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1 What’s new? 
 

In release 2.8 I made more improvements to MMB.  Most significantly, you can now have a 

biopolymer which has gaps (e.g. unresolved residues) in the input structure file.  MMB will 

then match to the available coordinates and guess at a loop conformation which connects 

those fragments.  There is no guarantee that the loop will be clash free (but we have tools to 

then resolve clashes).  You can choose between matchGapped (which uses default, 

chemically reasonable bond lengths and angles) and matchGappedNoHeal (for certain 

special cases -- this will typically have a physically unreasonable bond geometry between the 

inserted region and the second fragment of known structure, requiring annealing).  You can 

also use matchFast, which is very economical and works perfectly with MMB’s own 

double-precision output structure files. 

MMB can now read the chain ID’s sequence, residue numbers, and even insertion codes 

from an input PDB file, for RNA and protein (not DNA or other species).  We tolerate gaps in 

numbering. You can even use the ‘+’ operator to specify relative residue numbers.  The 

shorthand FirstResidue and LastResidue are now supported. You will note changes 

in syntax for some commands, but as before the error messages should coach you in 

modifying your old command files to work with release 2.8.  In addition, we did some more 

internal restructuring, in the way constrainToGround’s, atomSpring‘s are handled, 

though this is invisible to the user.  

 

For any published work which uses MMB, please cite one or more of the following: 

 

Turning limited experimental information intio 3D models of RNA, by Samuel C Flores and 

Russ B Altman, RNA 16(9):1769-78 (2010). 

Predicting RNA structure by multiple template homology modeling, by Samuel C. Flores, 

Yaqi Wan, Rick Russell, and Russ B. Altman (2010)	
  Proceedings	
  of	
  the	
  Pacific	
  Symposium	
  

on	
  Biocomputing. 
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2 Biopolymers and 

monoAtoms 
 

In this Appendix, we describe how to instantiate biopolymers (RNA, protein), as well as 

single atoms such as counterions.    Note that the number of biopolymers and series of single 

atoms is limited by the number of characters available as chain identifiers. 

 

2.1 Biopolymer sequences and first residue numbers 
 

MMB can instantiate RNA chains using the following syntax: 

 

RNA <chain ID> <first residue #>  <sequence in single letter code> 

 

Similarly, you can instantiate DNA chains like this:  

 

DNA <chain ID> <first residue #>  <sequence in single letter code> 

 

You can instantiate a protein chain as: 

 

protein <chain ID> <first residue #> <sequence in single letter 

code> 

 

The protein chains use a the 20 canonical amino acid alphabet for specifying the sequence. 

 

There is one more way to instantiate sequences, which works for protein and RNA.  You can 

issue the command: 

 

loadSequencesFromPdb 
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And MMB will go to your input structure file (last.??.pdb) and look for RNA and protein 

chains.  It will extract the chain ID’s, residue numbers, insertion codes, and residue types 

from there.  It will also match the internal coordinates to the Cartesian coordinates it finds 

there, as usual.  You will then be able to issue commands that involve residues in those 

chains, as before.  

 

In addition to removing the need for you to specify these chains manually, the  also has the 

advantage of handling insertion codes and gaps in the numbering.  You will be able to 

append an insertion code to the right of the residue number in any command, e.g. 

constrainToGround A 32B (where B is an insertion code).  Further, it is now also 

possible to use the ‘+’ operator to increment or decrement a residue ID by some number of 

residues.  For instance,  

 

constrainToGround A 32B+2 

constrainToGround A 32B+-3 

 

will constrain residues two residues to the C-terminus and three residues to the N-terminus 

of 32B. 

 

The residue numbers and insertion codes do need to be increasing from the top to the 

bottom of the input structure file, though.  Before using this command, you should clean up 

the input structure file, removing anything that is not RNA or protein – including DNA, 

water, ions, or other molecules.   

