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SI Text
Coarse-Grained Folding Models. In the original version of the mod-
el, non-bonded interactions are described by a pair potential in
which native contacts (those amino acid pairs in contact in the
native structure) are treated using a 12-10-6 potential:
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Non-native contacts were treated as repulsive. Simulations were
run using Langevin dynamics at the folding temperature of the
respective Gō model (292 K for prb7−53 and 310 K for protein
G), with a friction coefficient of 0.1 ps−1.

A number of variants of this model are considered: variant 1 is
the “non-Gō” potential described in the main text while variants 2
and 3 are shown in Fig. S4.

1. A recently described model for protein–protein interactions
(1) was used to add non-Gō energy, i.e, interactions specified
by the identity of the residues rather than by the native struc-
ture. The non-bonded energy in the presence of non-Gō inter-
actions was given by

V nb ¼ ∑
native
ði;jÞ

VG�oðrijÞ þ ∑
non−native

ði;jÞ

V ngðrijÞ þ∑
all
ði;jÞ

V elecðrijÞ [2]

Here, the V ngðrijÞ and V elecðrijÞ are, respectively, the modified
Lennard–Jones potential and Debye–Hückel type expression
of Kim and Hummer (1) (model “a” in the paper).

2. A Morse potential was used to treat the attractive part of the
native contact potential, instead of Eq. S1:

V ðrijÞ ¼
�
VG�oðrijÞ rij ≤ σij
ϵij½ð1 − expð−αðrij − σijÞÞÞ2 − 1� rij > σij

: [3]

The parameter α was set to 1.7 to match the curvature of the
12-10-6 potential at the minimum for a native contact distance
of 6 Å.

3. The magnitude of the torsion potentials in the original model
was halved.

Calculation of Diffusion Coefficients. We describe the dynamics
along a given coordinate as one-dimensional diffusion. The
coordinate q is divided into a set of contiguous non-overlapping
bins and the dynamics is described in terms of transitions between
the bins using a spatially discretized form of the Smoluchowski
equation due to Bicout and Szabo (2). The time evolution of
the population in bins i follows a system of rate equations:

piðtÞ ¼ Ri;i−1pi−1ðtÞ − ðRi−1;i þ Riþ1;iÞpiðtÞ þ Ri;iþ1piþ1ðtÞ: [4]

From a simulation (or single-molecule experimental) trajectory
qðtÞ, the statistics of transitions from bin i to bin j after a lag time
Δt, are accumulated in a transition matrixNðj;Δtji; 0Þ. A Bayesian
approach is used to find the equilibrium probabilities Pi and rate
coefficients Rj;i that are most consistent with the observed transi-
tion matrix, as described previously (3, 4).

The potential of mean force in interval i, FðqiÞmay be obtained
from the equilibrium populations Pi in each interval via

FðqiÞ ≈ −kBT ln
Pi

Δq
[5]

whereΔq is the width of the interval in q. The position-dependent
diffusion coefficients Diþ1∕2 can be obtained from the rate coeffi-
cients from

Diþ1∕2 ≈ Δq2Riþ1;i
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where Diþ1∕2 ¼ Dððqi þ qiþ1Þ∕2Þ is the diffusion coefficient cen-
tered between the bins at qi and qiþ1. Uncertainties were esti-
mated from a block error analysis of the sampled parameters.

What happens if the chosen coordinate q is not a good reaction
coordinate? If q does not properly separate the transition states
(with splitting/commitment probabilities (5, 6) of 1∕2) from re-
actant and/or product states, the estimated DðqÞ will depend
strongly on the lag time Δt at which transitions are observed.
For short lag times, DðqÞ will be large (because even relatively
fast fluctuations appear to carry the system between reactant
and product states); for long times, it will be small (because fast
fluctuations are averaged out and only the long-time folding/un-
folding dynamics dominates, similar to what is seen in a number
correlation function). Correspondingly, the rates of folding and
unfolding predicted from the diffusion model will be large for
small Δt and small for large Δt. Only in the limit of very long
Δt are the predicted rates expected to approach the “real” ones.
However, trajectories qðtÞ artificially generated from the diffu-
sion model obtained in the limit Δt → ∞ will not resemble the
qðtÞ trajectories obtained from the molecular simulations if q
is a poor reaction coordinate. The reason for that is that DðqÞ
will be artificially reduced in the transition region to compensate
with a small kinetic prefactor for the low free energy barrier of the
poor coordinate q.

