Open Knee: A Three-Dimensional Finite Element Representation of the Knee Joint

Ahmet Erdemir
Computational Biomodeling Core
Department of Biomedical Engineering
Lerner Research Institute
Cleveland Clinic

September 10, 2013
CoBi Core
Department of Biomedical Engineering, Cleveland Clinic
PURPOSES OF KNEE MODELING

Joint and tissue functions

Pathological impacts

Injury mechanisms

Surgical interventions

MCL function

ACL impingement

Menisectomy
EXAMPLES OF KNEE MODELING

GOALS OF OPEN KNEE

Open development and dissemination of a general purpose knee joint model

Opportunity for crowd-sourced review, modification, and validation to address clinical and research problems in knee biomechanics.
DATA

Cadaver Specimen

Right knee (70 years old female)

Magnetic Resonance Imaging

Multi-plane scans
1.5 Tesla MRI (Orthone, ONI, Inc.)

Robotics Testing

Measurements joint kinematics/kinetics
Rotopod 2000 (PRC Corp.)

Measurements of ACL length
DVRT (MicroStrain, Inc.)

<table>
<thead>
<tr>
<th>Degree of freedom</th>
<th>Ranges of Motion</th>
<th>Ranges of Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion/extension</td>
<td>0.0 – 45.0°</td>
<td>-10.1 – 4.3 Nm</td>
</tr>
<tr>
<td>Internal/external rotation</td>
<td>-24.7 – 32.5°</td>
<td>-5.0 – 5.0 Nm</td>
</tr>
<tr>
<td>Varus/valgus</td>
<td>-7.9 – 12.9°</td>
<td>-9.9 – 9.9 Nm</td>
</tr>
<tr>
<td>Anterior/posterior translation</td>
<td>-10.4 – 24.5 mm</td>
<td>-99.9 – 104.1 N</td>
</tr>
<tr>
<td>Medial/lateral translation</td>
<td>-8.7 – 6.0 mm</td>
<td>-6.4 – 7.1 N</td>
</tr>
<tr>
<td>Compression/distraction</td>
<td>-9.9 – 3.1 mm</td>
<td>-73.8 – 394.4 N</td>
</tr>
</tbody>
</table>

Borotikar BS, Doctoral Dissertation, Cleveland State University, 2009.
MODEL

Bones
rigid body

Cartilage
nearly incompressible Neo-Hookean

Menisci
Fung orthotropic hyperelastic horn attachments as springs

Ligaments
transversely isotropic hyperelastic

Simulation Type
Dynamic; implicit time integration

Tibia BCs
Fixed in space

Femur BCs
Prescribed flexion (or fixed)
Other dofs free (or under load control)

Typical Scenarios
- **Knee Flexion**
 - 100° passive (no load)
 - 100 N fixed flexion

Line Graphs
- **Knee Flexion**
 - Time (s) vs. Degree
 - Time (s) vs. Degree
- **Anterior Drawer Force**
 - Time (s) vs. Force
 - Time (s) vs. Force
DISSEMINATION

http://simtk.org/home/openknee

Wiki
Subversion repository
Release package
Creative Commons Attribute Share-Alike Licensing

Software

Finite element analysis (free and open for academia)
http://mrl.sci.utah.edu/software

Scripting (free and open for all)
http://www.python.org

Mesh generation (proprietary)
http://www.truegrid.com
SITE STATISTICS

as of Sep 10, 2013

- **442,993** page hits past 180 days
- **17,872** unique visitors past 180 days
- **286** repository commits
- **402** total downloads
- **303** unique downloads

Open Knee Statistics (January 30, 2012)