 

2.2 monoAtoms 
 

The monoAtoms command specifies single atoms (e.g. monatomic ions) The syntax follows:  

 

monoAtoms <chain ID> <first residue #> <# of atoms> <name of atom> 

 

Currently only the following atom names are supported: 

 

Mg+2, Cl-, Na+, K+, Li+, Ca+2, Cs+, Rb+ 

 



       

 

15 

The single atoms created with this command support the atomSpring, atomTether, 

springToGround, constrainToGround, and constraint commands, just like the 

biopolymers.  They do not support the mobilizer command.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Forces 
 

In this Appendix, we describe options for using the baseInteraction, aromatic two-

residue forces, the atomSpring, atomTether, and springToGround forces, and 

the contact steric forces.  Note that since forces are additive, there is no hard limit on how 

many forces can exist in the system or even acting on a single residue, base, or atom.    
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3.1 baseInteraction 
The syntax for this command is: 

 
baseInteraction  <chain identifier for first residue>   

<residue number for first residue>  
<interacting edge for first residue>  
<chain identifier for second residue>   
<residue number for second residue>  
<interacting edge for second residue>   
<glycosidic bond orientation>  

 

The following combinations of first base pairing edge, second base pairing edge, and 

glycosidic bond orientation are permitted: 

 

WatsonCrick WatsonCrick Cis 
WatsonCrick WatsonCrick Trans 
 
WatsonCrick Hoogsteen Cis 
WatsonCrick Hoogsteen Trans 
 
WatsonCrick SugarEdge Cis 
WatsonCrick SugarEdge Trans 
 
Hoogsteen Hoogsteen Cis 
Hoogsteen Hoogsteen Trans 
 
Hoogsteen SugarEdge Cis 
Hoogsteen SugarEdge Trans 
 
SugarEdge SugarEdge Cis 
SugarEdge SugarEdge Trans 
 
WatsonCrick Bifurcated Cis 
Stacking3 Stacking5 Cis 
Stacking5 Stacking5 Trans 
Stacking3 Stacking3 Trans 
HelicalStackingA3 HelicalStackingA5 Cis 
Superimpose Superimpose Cis 

 

You might notice that some of these are actually not in the Leontis and Westhof 

classification.  These are explained below: 

• Stacking* simply specifies a stacking interaction between consecutive residues on a 

chain.  The numbers indicate which face is interacting on each base.  For example:   

baseInteraction A 120 Stacking3 A 121 Stacking5 Cis  
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Means that the face of base 120 which would ordinarily point towards the 3’ end of 
the strand in a helix, will be stacked on the face of base 121 which would ordinarily 
point to the 5’ end of the helix. 
 

• HelicalStacking* works the same as Stacking, but adds the offset appropriate for 

consecutive bases in a helix.  HelicalStackingA3/HelicalStackingA5 is automatically 

applied to all consecutive bases in helices, unless you specify 

setHelicalStacking FALSE.   MMB assumes an A-form helix exists whenever 

it finds three consecutively numbered RNA residues on a single strand Watson-Crick 

base paired with three consecutively numbered residues on the same or another 

single RNA strand.  If you want to generate a helix where this is not the case, you 

should manually apply HelicalStackingA3 / HelicalStackingA5  interactions.  

 

 

3.2 nucleicAcidDuplex 
 

This command generates WatsonCrick/WatsonCrick/Cis interactions between two specified 

segments on the same or different RNA chains.  It is a shortcut for manually specifying each 

such interaction for every pair of canonically interacting residues in the duplex.  The syntax 

is: 

nucleicAcidDuplex  <chain identifier A>   
<first residue on A>  
<last residue on A>  
<chain identifier B>   
<first residue on B>  
<last residue on B> 

  
 

Recalling that the duplex is antiparallel, we require that: 

(first residue on A) < (last residue on A) 

and 

(first residue on B) > (last residue on B) 

 

For example: 

 

nucleicAcidDuplex A 1 3 A 10 8 
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Makes the segments between residues 1 and 3 (inclusive) and between 10 and 8 (inclusive) 

into two halves of a duplex, by applying a base pairing interaction between 1 and 10, 2 and 9, 

and 3 and 8.  

 

3.3 atomSpring 
 

The atomSpring command creates a linear spring connecting two atoms.   Two optional 

parameters  (square braces []) specify the dead length and spring force constant. 

 

 atomSpring  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
 
3.4 atomTether 
 

The atomTether command, as the name implies, applies no force if the distance between 

atoms is less than a certain <dead length>,  and applies an attractive force with 

Hookean  <spring constant> when the distance exceeds the former.  Default values for 

the last two parameters are 0.0 and 3.0, respectively, as they are for atomSpring.  Make 

<spring constant> large for a strict “dog leash” or small for a permissive restraint. 

