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Optimum Monte-Carlo sampling using Markov chains

BY P. H. PESKUN

York University, Toronto

SUMMABY

The sampling method proposed by Metropolis et ai. (1953) requires the simulation of a
Markov chain with a specified TC as its stationary distribution. Hastings (1970) outlined a
general procedure for constructing and simulating such a Markov chain. The matrix P of
transition probabilities is constructed using a defined symmetric function s^ and an
arbitrary transition matrix 0- Here, for a given 0 , the relative merits of the two simple
choices for s{i suggested by Hastings (1970) are discussed. The optimum choice for 8ti is
shown to be one of these. For the other choice, those 0 are given which are known to make
the sampling method based on P asymptotically lees precise than independent sampling.

Some key words: Monte-Carlo estimation; Markov chain method of sampling; Variance reduction;
Simulation.

1. INTRODUCTION

Suppose we wish to estimate the expectation

where n = (n^n^ ...,n8) is a positive probability distribution, i.e. ni> 0 for all i, and/(-)
is a nonconstant function defined on the states 0,1, ...,S of an irreducible Markov chain
determined by the transition matrix P = {p^}. Throughout this paper, n and/( •) are to be
considered fixed.

If P is chosen so that 71 is its unique stationary distribution, i.e. n = rcP, then after
simulating the Markov chain for times t = 1,...,N, an estimate of the expectation / is
given by N

1

where X(t) denotes the state occupied by the chain at time t.
Hastings (1970, p. 99) outlines a general procedure for constructing such a transition

matrix P = {jty}. First of all, P is required to satisfy, for all pairs of states i and j , the
reversibility condition

(1)
Secondly, it is assumed that pi} has the form

(* * j), (2)a
with

P«=l- S PiP

where O =[{?«} is the transition matrix of an arbitrary irreducible Markov chain on the
states 0,1,..., 8. Also, aif is given by

? (3)
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608 P. H. PESKUN

where aw is a symmetric function of t and j chosen so that 0 < a{i ^ 1 for all * and j , and
hi =

The Markov chain determined by a transition matrix P of the above form is simulated by
carrying out the following steps for each time t:

(i) assume that X(t) = i and select a state j using the distribution given by the tth row
ofO;

(ii) take X(t +1) = j with probability atj and X(t + 1) = t with probability 1 — aif.
From (2) and (3) we see that the symmetric function stj and the arbitrary transition

matrix 0 determine the transition matrix P. The purpose of this paper is to determine the
optimum choice of sit, for a given choice of 0, so that the estimate / is as precise as possible.
The relative merits of the two simple choices s^f and sffi for 8ti, suggested by Hastings
(1970, p. 100), are discussed. For a given choice of O, the sampling method based on P is
shown to be asymptotically as precise as possible for 8ti = sffi. For 8ti = s$f\ those 0 are
given which are known to make the sampling method based on P asymptotically less
precise than independent sampling.

2. THE SYMMETRIC FUNCTION s{i

2-1. The asymptotic variance and bias of the estimate 1
The following definition is due to Kemeny & Snell (1969, p. 75).

DEFINITION 2-1-1. The matrix A = %Tn, where % = (1,1,..., 1), and the inverse matrix
Z = {I — (P — A)}-1 will be called the 'limiting matrix' and the 'fundamental matrix',
respectively, for the finite irreducible Markov chain determined by the transition matrix P whose
stationary distribution is n.

Let f be the lx(/S + l) row vector f = {/(0),/(l), ...,/(£)} and let B = {b{j} be the
(S +1) x (S+ 1) diagonal matrix with diagonal veotor n; that is, bi{ = nt (t = 0,1,..., 8).

Even though the variance and bias of the estimate / = [f{X( 1)} + ... +f{X(N)}]/N cannot
be expressed as functions of the sample size N which lend themselves to easy analysis,
asymptotic expressions for these two quantities can be obtained which will be useful not
only analytically but also practically since, in actual simulations, the sample size N will
usually be large.