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project site</td>
<td>https://simtk.org/home/openknee</td>
</tr>
<tr>
<td>Project launch date</td>
<td>February 18, 2010</td>
</tr>
<tr>
<td>Page hits</td>
<td>19525 (past 180 days)</td>
</tr>
<tr>
<td>Unique visitors</td>
<td>902 (past 180 days)</td>
</tr>
</tbody>
</table>
| **Team members** | 8 total
3 active
2 original, 1 from community |
| **Documentation** | 1 user’s guide
3 conference abstracts |
| **Development** | 248 repository commits |
| **Releases** | v.1.0.0.199 (major)
December 17, 2010
v.1.0.1.202 (minor) |
| **Release downloads** | 207 total
162 unique |
| **Expected use of downloads** | 56 research
54 training
24 reference for other models
14 evaluation
9 anterior cruciate ligament
9 instrumentation/implants/orthotics/prosthetics
6 cartilage/osteoarthritis
5 potential contributions
4 impact biomechanics
4 knee loads
2 knee movements
2 knee geometry
1 meniscal injury
1 femur biomechanics
Rest unspecified/unsure |

Note: The table provides historical data as of January 30, 2012.

- A **tibiofemoral joint model** was developed with potential for problem specific **customization**.
- Simulation capacity was illustrated through simulations of passive flexion under compressive loading.
- Customization potential was illustrated by simulations of menisectomy.

- A transparent development platform was established.
- Dissemination pathway was constructed.
Complete **passive kinematics** response (translation + rotation) was compared against **population data**.

Passive kinematics was coupled to flexion.

Proximal-distal translation predictions were not in agreement.

Open Knee exhibited deviations from experimental data in high flexion angles.
Anterior drawer test kinematics (translation + rotation) and ACL deformations were compared against specimen-specific data.

Model predicted anterior displacements were lower.

Model predicted ACL deformations were higher.

Large discrepancies in off-axis kinematics (internal tibial rotation, lateral translation) were observed.
Peer-Reviewed Articles

Thesis

Conference Abstracts

Erdemir, A. and Sibole, S. Chondrocyte deformations as a function of tibiofemoral joint loading, Multiscale Modeling Consortium Meeting, October 5-6, 2011, Bethesda, MD.

LIMITATIONS & DIRECTIONS

Model Modifications

Prescription of *in situ* strain
Improvements in geometry & material properties
Simplification of ligament modeling
Addition of patellofemoral joint

Experimentation

Elaborate specimen-specific data
 accurate registration
 high-resolution imaging
 joint & tissue characterization

Model Validation

Sensitivity analysis
Population-based & specimen-specific
Passive flexion & joint envelope
Tissue response

Multiphysics Simulations

Biphasic analysis
LONG-TERM FUTURE

Open Knee(s): Virtual Biomechanical Representations of the Knee Joint
Open Platforms for Modeling & Simulation of Healthy, Aged and Osteoarthritic Knees

Project Steering
Advisory Board
Web-Based Collaboration

Experimentation
anatomical imaging
joint testing
tissue testing

Modeling & Simulations

Community Involvement
specifications review
community projects

Open Knee

Web-Based Computation
Simulation Software

XSEDE
Extreme Science and Engineering
Discovery Environment

FEBio
Finite Elements for Biomechanics
Open Knee

Modeling
Scott Sibole
Ahmet Erdemir
Craig Bennetts
Randy Heydon

Data
Bhushan Borotikar
Antonie J. van den Bogert

Simulation Software
Ben Ellis
Steve Maas
David Rawlins
Jeff Weiss

NIH/NIBIB R01EB009643 (model development)
NIH/NIGMS R01GM083925 (FEBio)
NIH/NIAMS R01AR049735 (data collection)

Simbios (project hosting)
Ahmet Erdemir
erdemira@ccf.org
+1 (216) 445 9523

http://www.lerner.ccf.org/bme/erdemir/lab
Copyright (c) 2013 CoBi Core, Cleveland Clinic

Unless noted otherwise or labeled as fair use*, all components of this document and the accompanying source code and binary files are licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/; or, (b) send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

*Slides labeled as 'fair use' likely have copyrighted material qualifying as 'fair use' as a result of nonprofit educational purpose of this document and the limited amount of enclosed information when compared to the whole body of external work. Any other use of material from these slides here or elsewhere, may be copyright infringement.
The trademarks and copyrights (registered or not) listed in this document are the property of their respective owners and are protected by national and international laws on intellectual property, copyrights and trademarks.