 

 atomTether  <first chain ID> 
   <first residue number> 
   <first atom name> 
   <second chain ID> 
   <second residue number> 
   <second atom name> 
   [<dead length> 
   [<spring constant>]] 
 
 
3.5 springToGround 
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The springToGround command creates a linear spring connecting a specified atom and a 

specified location in Ground.   Two optional parameters  (square braces []) specify the dead 

length and spring force constant. 

 

 springToGround  <atom chain ID> 
    <atom residue number> 
    <atom name> 
    <X location in Ground> 
    <Y location in Ground> 
    <Z location in Ground> 
    [<dead length>] 
 

 

3.6 threading 
 

The threading command applies atomSpring’s between pairs of atoms with the same 

name, on corresponding residues.  The result is that the atoms of a given stretch of residues 

in a given chain 1 are aligned to the like-named atoms of a corresponding stretch in a second 

chain 2.  For release 2.6.2 and higher, this command works with any biopolymer; its 

predecessor only worked for protein. The optional parameter  (square braces []) specifies the 

spring force constant. 

 

 threading  <chain 1 ID> 
     <first residue number of chain 1> 
     <last  residue number of chain 1> 
     <chain 2 ID> 
     <first residue number of chain 2> 
     <last  residue number of chain 2> 
     [<spring constant (default = 3.0)>] 
 

If you are trying to align just the backbone of a protein, you can use the 

proteinBackboneThreading command, which has the same syntax as above, but only 

applies springs between corresponding N, CA, and C atoms. 

 

 

3.7 contact 
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You can also apply space-filling Contact spheres to a range of residues using the contact 

command.  (The idea is similar to that of the parameters addSelectedAtoms and 

addAllHeavyAtomSterics) 

 

contact   <contact type>  
<chain identifier>   
<residue number for first residue>  
<residue number for last residue>  

 

The first residue should be lower numbered than the second, and both residues should be on 

the same chain.  

 

There are two kinds of permitted values of contact type.  In the fixed type, the atom 

identities are hard-coded and can’t be modified by the user, but the contact sphere radii and 

stiffness (both of which are the same for all atoms regardless of atom name) correspond to 

the excludedVolumeRadius and excludedVolumeStiffness parameters which are 

set in the MMB input file (e.g. commands.dat).  These include: 

  

AllAtomSterics     : Puts one sphere on each atom of the chain, except for 

the end caps on proteins (when used). 

AllHeavyAtomSterics  : Puts one sphere on each atom of the chain EXCEPT 

hydroges, and again except for the end caps on proteins.  

RNABackboneSterics   : Puts one sphere on each of the following atoms: P, 

O5*, C5*, C4*, C3*, and O3*.  An error will result from attempting to apply this to proteins, 

as anytime when you attempt to put sterics on an atom which doesn’t exist on a given 

residue. 

 
The second type of sterics are user configurable, in the parameter file (e.g. parameters.csv).  
Here the user can choose on which atoms to put the spheres, with a maximum of four atoms.  
The radii and stiffness can be controlled separately for each atom name.  A different choice 
of zero to four atom names can be chosen for each residue type (4 residue types for RNA, 20 
for protein).  The user can add as many steric schemes to the parameter file as he/she 
wishes; as supplied the parameters.csv file has two: SelectedAtoms and 
ProteinBackboneSterics.  For the first one, the parameters look like:   
 

 
RECORD A    SelectedAtoms SelectedAtoms X P C4* N9 
RECORD C    SelectedAtoms SelectedAtoms X P C4* N1 
RECORD G    SelectedAtoms SelectedAtoms X P C4* N9 
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RECORD U    SelectedAtoms SelectedAtoms X P C4* N1 
 
The second column is the residue type, and columns 7,8, and 9 are the atom names.  Note 

that the glycosidic nitrogen is named differently for purines vs. pyrimidines.  Subsequent 

columns give the sphere radii, stiffnesses, and information to identify these as contact 

parameter entries.  Parameters become available for use immediately upon being entered 

in the parameter file, much as for MD force field parameter files. 

