function [H]=hess_V(x,y,parms); %still not sure if we can use langevin x0=parms(:,1); y0=parms(:,2); R1=parms(:,3); R2=parms(:,4); theta=parms(:,5); gamma=parms(:,6); w=parms(:,7); Q=0;dq=0; dz=0; GV=zeros(2,1); for i=1:length(R1) R=[cos(theta(i)) sin(theta(i)); -sin(theta(i)) cos(theta(i))]; S=[R1(i)^2 0 ; 0 R2(i)^2]; G=R'*S^-1*R; G %disp ( ['gamma:',num2str(G) ] ) G_h=0.5*gamma(i)*G; q=[x-x0(i);y-y0(i)]; s_i=G_h*q; % Q = Q + 2*pi/gamma(i)/ sqrt( det(G) ); g_i=w(i)*exp(-q'*G_h*q); for j=1:2 for k=1:2 H( j , k ) = g_i * (-2*s_i(j)*s_i(k) + g_i * G_h(j,k) ) ; end end dz=dz + g_i; % keyboard; end H=2*H/dz; %%computing eigenvalues [U,L]=eig(H) test=U*L*U'; dot(U(:,1),U(:,2)) R1 R2 R_re_1 = diag( U(:,1)*L(1,1)^-1*U(:,1)' ) sqrt( sum(R_re_1.^2) ) R_re_2 = diag( U(:,2)*L(2,2)^-1*U(:,2)' ) sqrt( sum(R_re_2.^2) ) dot(R_re_1,R_re_2);