acid
from 100 ns MD at 300 K and REMD runs. Agreement can
be seen between MD and REMD simulations.

Figure 3. Cumulative average protonation fraction of a
titratable residue vs Monte Carlo (MC) steps. (A) Aspartic acid
reference compound at pH ) 4. (B) Asp2 in model peptide
ADFDA at pH ) 4.
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to the COO- negative charge, and hence the pKa value should
shift above 4.0.

The titration curves of the model peptide ADFDA from
REMD simulations are shown in Figure 4. We can clearly
see that Asp2 and Asp4 have different titration curves from
each other and from the reference compound. The pKa value
and Hill coefficient for each Asp residue were obtained by
fitting titration curves to a Hill plot. The results are shown
in Table 2. The REMD pKa predictions reflect the difference
between Asp2 and Asp4 due to different peptide electrostatic
environments. We also displayed the MD titration curves of
Asp2 and Asp4 in Figure 4 and listed the MD pKa predictions
and corresponding Hill coefficients in Table 2. The titration
curve of the Asp2 residue only showed a small difference
between MD and REMD simulations. But we can see
differences in titration behaviors of Asp4 between MD and
REMD calculations when the solution pH is below 5.
Interestingly, Lee et al. studied blocked Asp-Asp peptide
using the CPHMD method,55 reporting different Hill coef-
ficients for each of the two Asp residues.

Convergence rates of Asp2 titration behavior were com-
pared between REMD and MD calculations due to the fact
that Asp2 titration curves are very close. The cumulative
protonated fractions versus MC attempts at pH 4 are shown
in Figure 3B. Faster convergence in protonation state
sampling can be seen for REMD simulation even though
both REMD and MD calculations resulted in the same final
protonated fraction. Clearly, our constant pH REMD method
accelerates the convergence of sampling of protonation states.

In addition to protonation state sampling, we also evaluated
the conformational sampling in constant pH MD and REMD

simulations. First, distributions of backbone � and Ψ angle
pairs (Ramachandran plots) of residues Asp2, Phe3, and Asp4
in ADFDA at each solution pH were studied. The regions
in Ramachandran plots sampled by MD and REMD simula-
tions are the same. Ramachandran plots for residue Asp2 at
pH 4 are shown in Figure 5 as an example.

Since the Ramachandran plots only represent local con-
formational sampling, we also evaluated global conforma-
tional sampling by clustering MD and REMD trajectories
and comparing the cluster populations. The MD and REMD
cluster population R2 values are listed in Table 3. A plot of
cluster populations from MD and REMD trajectories at a
solution pH of 4 is shown in Figure 6A as an example. The
large R2 values indicate that the MD and REMD sampled

Figure 4. The titration curves of the model peptide ADFDA
at 300 K from both MD and REMD simulations. MD simulation
time was 100, and 10 ns were chosen for each replica for
REMD runs.

Table 2. pKa Predictions and Hill Coefficients Fitted from
the HH Equation

Asp2 Asp4

pKa Hill coefficient pKa Hill coefficient

REMD 3.74 0.87 4.38 0.67
MD 3.76 0.89 4.54 0.85

Figure 5. Backbone dihedral angle (�, Ψ) normalized
probability density (Ramachandran plots) for Asp2 at pH 4 in
ADFDA. Ramachandran plots at other solution pH values are
similar. For Asp2, constant-pH MD and REMD sampled the
same local backbone conformational space. Phe3 and Asp4
Ramachandran plots also display the same trend.

Table 3. Correlation Coefficient between MD and REMD
Cluster Populationsa

pH ) 2.5 pH ) 3 pH ) 3.5 pH ) 4

R2 0.94 0.90 0.79 0.93

pH ) 4.5 pH ) 5 pH ) 5.5 pH ) 6

R2 0.85 0.98 0.92 0.96

a The R2 values were calculated by linear regression.

Constant pH Replica Exchange Molecular Dynamics J. Chem. Theory Comput., Vol. 6, No. 4, 2010 1407



the same conformational space and generated the same
structure ensemble. The small size of ADFDA and simple
structure of each residue make 100 ns long enough for MD
to sample the relevant conformations.

We further studied the convergence of REMD simulations
by comparing global conformation distribution between two
REMD simulations starting from two different structures.
Cluster populations of the two REMD simulations at solution
pH 4 are displayed in Figure 6B. The R2 value is 0.959 at
pH 4. This large correlation tells us that the two REMD
simulations provide the same structure ensemble, and hence
the two simulations are converged.

C. Heptapeptide Derived from OMTKY3. We first
compared the protonation state sampling between constant
pH REMD and MD simulations. Titration curves of Asp3,
Lys5, and Tyr7 from two sets of simulations are plotted in
Figure 7A and B. For each titratable residue, titration curves
generated by constant pH REMD and MD are close to each
other. Since the pKa value of Asp3 in this heptapeptide is

experimentally determined to be 3.6, it will be interesting
to evaluate how our predicted values compare to the
experimental result. The pKa values of Asp3 were calculated
on the basis of Hill’s plots, which are displayed in Figure
7C. The predicted pKa value is 3.7 for both REMD and MD
simulations, and they are in excellent agreement with the

Figure 6. Cluster populations of ADFDA at 300 K. (A) MD
vs REMD at pH 4, (B) two REMD runs from different starting
structures at pH 4. Large correlation shown in Figure 6B
suggests that the REMD runs are converged. Large correla-
tions between two independent REMD runs are also observed
at other solution pH values. Correlations between MD and
REMD simulations can be found in Table. 3.