 

3.8 Restraining to ground 
 
 
Much as residues can be constrained to each other (see next chapter), any residue of any 

chain can also be restrained to ground, meaning that a force can be applied to pull all six 

translational-rotational degrees of freedom to an equilibrium position and orientation in 

Ground: 

 

restrainToGround <chain ID> <residue number> 

 

Keep in mind that unlike a constraint, a restraint acts as a spring and thus allows some 

displacement with respect to ground.  Any   displacement at the end of a stage is carried over 

to the next stage, potentially leading to a “creeping” effect.  Two parameters which are 

relevant to this command are restrainingForceConstant and 

restrainingTorqueConstant.  These set the translational and angular restitution force 

constants. 

 

3.9 Density based force field  
 
As explained in the tutorial, MMB’s density based force field is formulated following Klaus 

Schulten’s MDFF as follows:  

 

  

€ 

 
f i = A⋅ mi ⋅

 
∇ D(xi,yi,zi) 

 

Where i is the atom index, mi is the mass of atom i, 

€ 

D(xi,yi,zi)  is the electronic density at 

the nuclear position of atom i, A is a user-adjusted scaling factor, and   

€ 

 
∇  is the gradient 
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operator. Accordingly,   

€ 

 
f i  is the density-derived force vector applied to atom i. This is 

computed for and applied to every atom i in the system. 

 

To turn on the density based force field on or off, set: 

 

densityMapActivate  <True | False> 

 

Your density map must be in XPLOR format.  To specify the location of the density map, file, 

use: 

 

densityFileName <density file name> 

 

The scaling factor (A in the equation above) defaults to unity, but you can set it to any 

floating point number (including negative numbers) as follows: 

 

 densityForceConstant  <scale factor> 

 

 

3.10 Physics where you want it 
 
“Physics where you want it,” introduced in release 2.4, allows you to turn on the all-atoms 

force field only for certain regions of your system, referred to as the  “physics zone.”  

 

To turn this feature on or off, use: 

 

physicsWhereYouWantIt <True | False> 

 

This parameter defaults to False, meaning the force field terms are applied to all atoms. 

Set to True to restrict to a user specified  set.  

 

To specify a range of residues to be added to the physics zone, use: 

 

includeAllNonBondAtomsInResidues <chain ID> <first residue in range> 

<last residue in range> 
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Sometimes it will be convenient to include all residues within a certain radius of a specified 

residue.  For this you would use: 

 

includeAllResiduesWithin <distance> <chain ID> <residue number> 

 

The distance (in Å) is measured between key atoms, CA for protein and C4* for RNA and 

DNA. 

 

Lastly, we have found that small chemical groups such as methyl or alcohol can spin out of 

control in the absence of viscous forces, leading to small time steps and excessive 

computational expense.  To deal with this, you can scale the inertia of such small groups 

with:  

 

smallGroupInertiaMultiplier <inertia scale factor> 

 

Any nonnegative floating point number can be used here; we suggest 11.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Mobilizers and constraints 
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In this Appendix we describe mobilizer commands, which define or modify the internal 

coordinate topology of the molecule as well as constraint commands, which  add 

constraint equations that reduce the degrees of freedom of the system.   

 

It is important to keep in mind the crucial difference between these two in Internal 

Coordinate Mechanics.  A mobilizer command can reduce or increase the number of 

bodies that exist in a system; in the former case you will always save computer time.  On the 

other hand a constraint command adds constraint equations which must then be solved; 

while the net effect depends on masses and forces, computational cost typically increases. 

Mobilizers control bond mobilities, which here can be Free, Torsion, Rigid, or 

Default.  

Free  means that the bond can change its length, angle, and dihedral.  

Torsion means it can change only its dihedral angle.  

Rigid means it has no degrees of freedom.  

Default means to return the bond to its original setting.  Most bonds are set to Torsion, 

but there are also some Rigid bonds, depending on the residue type and atoms it connects. 

 

One must also avoid overconstraining the system.  For example, if two rigid molecules are 

already Weld’ed (see below) to each other, do not put additional constraints on this pair of 

molecules, even if they are nominally applied to different residues.  While this is easy to keep 

track of for two bodies, watch out for more insidious ways of overconstraining.  For example, 

if A is Weld’ed to  B, and B is Weld’ed to C, do not then Weld C to A. 

 

4.1 mobilizer 
 

The mobilizer keyword is used for specifying the bond mobilities for a stretch of residues.  