The following asymptotic expression for the variance of the estimate / = 1,f{X(t)}jN
whioh Kemeny & Snell (1969, p. 84) have derived is independent of the distribution y of the
initial state X(0):

v(t, n,P)= lim N var[ £ f{X(t)}/N]
U - 1 J

= f{BZ + (BZ)3 ' -B-BA}F

= f(2BZ-B-BA)F. (4)

In what follows, we shall assess the precision of the estimate / by v(f, n, P), it being assumed
that the sample size N is sufficiently large so that the error in the approximation

is small. We shall refer to v(f, n, P) as the asymptotic variance of the estimate /.
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With respect to the bias of the estimate 7, it can be shown that, as N-+co, lim N{E(1) — 1}
exists and is dependent on the distribution y of the initial state X(0). Since var (7) is O(N~1)
and the bias squared is 0(N-%), we feel that, for an appropriate distribution y of the initial
state X(0), the bias has a negligible effect on the accuracy of the estimate 7 and is not an
appreciable disadvantage of the Markov chain method of sampling; in fact, if X(0) is sampled
from 7i itself, then 7 is unbiased. We shall thus confine our discussions to the precision, rather
than the accuracy, of the estimate 7.

In the following theorem, which gives a sufficient condition for asymptotic variance
reduction and which will be useful in determining the optimum symmetric function s{i, we
define P2 < Px if each of the off-diagonal elements of Px is greater than or equal to the
corresponding off-diagonal elements of P2.

THEOREM 2-1-1. Suppose each of the irreducible transition matrices Px and P2 satisfies the
reversibility condition (1) for the same probability distribution TC. If P2 ^ P1; then for the

estimate 7 = £ f{X(t)}/N,

vftn.P^vftTcPi.).
Proof. For the (k, i)th off-diagonal element pu of P, we have from (4),

Since P satisfies the reversibility condition (1), it follows that the matrix BP is symmetric.
Similarly, the matrix B A is symmetric. The symmetry of the matrices

B Z 1 = B - BP + B A, ZB"1 = ( B Z 1 ) 1

implies the symmetry of the matrix BZ = B(ZB-1) B. If we substitute

az z az 1
1

z

and use the symmetry of BZ and B, we then have

Since BZ"1 = B —BP + BA, P being a transition matrix satisfying the reversibility
condition (1), then all the elements of the matrix B(dZ~1/3pJU) = — B(9P/cjpw) (k #= I) are
equal to zero except for the (1,1), (I, k), (k, I) and (k, k)th elements, which are equal to nk, — nk,
— nk and nk, respectively. It follows that the matrix B(9Z~1/^pw) (k + I) is positive semi-
definite with one nonzero eigenvalue equal to 2nk. Thus we have

( B ^ - ) (ZF) < 0 (fc # I).

This result implies that the asymptotic variance v(f, TC, P) is a decreasing function in the
off-diagonal elements of P and thus it follows that Pg ^ Px implies v(f, TC, PX) S$ u(f, TC, P2).

For a large sample size N, Theorem 2-1 • 1 suggests that the variance of the estimate 7 can
be reduoed by appropriately transferring weight from the diagonal elements of P to the
off-diagonal elements. Intuitively, this makes sense. If the diagonal elements of P are small,
then the probability of remaining in any given state will be small. This suggests an improve-
ment in the sampling of all possible states which, in turn, suggests an improvement in the
precision of the estimate 7.

 at U
niversity of C

alifornia, B
erkeley on M

arch 21, 2011
biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


610 P. H. PESKTJN

2-2. The optimum symmetric function 8^

Hastings (1970, p. 100) suggests two simple choices for the symmetric function 8ti which,
for all * andj, are given by

(ii) dft = 1.
For a symmetric 0 , sti = sffi gives the sampling method devised by Metropolis et ai. (1953)
and 8i} = sffi gives Barker's (1965) sampling method.

DEFINITION 2-2-1. Let J*^ = {j>(
i
1f)}andP<P> = {^^deiu>tetheirreducibktransUionmatrices

constructed according to (2) and (3) using the same transition matrix Q = {qit} and the sym-
metric functions s^f) and sffl, respectively.

From (3) we have
stj^ 1+min (<„,«,<), (5)

since a{j < 1 implies sif < 1 + tti and a^ < 1 implies s y = sif ^ 1 + ti{. We note that equality is
attained in (5) for the symmetric function sti = d-^f*; that is,

«,,*„). (6)
THEOBEM 2-2-1. For o given transition matrix Q = {q^}, the optimum symmetric function

Proof. For a given transition matrix O = {<?«}, we have seen how to construct a transition
matrix P = {p^}, whereby = q^a^ (i #= j) and ait = 8^/(1 + tti). From (5) and (6) it follows
that the maximum value for a^ occurs for sif = sffi. Thus, it is clear that P ^ P ^ for any
irreducible transition matrix P where both P*4^ and P are constructed according to (2) and
(3) using the same given transition matrix 0- By Theorem 2-1-1 it follows that the optimum
symmetric function si} is sffi since v(f, TC, P^fl) ^ v(f, n, P).

