Reading data/prod0_dihed.xvg... g_cos = 1.0 | g_sin = 1.2 Correlation time for set 0 is 1.193 Reading data/prod1_dihed.xvg... g_cos = 1.2 | g_sin = 1.2 Correlation time for set 1 is 1.248 Reading data/prod2_dihed.xvg... g_cos = 2.6 | g_sin = 2.5 Correlation time for set 2 is 2.550 Reading data/prod3_dihed.xvg... g_cos = 4.1 | g_sin = 4.1 Correlation time for set 3 is 4.136 Reading data/prod4_dihed.xvg... g_cos = 1.5 | g_sin = 1.4 Correlation time for set 4 is 1.462 Reading data/prod5_dihed.xvg... g_cos = 2.5 | g_sin = 1.0 Correlation time for set 5 is 2.471 Reading data/prod6_dihed.xvg... g_cos = 1.2 | g_sin = 1.4 Correlation time for set 6 is 1.357 Reading data/prod7_dihed.xvg... g_cos = 1.5 | g_sin = 1.5 Correlation time for set 7 is 1.538 Reading data/prod8_dihed.xvg... g_cos = 1.6 | g_sin = 1.6 Correlation time for set 8 is 1.584 Reading data/prod9_dihed.xvg... g_cos = 1.6 | g_sin = 1.6 Correlation time for set 9 is 1.601 Reading data/prod10_dihed.xvg... g_cos = 1.2 | g_sin = 1.2 Correlation time for set 10 is 1.223 Reading data/prod11_dihed.xvg... g_cos = 1.3 | g_sin = 2.0 Correlation time for set 11 is 1.960 Reading data/prod12_dihed.xvg... g_cos = 1.2 | g_sin = 1.2 Correlation time for set 12 is 1.169 Reading data/prod13_dihed.xvg... g_cos = 2.0 | g_sin = 1.9 Correlation time for set 13 is 2.039 Reading data/prod14_dihed.xvg... g_cos = 1.5 | g_sin = 1.5 Correlation time for set 14 is 1.522 Reading data/prod15_dihed.xvg... g_cos = 4.4 | g_sin = 4.1 Correlation time for set 15 is 4.374 Reading data/prod16_dihed.xvg... g_cos = 12.0 | g_sin = 11.5 Correlation time for set 16 is 11.960 Reading data/prod17_dihed.xvg... g_cos = 6.1 | g_sin = 1.5 Correlation time for set 17 is 6.128 Reading data/prod18_dihed.xvg... g_cos = 1.6 | g_sin = 1.6 Correlation time for set 18 is 1.612 Reading data/prod19_dihed.xvg... g_cos = 1.0 | g_sin = 1.0 Correlation time for set 19 is 1.000 Reading data/prod20_dihed.xvg... g_cos = 1.4 | g_sin = 1.8 Correlation time for set 20 is 1.834 Reading data/prod21_dihed.xvg... g_cos = 3.1 | g_sin = 3.6 Correlation time for set 21 is 3.584 Reading data/prod22_dihed.xvg... g_cos = 1.2 | g_sin = 1.2 Correlation time for set 22 is 1.226 Reading data/prod23_dihed.xvg... g_cos = 1.1 | g_sin = 1.3 Correlation time for set 23 is 1.277 Reading data/prod24_dihed.xvg... g_cos = 1.4 | g_sin = 1.8 Correlation time for set 24 is 1.780 Reading data/prod25_dihed.xvg... g_cos = 1.4 | g_sin = 2.3 Correlation time for set 25 is 2.346 Binning data... Evaluating reduced potential energies... Running MBAR... Using embedded C++ helper code. K = 26, L = 26, N_max = 501, total samples = 7443 There are 26 states with samples. N_k = [420 401 197 122 343 203 369 326 317 313 410 256 429 246 329 115 42 82 311 501 273 140 409 393 282 214] Initializing free energies to zero. Initial dimensionless free energies with method zeros f_k = [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] Determining dimensionless free energies by Newton-Raphson iteration. self consistent iteration gradient norm is 1.8652e+05, Newton-Raphson gradient norm is 38163 Choosing self-consistent iteration on iteration 0 current f_k for states with samples = [ 0. 1.02124112 1.19892853 1.4881465 1.31559247 0.63432312 -0.09543595 0.00596947 0.35502313 0.18367928 0.67190155 0.67310593 0.87253945 0.64007105 0.2546197 -0.46820287 0.04209215 0.15192824 0.45188437 0.56813471 0.5657676 0.3426702 0.1788516 0.24072944 0.74701785 0.67290141] relative max_delta = 1.000000e+00 self consistent iteration gradient norm is 1.3369e+05, Newton-Raphson gradient norm is 13317 Choosing self-consistent iteration for lower gradient on iteration 1 current f_k for states with samples = [ 0. 