This command is overloaded.  The first variant has the following syntax: 

 

mobilizer  <bond mobility>  
<chain identifier>   
<first residue number>  
<last residue number>  

 

The first residue should be lower numbered than the second, and both residues should be on 

the same chain. Bond mobility can be set to Free, Torsion, Rigid, or Default. 
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Don’t forget you can use the keywords FirstResidue or LastResidue, or do arithmetic 

on the residue numbers using the “+” operator, as described earlier. 

 

You can also simply say: 

mobilizer  <bond mobility>  
<chain identifier>   

 

… and this will set ALL residues in chain <chain identifier> to <bond mobility>.   

 

Lastly, you can say: 

mobilizer  <bond mobility>  
 

... and this will set all residues in ALL chains to <bond mobility>. 

 

 

4.2 singleBondMobility 
 

The singleBondMobility command is used for specifying the bond mobility for a single 

bond: 

 

singleBondMobility  <chain identifier for first atom>   
<residue number for first atom>  
<atom name for first atom>  
<bond mobility>  
<chain identifier for second atom >   
<residue number for second atom >  
<atom name for second atom>  

 

The two atoms should be covalently bonded to each other, of course.  

 
4.3 constraint 
 
The constraint command is used for specifying constraints to weld two residues 

together: 

constraint  <chain identifier for first residue>   
<residue number for first residue>  
Weld  
<chain identifier for second residue>   
<residue number for second residue>  
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The two welded residues can be on different chains; in fact either or both residues can be in 
RNA or protein chains.  The weld is applied on C3* atoms of RNA residues and on C atom s 
of protein residues.  There is no preference for residue number ordering.    
 
 
4.4 Constraining to ground 
 
 
Just as residues can be constrained to each other, any residue of any chain can also be 

constrained (rigidly attached) to ground: 

 

constrainToGround <chain ID> <residue number> 

 

See Appendix: Parameters for an explanation of the constraintTolerance parameter, 

relevant to this command. 

 

 

 

5 Global parameters 
 

This appendix, describes global parameters available to users.  It does not cover commands 

such as baseInteraction, aromatic, contact, mobilizer, and constraint. 

The simplest difference between a parameter and a command is the following. A command 

can be issued an unbounded number of times, subject only to memory and computer time 

limitations.  The major caveat is that in the case of constraint commands, one must not 

overconstrain the system.  In contrast a parameter can only be set once (at least for a given 

stage); if a parameter is set multiple times for a given stage, only the last value of that 

parameter will be used. A listing of all user-configurable global parameters and their current 

values is printed at the beginning of every stage of an MMB run.  Some additional 

parameters are available but rarely used or not recommended; contact the author with 

questions on these.  
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This chapter does not describe staged parameters.  These are parameters for which not only 

the value, but also the stage at which they first take effect is specified, for example 

temperature and dutyCycle.  

 

 
addAllAtomSterics Bool FALSE Add steric contact spheres to all atoms.  This is more 

expensive and more prone to kinetic trapping than 
addSelectedAtoms. 

addAllHeavyAtomSterics                     
  

Bool FALSE Add steric contact spheres to all atoms EXCEPT 
hydrogens.   

checkSatisfied                          Bool FALSE At each reporting interval, list all the baseInteraction’s and 
determine which were satisfied.   

constrainRigidSegments Bool FALSE When TRUE, adds a constrainToGround command for 
each rigid fragment in each chain in the system.  Useful for 
equilibrating small regions in multiple points throughout a 
complex without affecting parts of the complex distant to 
those small regions. 

constraintTolerance                   
  

float 0.05 This determines the tolerance of the Weld constraint.  If 
Weld’ed pieces are moving relative to each other, reduce 
this number. 

cutoffRadius                            float 0.1 This is the range of the MMB potential.  See our Multiple-
template homology modeling paper. 

densityFileName String  Name of file for fitting based on electron density, in .xplor 
format.  If you need to convert from some other format, we 
recommend using mapman (e.g. rave_osx for mac).  
Instructions are here: 
http://xray.bmc.uu.se/usf/mapman_man.html#S10 

densityForceConstant Float 1 Scale factor for the density based forces 
densityMapActivate bool False When True, turns on density based forces 
firstStage                              int 1 Stage at which simulation should begin.   
globalAmberImproperTorsionS
caleFactor   

float 0 

globalBondBendScaleFactor               float 1.0 
globalBondStretchScaleFactor   float   1.0 
globalBondTorsionScaleFactor   float 0 
globalCoulombScaleFactor   float 0 
globalGbsaScaleFactor    float 0 
globalVdwScaleFactor    float 0 