Figure 7. (A and B) Titration curves of Asp3, Lys5, and Tyr7
in the heptapeptide derived from protein OMTKY3. (C) Hill’s
plots of Asp3. The pKa values of Asp3 are found through Hill’s
plots.
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experimental pKa value. Following the same procedures, our
predicted pKa values of Lys5 (10.6 for both REMD and MD)
and Tyr7 (9.9 and 9.8 for REMD and MD respectively) were

obtained. Not surprisingly, the REMD and MD schemes
yielded essentially the same predicted pKa values for Lys5
and Tyr7.

Although the final pKa predictions are the same for
constant pH REMD and MD simulations, constant pH
REMD showed a clear advantage in the convergence of
protonation state sampling. Again, we chose the cumulative
average protonation fraction vs MC steps to reflect proton-
ation state sampling convergence for all three titratable
residues. Several representative plots are shown in Figure
8. The trend that constant pH REMD simulations produce
faster convergence in protonation fraction is universal.
Therefore, it is very clear that constant pH REMD method
is better than constant pH MD in protonation state sampling.

Conformational sampling is an important issue in constant
pH studies. We first looked at the conformational sampling
on peptide backbones. We evaluated backbone conforma-
tional sampling through Ramachandran plots. Six residues
(from Ser2 to Tyr7) are studied here. Not surprisingly,
Ramachandran plots from constant pH REMD and MD
simulations are very close, suggesting that the overall local
conformational samplings are similar. The Ramachandran
plots of Asp3 at pH 4 are shown in Figure 9 as examples.
The only exception is Tyr7 in acidic pH values. Tyr7 can
visit the left-handed R-helix conformation during constant
pH REMD runs but is not able to do that in constant pH

Figure 8. Cumulative average protonation fraction of a
titratable residue vs MC steps.

Figure 9. Dihedral angle (�, Ψ) probability densities of Asp3
at pH 4. (A) Constant-pH MD results; (B) constant-pH REMD
results. All others also show a very similar trend.
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MD runs. In general, constant pH REMD and MD yielded
the same Ramachandran plots for the heptapeptide.

As demonstrated earlier, the overall samplings of (�, Ψ)
distribution by constant pH REMD and MD are similar for
Ser2 to Thr6. It is interesting to determine how fast each
sampling scheme reaches the final distribution. We studied
the evolution of backbone conformational sampling based
on cumulative data as we did in the case of protonation state
sampling convergence. As described in the Methods subsec-
tion F, the RMSD between the (�, Ψ) probability distribution
up to current time versus total simulation time was calculated.
The smaller a RMSD is, the closer a probability distribution
reaches to the final distribution. Deviations were calculated
starting from the second nanosecond with time intervals
incremented by 100 ps. The cumulative time-dependence
RMSD of Asp3 and Lys5 are also shown in Figure 10 as
examples. As seen in the figures, these curves decrease faster
in constant pH REMD simulations. Figure 10 suggests that,
although the final (�, Ψ) probability distributions are similar

between constant pH REMD and MD simulations, the
constant pH REMD simulation clearly reaches the final state
faster.

Cluster analysis was also applied to study the convergence
of conformation sampling in the heptapeptide. By comparing
cluster populations between the first and second half of one
trajectory, one could check the convergence of that simula-
tion. The two halves of a structural ensemble should yield
the same populations in each cluster if convergence is
reached. For example, for simulations at pH 4, both constant
pH REMD and MD yield about 20 clusters, and the
correlations coefficients are calculated through a linear
regression. Cluster population plots and correlation coef-
ficients are shown in Figure 11. A much higher correlation
coefficient can be seen in constant pH REMD simulation,

Figure 10. The root-mean-square deviations (RMSDs) be-
tween the cumulative (�, Ψ) probability density up to current
time and the (�, Ψ) probability density produced by the entire
simulation. (�, Ψ) probability density convergence behaviors
at other pH values also show that REMD runs converge to
final distribution faster.

Figure 11. Cluster population at 300 K from constant pH MD
and REMD simulations at pH ) 4. Cluster analysis is
performed using the entire simulation. The populations in each
cluster from the first and second halves of the trajectory are
compared and plotted. Ideally, a converged trajectory should
yield a correlation coefficient to be 1. (A) Constant pH MD.
(B) Constant pH REMD. A much higher correlation coefficient
can be seen in constant pH REMD simulation, suggesting
much better convergence is achieved by the constant pH
REMD run.
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suggesting the two halves of the constant pH REMD
simulation at pH 4 populate each cluster much more similarly
than the corresponding constant pH MD does. Hence, much
better convergence is achieved by the constant pH REMD
run.

Conclusion

In our work, we have applied the replica exchange molecular
dynamics (REMD) algorithm to the discrete protonation state
model developed by Mongan et al.62 in order to study pH-
dependent protein structure and dynamics. Seven small
peptides were selected to test our constant pH REMD
method. Constant pH molecular dynamics (MD) simulations
were run on the same peptides for comparison. The constant
REMD method results are encouraging. The constant REMD
method can predict pKa values in agreement with literature
and experimental results. The constant pH REMD method
also displays an advantage in convergence behaviors during
protonation states and conformational sampling.

The REMD algorithm has been proven beneficial to study
pH-dependent protein structures. Our future work will include
studies of pH-dependent protein dynamics and application
of this constant pH REMD to large proteins.
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