Effect of Non-Gō Contacts on Stability. Intuitively, one would expect
that non-Gō contacts would only play a role in the unfolded state,
most likely stabilizing it. However, our non-Gō potential is fairly
long-ranged, including 12-6 Lennard–Jones and electrostatic
terms (1). Fig. S3A and B shows that the overall number of
non-native contacts is similar in both states and consequently
there is a similar contribution of the non-Gō terms to the energy
of both the folded and unfolded states, so that the difference be-
tween the two is small. Although the non-Gō energy difference
between unfolded and folded states shows that the non-Gō
contacts do slightly disfavor the folded state (Table S1), it turns
out that the repulsive non-native contacts in the original Gōmod-
el disfavor the folded state a little more (Fig. S3C and D and Ta-
ble S1). With a difference in non-native energy between folded
and unfolded of ΔEnonGō for the non-Gō model and ΔEGō for
the Gō model, the change in folding energy upon replacing
the Gō non-native interactions with non-Gō interactions, ΔΔE ¼
ΔEnonGō − ΔEGō, is −0.13 kcal/mol (−0.22 kBT) for prb and
−2.24 kcal/mol (−3.64 kBT) for protein G; these values are in rea-
sonable agreement with the stabilization observed for each pro-
tein in Fig. 1. We note that the difference in total potential energy
between unfolded and folded, ≈ − 21 and ≈ − 40 kcal/mol for
prb7−53 and protein G, respectively, is still dominated by native
contact energies, as expected.
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Fig. S1. Estimated FðrNCÞ and DðrNCÞ for a single pair distance rNC (distance between N and C termini in prb). Since for the prb model system this distance is a
poor folding coordinate (e.g., it cannot separate folded and unfolded conformations), the folding trajectory was divided into folded (Q > 0.7) and unfolded
states, and transition matrices Nðrj ; tjri ; 0Þ were estimated separately from these trajectory fragments. In this way, separate free energies and diffusion coeffi-
cients were obtained for this pair distance in the folded (Red) and unfolded (Black) states of the protein.
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Fig. S2. Barrier crossing from quenched trajectories of prb. Trajectories were initiated from (A) an unfolded configuration (Q ≈ 0.4), (B) a transition-state
configuration (Q ≈ 0.67) and (C) a folded configuration (Q ≈ 0.9), and later “quenched” by extensive energyminimization of the saved structures. The left hand
scale gives the rms distance (RMSD) to the preceding saved structure in the trajectory, with the RMSD for the original trajectory given in black and for the
quenched trajectory in red. The numbers of native contacts and native torsion angles in the quenched trajectory are shown in blue and green, respectively. In
(B) and (C) the number of torsion angles has been increased by adding 15 and 27, respectively, to place it on the same scale as the number of native contacts.
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Fig. S3. Non-native contacts in folded and unfolded proteins. The fraction of native contacts, Q, total number of non-native contacts, non-native electrostatic
energy and non-native Lennard–Jones energy 1 are shown for (A) prb and (B) protein G trajectories with the Gō+non-Gō potential. The fraction of native
contacts and total non-native (purely repulsive) energy for bare Gō models are given in (C) and (D) for prb and protein G, respectively. Note that the folded
state is slightly destabilized by both the purely repulsive non-native contacts of the original pure Gōmodel (C andD), and by the weak non-native attractions in
the non-Gō model. To count non-native contacts, the cutoff distance was 1.2σ, with σ taken from the Lennard–Jones part of the non-native potential (1).
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Fig. S4. Effect of changes to torsion angle and native contact potentials. The free energy FðQÞ (Upper) and position-dependent diffusion coefficients DðQÞ
(Lower) are shown for prb (Left) and protein G (Right). The color code of the curves is (Black) Karanicolas–Brooks Gō model, (Red) non-Gō interactions added,
(Blue) Morse contact potentials, and (Green) halved torsion potentials. The inset to (E) compares theMorse pair potential (Broken Green Lines) with the original
Karanicolas–Brooks “desolvation” potential (7).
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Fig. S5. Monte Carlo (MC) “dynamics” of prb. Position-dependent (A) free energies FðQÞ and (B) diffusion coefficients DðQÞ obtained by fitting a 1D diffusive
model to MC trajectories; the black curve is for the simple MC with only single torsional rotation moves and the red curve includes moves with concerted
rotations of up to seven torsion angles. Inset to (A) indicates the quality of the reaction coordinate Q for MC dynamics with pðTPjQÞ. MC simulations were run
using the MC module of CHARMM (8), with one of two move sets: (“simple”) Displacement moves of up to 0.2 Å, and single torsion rotations of up to 20°;
“concerted” moves available in the simple move set, with the addition of concerted rotation moves of up to seven torsion angles as described by Dinner (9),
with maximum 15° displacements. Moves were chosen from a uniform distribution on the allowed intervals. Note that harmonic bonds without SHAKE con-
straints were used for the MC simulations.
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Fig. S6. Mapping the fraction of native contacts Q onto a coordinate s on which the diffusion coefficient DðsÞ is constant for prb (Left) and protein G (Right).
(A),(B) Mappings sðQÞ defined as described in the text to obtain a position-invariant DðsÞ; like Q, s is defined on the interval ½0; 1�; (C), (D) Free energy surfaces
FðsÞ (Red) and FðQÞ (Black) for prb and protein G; (E), (F) Position-dependent diffusion coefficients DðsÞ (Red) and DðQÞ (Black). The result of the reverse trans-
form from s back to Q are shown by broken green lines in (C-F).

Table S1. Contributions to non-native pair energies in prb7−53 and
protein G. For each energy term E, we present the average over the
unfolded state hEiU, folded state hEiF , and their difference
ΔE ¼ hEiF − hEiU. The terms considered are the Lennard–Jones (ELJ

nonGō)
and electrostatic (Eelec

nonGō) parts of the non-Gō potential (Etot
nonGō),

averaged over simulations with the non-Gō interactions included.
Corresponding averages of the non-native pair energies in simulations
with the original Gō model (EGō) are also given. The folded state was
defined by Q > 0.7 for prb7−53 and by Q > 0.55 for protein G.

Energy term E hEiU (kcal/mol) hEiF (kcal/mol) hEiF − hEiU (kcal/mol)

prb7−53

ELJ
nonGō −2.21 −0.50 1.71

Eelec
nonGō −1.78 −1.85 −0.04

Etot
nonGō −3.99 −2.35 1.67

EGō 2.53 4.32 1.80
Protein G

ELJ
nonGō −2.67 −1.87 0.80

Eelec
nonGō −0.63 −1.04 −0.41

Etot
nonGō −3.30 −2.91 0.39

EGō 1.46 4.09 2.63
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