 
 
 
These eight parameters set scaling factors for terms in the 
Amber potential.  Most default to 0 for economy. 

initialSeparation float 20.0 Sets the separation between chains at stage 1, or 
whenever readPreviousFrameFile = false. 

integratorAccuracy                    
  

int 0.001 Integrator tolerance, applies for variable step size time 
integrators. 

integratorStepSize                      int 0.001 Step size in ps, for fixed step size integrators. 
integratorType       string Verlet Choose between Verlet, RungeKuttaMerson 
integratorUseFixedStepSize              Bool FALSE self explanatory 
lastStage     int 1 Stage at which simulation will end 
leontisWesthofInFileName                string ./paramet

ers.csv 
MMB parameter file 

loadTinkerParameterFile                 Bool FALSE If FALSE, uses hard-wired Tinker parameters.  If 1, reads 
parameters from tinkerParameterFileName 
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numReportingIntervals  
alias maxReportingIntervals   

int 100 Number of reporting intervals per stage. 

nastGlobalBondTorsionScaleF
actor  

int 10 Scale factor for NAST torsional potential 

randomizeInitialVelocities Bool FALSE Adds a random velocity to each body at the beginning of 
the simulation stage.  Note that if you are have any non-
interacting bodies (e.g. free ions with charges turned off) 
you may wish to apply initial velocities, otherwise the 
Nose-Hoover thermostat will leave them in their zero 
kinetic energy state.    

reportingInterval    float 0.2 Duration of reporting intervals, in ps. 
rigidifyFormedHelices    int FALSE  
scrubberPeriod     float 4 Duration of one cycle of potential rescaling (ON time + 

OFF time). 
safeParameters                          Bool TRUE When TRUE, checks for syntax errors as well as some 

potentially dangerous parameter values. 
setForceAndStericScrubber   Bool FALSE If TRUE,  when dutyCycle < 1.0, turns ALL forces 

(including baseInteraction’s, sterics, Amber force field, 
springToGround’s, etc.) off for (dutyCycle -1) of the time.   

setHelicalStacking    Bool TRUE if TRUE, identifies three consecutive 
WatsonCrick/WatsonCrick/Cis base pairs as a helix and 
applies HelicalStackingA3/HelicalStackingA5/Cis 
baseInteraction’s between the consecutive residues on 
each strand. 

setTemperature     Bool TRUE Turns on thermostat. 
thermostatType                          string  Choices are NoseHoover and VelocityRescaling 
tinkerParameterFileName                 string  Name of the tinker-formatted parameter file.  Only needed 

if the tinker force field is turned on. 
baseInteractionForceMultiplier 
alias 
twoTransformForceMultiplier  
alias forceMultiplier            

float 100 Scale factor applied to all baseInteraction and aromatic 
forces.  100 or 1000 is recommended to speed up 
modeling. 

useFixedStepSize                        Bool FALSE Specifies fixed-step-size time integration. 
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6 Macros 
 

This appendix describes macros available to users.  These macros set parameters or issue 

commands on the user’s behalf.  These are provided in cases where the corresponding 

commands might be confusing to the user, or simply not under user control. 

 

 
matchFast See the chapter, “Matching to the input structure file.” This 

sets matchExact TRUE, matchIdealized FALSE, and 
matchOptimize FALSE.  It is the most economical set of 
matching parameters; see mentioned chapter for caveats. 

matchGapped See above mentioned chapter, This sets matchExact 
TRUE, matchIdealized TRUE, and matchOptimize TRUE.  
Use it when there are gaps in the input structure file. It will 
span the gaps using use default bond lengths and angles 
in the intervening fragment.  Don’t forget to adjust 
matchingMinimizerTolerance. 

matchGappedNoHeal Just like above, except will not attempt to optimize the 
fragment of unknown structure.  The latter will be left at 
default bond lengths, angles, dihedrals, and overall 
location, and unnatural bonds will connect it to the 
fragments of known structure. Don’t forget to adjust 
matchingMinimizerTolerance. 
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7 User defined variables and 

conditional blocks  
 

In this Appendix, we describe how to define numerical variables, and various ways to specify 

sections of the input file which are to be read or ignored at certain stages.  