2-3. A comparison of the sampling methods based on P ^ and

From Theorem 2-2-1 and the definitions of the symmetrio functions s^f) and s^\ it can be
shown that, for a given transition matrix 0 .

v(t, 7t, PtfO) < v(f, 7i, PCS)) < v(i, n, A) + 2v(f, n,

where v(f, n, A) is the asymptotic variance for independent sampling, i.e. the theoretical
independent sampling variance for sample size N equal to 1. For the special case where the
given transition matrix 0 itself satisfies the reversibility condition, i.e. irtqtj = ntf^ for all i
and ,7, it can then be shown that

v(f, n, PCS)) = «(£, K, A) + 2e(f, n, F*0). (7)

We note that independent sampling is just a special case of the sampling method based on
P^fl since P ^ = A for 0 = A. This suggests the possibility of the sampling method based
on P*40, for an appropriate choice of O, being asymptotically more precise than independent
sampling. If such is the case and if, in addition, 0 itself satisfies the reversibility condition,
then from (7) we see that asymptotically no matter how much more precise the sampling
method based on P 1 ^ is than independent sampling, the sampling method based on !*&> can
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Optimum Monte-Carlo sampling using Markov chains 611

at best be only as precise as independent sampling. We shall now show that this is also true
for the case where 0 is symmetric, i.e. for Barker's (1965) sampling method.

In general, the sampling method based on P, where P satisfies the reversibility condition
(1), will be asymptotically as precise or more precise than independent sampling if and
only if

fBZF < fBP, (8)

where Z is the fundamental matrix determined by P. Rewriting (4) in the following form,
where BA = nTn,

fBZF = ${t>(f, 7i, P )+fBF + (nF)* (nP1)},

we see that the symmetric matrix BZ is positive definite since the first and third terms of
the above equality are nonnegative and the diagonal matrix B is positive definite. We refer
the reader to Gantmacher (1960, p. 310) for the theory of pencils of quadratic forms which
we will use in order to compare the quadratic forms fBZf2" and fBfT.

If we number the characteristic values of the regular pencil of forms fBf71 — AfBZf̂  in
nondecreasing order, then for A^ < Ax < ... ^ As it follows that for all functions/(•),

Ao < fBF/fBZF < Ag.

Thus, we see that (8) is satisfied if and only if A,, 55 1.
The characteristic equation of the regular pencil of forms fBf31 — AfBZfTis |B — ABZ| = 0,

whioh can be written as
| /* I - (P-A) | = 0,

where /i = 1 — A. It thus follows that the matrix P — A has S +1 real characteristic roots,
since a regular pencil of forms always has real roots. Since P and A are transition matrices,
we have

( P - A)lT = P%T- AJE,T = \T-\T = o£r.

Hence, /t = 0 is a characteristic root of the matrix P — A. Also, since /i ^ 0 implies A > 1, we
then have proved the following theorem.

THEOBEM 2-3-1. For any function /(•), the Markov chain sampling method based on P will
be asymptotically as precise or more precise than independent sampling with respect to the
positive distribution n, i.e.

v(f,rc,P)<v(f,7t,A),
if and only if the nonzero characteristic roots of the matrix (P — A) are negative.

Since the sum of the diagonal elements of the matrix P ^ is equal to the sum of all its
elements minus the sum of its off-diagonal elements, i.e.

and since the sum of the diagonal elements of the matrix A is 1, then the sum of the
characteristic roote of the matrix P*^— A is

s- zw
For a given 0 = {?«}, it can be shown that for i
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612 P. H. PESKUN

with both inequalities becoming equalities if 0 is symmetric. Hence, it followB that if 0 is
symmetrio then

8- S W + ^ f } = 8- S q{j > J(5-1), (9)

since the sum of the lower off-diagonal elements of 0 can be at most |(S + 1).
Except for the two-state system, i.e. 8 = 1, we see from (9) that the sum of the charac-

teristic roots of the matrix P ^ — A is positive. This implies that there must be at least one
positive characteristic root among its nonzero characteristic roots. For 8 > 1, we have thus
shown that Barker's (1965) sampling method is asymptotically less precise than independent
sampling. For 8 = 1, it can be shown that Barker's (1965) sampling method is asymptoti-
cally, at best, as precise as independent sampling if 0 is chosen so that q01 = qw = 1.

This work started in my Ph.D. thesis, University of Toronto, and was completed with the
support of a grant from the National Research Council of Canada. I would like to thank my
thesis supervisor, Professor W. K. Hastings, for his continuous guidance and many useful
suggestions. Thanks are also due to the referees whose comments were very helpful.
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