1.77355684 2.29215839 2.74069455 2.23584525 1.00949548 -0.11480162 -0.03100485 0.54307018 0.37165387 1.18476258 1.33894746 1.57283401 1.24213464 0.39629454 -0.7953992 -0.08006989 0.35304963 0.79416275 1.06087658 1.03063166 0.62558404 0.23948827 0.44743182 1.24881208 1.18501363] relative max_delta = 4.570185e-01 self consistent iteration gradient norm is 1.0111e+05, Newton-Raphson gradient norm is 6933 Newton-Raphson used on iteration 2 current f_k for states with samples = [ 0. 5.93076873 10.6587231 11.4135107 8.50216912 5.44568918 3.03077122 1.08376093 2.66625549 5.32080438 9.12084611 13.22987244 13.9492394 12.20724586 8.41131599 5.5993541 5.27760559 6.95440639 7.81888842 8.45845842 7.23734558 3.8853521 0.12840707 1.79497396 11.22415616 8.46794988] relative max_delta = 8.872459e-01 self consistent iteration gradient norm is 1507.5, Newton-Raphson gradient norm is 30.782 Newton-Raphson used on iteration 3 current f_k for states with samples = [ 0. 5.67136818 10.6102185 11.44647584 9.09766238 6.31714857 3.82454022 1.73663186 3.44719467 6.17427249 10.09921587 14.19983007 14.96943811 13.01088257 8.96741153 5.52958208 5.2474297 7.05724409 7.98825008 8.65652279 7.17098204 3.30867376 0.13749905 1.6761208 12.21786939 8.66078106] relative max_delta = 6.815210e-02 self consistent iteration gradient norm is 6.3852, Newton-Raphson gradient norm is 0.0025284 Newton-Raphson used on iteration 4 current f_k for states with samples = [ 0. 5.67114051 10.61305198 11.44961685 9.16047611 6.3754876 3.8909722 1.8040446 3.5163609 6.24412603 10.16986117 14.27152208 15.0414179 13.07706066 9.02536951 5.5057432 5.22639859 7.03912108 7.97177334 8.64076995 7.14394079 3.25858136 0.13469479 1.67556331 12.27909074 8.64449421] relative max_delta = 4.785439e-03 self consistent iteration gradient norm is 0.00074676, Newton-Raphson gradient norm is 5.5277e-11 Newton-Raphson used on iteration 5 current f_k for states with samples = [ 0. 5.67115184 10.61309512 11.44969527 9.1610604 6.37610262 3.89159201 1.8046859 3.51701488 6.24479425 10.17054216 14.27222466 15.0421273 13.07778015 9.02609579 5.50534635 5.22606173 7.03885061 7.97151999 8.64053061 7.14369737 3.25826868 0.1346788 1.67556643 12.27981569 8.64425688] relative max_delta = 4.828312e-05 self consistent iteration gradient norm is 1.9279e-11, Newton-Raphson gradient norm is 6.0607e-24 Newton-Raphson used on iteration 6 current f_k for states with samples = [ 0. 5.67115185 10.61309514 11.44969531 9.16106047 6.3761027 3.89159209 1.80468599 3.51701497 6.24479435 10.17054226 14.27222477 15.04212741 13.07778027 9.02609591 5.50534627 5.22606167 7.03885057 7.97151995 8.64053058 7.14369734 3.25826866 0.1346788 1.67556643 12.27981581 8.64425685] relative max_delta = 7.889216e-09 Converged to tolerance of 7.889216e-09 in 7 iterations. Of 7 iterations, 5 were Newton-Raphson iterations and 2 were self-consistent iterations Recomputing all free energies and log weights for storage Final dimensionless free energies f_k = [ 0. 5.67115185 10.61309514 11.44969531 9.16106047 6.3761027 3.89159209 1.80468599 3.51701497 6.24479435 10.17054226 14.27222477 15.04212741 13.07778027 9.02609591 5.50534627 5.22606167 7.03885057 7.97151995 8.64053058 7.14369734 3.25826866 0.1346788 1.67556643 12.27981581 8.64425685] MBAR initialization complete. PMF (in units of kT) bin f df -175.0 0.889 0.083 -165.0 3.104 0.131 -155.0 5.986 0.166 -145.0 8.875 0.249 -135.0 11.387 0.275 -125.0 12.438 0.350 -115.0 11.830 0.371 -105.0 9.570 0.374 -95.0 6.535 0.376 -85.0 4.123 0.381 -75.0 2.538 0.386 -65.0 2.015 0.400 -55.0 2.586 0.403 -45.0 3.745 0.409 -35.0 5.739 0.419 -25.0 8.190 0.423 -15.0 11.119 0.425 -5.0 14.051 0.436 5.0 15.151 0.432 15.0 13.669 0.431 25.0 11.437 0.434 35.0 8.833 0.436 45.0 6.711 0.435 55.0 5.371 0.439 65.0 5.158 0.416 75.0 6.132 0.384 85.0 7.281 0.345 95.0 8.170 0.318 105.0 8.602 0.299 115.0 8.903 0.283 125.0 8.440 0.270 135.0 7.413 0.262 145.0 5.084 0.240 155.0 2.585 0.170 165.0 0.665 0.090 175.0 0.000 0.000