 

7.1 Comment marker  
 

The comment marker is  #, e.g.: 

 

# Don’t read this, it’s just a comment 

 

7.2 User defined variables 
 

User variables are defined with the following syntax: 
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@<variable-name> <float or integer value> 

 

The variable @<variable-name> can then be used wherever a literal integer or float is 

expected.  If a float is assigned to the variable, and the variable is later used where an integer 

is expected, the value will be truncated to an integer. The definition of the variable should 

precede its first use in the input file.  For example: 

 

#declare @myStage variable and set to 3  

@myStage 3 

# now use it where a number (in this case an integer) is expected: 

firstStage @myStage 

 

7.3 Conditional blocks  
In many cases we will want to issue different commands and make different choices of 

parameter values at different stages of a job.  For this purpose we can enclose a block of the 

input file in a conditional block, which is opened as follows: 

 

 

readFromStage <stage-number>  Read only if the current stage is equal to 

or GREATER than <stage-number>. 

readToStage                 Read only if the current stage is equal to 

or LESS than <stage-number>. 

readAtStage     Read only if the current stage is EQUAL 

to  <stage-number>. 

readExceptAtStage    Read only if the current stage is NOT 

EQUAL to <stage-number>. 

 

The commands and parameters to be conditionally read follow, and the end of the block is 

indicated with a readBlockEnd statement, e.g.: 

 

# start conditional block: 

readAtStage 3 

# read the following lines only at stage 3: 
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sequence C CCUAAGGCAAACGCUAUGG 

firstResidueNumber C 146 

baseInteraction A 2658 WatsonCrick A 2663 WatsonCrick Cis  

contact C 146 SelectedAtoms C 164        

# end conditional block: 

readBlockEnd 

# continue with the rest of the input file 

 

 

  

 

 

 

 

 

 

8 Matching to the input 

structure file  
 

8.1 Introduction 
 

MMB has a highly flexible input structure file handler.  The first part of our method is a PDB 

file writer which can write additional atomic coordinate records at double precision.  The 

second part is a set of PDB file readers which take advantage of any PDB files which have 

been written using this extra precision (to save computer time), and which can even guess at 

the position of any atoms which are missing from the input structure file. 

 

MMB can write PDB files which contain an additional line after each atom record, with 

higher-precision coordinates.  The records look like this: 

 
ATOM     73  CA  LEU g  11     187.037 166.544 295.833  1.00  0.00           C 

REMARK-SIMTK-COORDS 187.03654248299949359 166.54394767275138634 295.83272525824793320 
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Notice that the REMARK-SIMTK-COORDS records follow the ATOM records, repeating the 

coordinates except with higher precision. The higher precision is not necessary to make the 

dynamics accurately – it is there to expedite the process of turning Cartesian to internal 

coordinates. This way bond lengths, angles, and dihedrals can be matched without 

significant accumulation of error. The REMARK-SIMTK-COORDS records will be ignored by 

other programs which read PDB files, since they start with REMARK.  Our PDB file reader will 

look for one such record after each ATOM record, but will use the original, lower-precision 

coordinates if the former is not found or disagrees with the coordinates in the ATOM record. 

To save disk space, the trajectory.??.pdb files do not have these extra-precision records.  

They are only used in last.??.pdb (which is written at the end of each stage, see program 

flowchart in the Tutorial Guide) and frame.pdb (which always contains the latest frame, 

duplicating the latest frame written to trajectory.??.pdb).   

 

As mentioned the input file reader can use these extra records if they are available, but does 

not require them.  If any atoms are missing, it can guess their positions using two different 

schemes.  That is to say, where insufficient atom positions are known, bond lengths, angles 

and/or dihedral angles will be either left at default values or adjusted to connect the pieces 

of known structure.  No attempt will be made to prevent steric clashes – this is something 

that you may need to fix later, e.g. using contact spheres.   

 

There are three cases.  First, is the case where either all atom positions are known, or the 

only missing atoms are in side chains or termini.  Second is the case where there are is a 

fragment of unknown structure (FUS) between fragments of known structure (FKS’s), and it 

is geometrically possible for the FUS  to connect the two FKS’s, while leaving all bond 

lengths and angles at default values.  The third case is like the second, except that it is not 

possible for the FUS to span the gap without introducing bonds of unnatural length and/or 

angle. 

 

8.2 Case 1 
 

This is the “easy” case, in which the FKS for any given chain is continuous, that is there is no 

FUS flanked by two FKS’s.  Here we will match all bond lengths, angles, and dihedrals using 

the corresponding pairs, triples, and quadruples of atoms in the input structure file. It is the 
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most economical method available.  It works perfectly when double precision coordinates 

are available.  However error can accumulate when only standard PDB precision is available, 

though this error is not always noticeable. In the latter case one might want to use one of the 

other macros in following sections. For Case 1, just invoke the following macro: 

 

matchFast 

 

This method is so much more economical than the others that you will want to use it 

whenever possible.  Thus if you have a multi-stage run, you should definitely use it after the 

first stage, when you will have MMB-generated double-precision PDB files. 

 

 

8.3 Case 2 
 

This is a harder case, in which one or more given chains have discountinuous FKS’s. That is, 

there is at least one FUS flanked by two FKS’s.  However it should be possible for the FUS to 

span the gap between the two FKS’s without breaking the default bond lengths and angles in 

the FUS. Here the bond lengths, angles, and dihedrals in each FKS will be set using the 

corresponding pairs, triples, and quadruples of atoms in the input structure file, as before. 

Following this, there will be a nonlinear optimization of all dihedral angles to match the 

available Cartesian atomic coordinates. This optimization may still be off by a little bit, but 

the FUS should now be connecting the two flanking FKS’s. Then there will be a seond round 

of matching the bond lengths, angles, and dihedrals in the FKS’s followed by a simple 

minimization which can be almost perfect (error in FKS’s as low as 0.01Å) – but for this you 

must set matchingMinimizerTolerance.  A value of 0.15 or so works well for moderately 

small systems, although as high as 150.0 has worked for the ribosome for some reason. Since 

there are two rounds of optimization, this is the most expensive method of the three. To do 

this, invoke:   

 

matchGapped 

 

 

8.4 Case 3 
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This is just like Case 1, except that it is NOT possible for the FUS to span the gap between the 

two FKS’s without breaking its default bond lengths and angles. For instance, the distance 

between the two FKS’s may be longer than the fully extended length of the FUS. This is an 

unnatural situation, but there may be reasons of convenience for it to arise.  The fitting 

procedure is exactly the same as before, except that we will skip the nonlinear optimization 

of dihedral angles.  As a result, the FUS will have default bond lengths, angles and dihedrals, 

and further will be translationally in a position that is not related to that of the FKS.  The 

FKS coordinates can be matched almost perfectly – here again make sure you adjust 

matchingMinimizerTolerance.  The connection between the FUS and each of the FKS’s 

will typically be a bond of unnatural length and angle. It will be the user’s responsibility to 

equilibrate this bond (e.g. using the singleBondMobility command to flexibilize it). To 

do the fitting in this way, invoke:   

 

matchGappedNoHeal 

 

This method is more expensive than matchFast, as the name of the latter would suggest. 

For the ribosome you can expect matchGappedNoHeal to take about six hours, though for 

more pedestrian molecules (a couple of hundred residues long, say) it should take seconds or 

minutes.  It is less expensive than matchGapped, though.   

 

8.5 Economizing your time 
 

As mentioned, matchFast is the fastest matching method, and it works best with our 

double-precision input structure file records. Also as mentioned, the last.??.pdb (generated 

at the end of every stage) and frame.pdb (generated at every reporting interval) files have 

double precision coordinate records.  So if it’s necessary to use matchGappedNoHeal or 

matchGappedNoHeal, and the molecule is a large one, the trick is to use it only once. 

 

Another trick is to get rid of  any gaps in numbering, and just connect the residues spanning 

the gap with a bond of unphysical geometry. The way to do is to simply renumber the 

residues in the input structure file. Let’s say you have inserted residues 167A, 167B, 167C, 

followed by 168.  These become 167, 168, 169, and 170, and all subsequent residues are also 

incremented accordingly.  Similarly, let’s say residues 212-214 are deleted. Residues 211 and 
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215 would become 211 and 212. For this you will use the program renumber.pl, included 

with MMB. The syntax is:  

 

renumber.pl [old structure file name] [first residue number] > [new 

structure file name] 

 

The structure file should just have one chain. 

 


