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The memory functions for the velocity, angular-momentum, and dipolar autocorrelation
functions from a series of molecular-dynamics studies of liquid carbon monoxide are exam-
ined. The velocity and angular-momentum memory functions decay initially almost to zero
in a Gaussian fashion. However, their long-time behavior has a much slower time depend-
ence. The dipolar memory function from a simulation using a strong noncentral potential
is approximately this system’s angular-momentum autocorrelation function. Approximate
velocity and angular-momentum correlation functions are generated from approximate mem-
ory functions and the results are compared to experiment. Gaussian memories based on the
second and fourth moments of the corresponding autocorrelation functions give the best agree-
ment with experiment. However, none of the approximate memories examined adequately
represents the long-time behavior of the experimental memories. The static atomic radial
distribution functions are given and are shown to depend upon the strength of the orientational

parts of the pair potential used in the dynamics calculations. The non-Gaussian character-
istics of the Van Hove self-correlation functions are examined and shown to depend on the
potential and number of particles used in the dynamics calculations. The intermediate scat-
tering function and its memory are also examined.

I. INTRODUCTION

A number of experimental methods exist for
probing the structure and molecular dynamics of
liquids. X-ray and neutron-scattering experi-
ments determine the structure factor S(K) which
is related by a Fourier transform to the pair-cor-
relation function of the liquid. Inelastic neutron-
scattering experiments determine the dynamic

form factor S(K, w), first introduced by Van Hove.
S(ﬁ, w) is related to the transition rate for the
liquid system to absorb momentum ZK and energy
7w from the thermal neutro_g beam. Moreover,

the dynamic form factor S(K, w) is the Fourier
transform of the correlation function of the num-
ber densities at two different space-time points.
This same function plays an important role in the
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TABLE I._’ Some common experimental quantities and their time-correlation functions. ¥ is the c. m. velocity of a
molecule. J is the angular momentum of a molecule about its ¢. m. d is a unit vector along the molecular axis. ﬁ,, is

the position of a nucleus of type z.

Experimental measurement

Time-correlation function

Property determined

Self-diffusion coefficient D

Rotational diffusion coefficient
of a rod Dy

Nuclear-spin-rotation
relaxation time Ty

Infrared-absorption
vibration-rotation spectra
in heteronuclear diatomics, I, ()

Raman-scattering vibration-
rotation spectra in heteronuclear
diatomics, Ig(w)

Depolarization of fluorescence
in rodlike molecules (polymers)

Incoherent neutron scattering

() =T (0 T (£)) /(W)
A1) =TT (1)) /P

Ap()= (T T (1)) /T2

Dy(t)=a(0)°U(2))

Dy(t) = (Py(T (0)T (1))

Dy(8) = (P, (T (0):T (D))

Fs('ﬁ’ £ = <e-iﬁ-§,,(0) eif{'-fi,,(t)>

D=5 (V) [ aty(t)
Dp=%(J?) [PdtA; (¢)

(1/Tp o [£2 dtei0tA, ()

Tw) = (1/2m) [ dt i@ -90tp, (1)

T p(w)=(1/2m) [ dt &= “0tDy(¢)

7() =2 Dy()

S, (K, w) = (1/2m) [*2 datei“tF (K, 1)

inelastic scattering of light.? An experimental
determination of S(ﬁ, w) over a wide range of ﬁ
and w provides an enormous amount of information
about the structure and dynamics of liquids. **

As is well known by this time, the fluctuation
dissipation theorem® is the basis for relating lin-
ear transport coefficients and spectroscopic line
shapes to time-correlation functions. A list of
some common experimental quantities and their
corresponding time-correlation functions is pre-
sented in Table I. At present, the complete time
dependence of only a few time-correlation func-
tions has actually been determined. ® In addition,
there has been very modest progress on the theo-
retical side in computing the exact time dependence
of specific time-correlation functions, " and this
only in the simplest cases.

Digital computers have been employed to cope
with the difficulties of the many-body problem in-
volved in computing time-correlation functions.
Alder and Wainwright® solved the classical equa-
tions of motion for a system of hard spheres con-
fined to a specified volume V and thereby deter-
mined the structure and dynamics of this very sim-
ple model system. More recently, Rahman® and,
later, Verlet!® studied in great detail the structure
and dynamics of liquid argon in which the atoms
were assumed to interact via a Lennard-Jones po-
tential. These results are in excellent agreement
with the most recent experimental determinations
of liquid argon’s structure and dynamics. More-
over, these computer studies show that the motion
of argon atoms in the liquid is much more compli-
cated than that assumed in earlier simplified-
model calculations.

In this article we report the results of a series
of computer studies of diatomic liquids. In partic-
ular, we emphasize the structural and dynamical
properties of these fluids which have not appeared
in previous publications. Moreover, this discus-
sion will be presented, wherever possible, in
terms of memory functions. Consequently, Sec.
1I is concerned with a short discussion of the prop-
erties of time-correlation functions and their
corresponding memory functions.

II. TIME-CORRELATION AND MEMORY FUNCTIONS

Consider the arbitrary mechanical properties
a(T") and B(I"), and their scalar product (alB},
where

(a|B)y = [dT p(T)ax(T)B(T) , (1)

where T is a point in the phase space of the sys-
tem under consideration, a* is the complex con-
jugate of @, and p( T") is the equilibrium canonical dis-
tribution (other ensembles may be used to define
this scalar product). This scalar product satis-
fies the following conditions: (i) (a|B)*=(Bla);
(ii) if a@=c,@, +c,a, where ¢, and ¢, are two arbi-
trary constants, (8l a)=c{Blay) +c,(Blay); (iii)
{ala) = 0,the equality sign pertains only if a=0.
From (i) the “norm” of the property @, (ala)is
real. A property whose norm is unity is said to
be normalized. Two observables are said to be
orthogonal if {(a|B) =0. R
Consider now the mechanical properties Uy, - -,
ﬁN. These properties can be represented by the
kets IU,), ..., |Uy) in a vector space and the
corresponding bras (l[i I,...,{Uyl in dual space.
Suppose that U,, ..., Uy are chosen orthonormal
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so that { U;1U,) =6;;. Moreover, suppose that
these properties average to zero, i.e., (U;)=0.
Then the set of kets |U,), ..., |Uy) can be re-
garded as basis vectors in a subspace of the vec-
tor space corresponding to all mechanical prop-
erties or (property space). These properties
obey the canonical equations

% U=iLl,; ie={ %}
where {, } is the Poisson bracket, 3¢ is the Hamil-
tonian, and £ is the Liouville operator. In prop-
erty space this becomes the equation

9
2 up=ieloy .

The time-correlation function C,j(t) is defined
by

C,;(0=ule*t|Uy) (2)

and the projection operators f’, and P are defined
by

1;1:|Uz><Uz|,-f’=z§1|U,)(U,‘ . (3)

}3, is the projector onto the vector |U,;) and Pis
the projector onto the subspace |U;), ..., |Uy).
That these are projectors follows from the fact
that they are Hermitian and idempotent, i.e.,
(alBIB) *=(BIP|a) and P?=P (likewise for B,).

It is easy to derive an equation for the time evo-
lution of the NXN matrix C(f) with elements C,(¢):

= C0-i9C() - [{arK@)C(t- 1), (a)

where @ is called the frequency matrix and K(¢) is
called the memory-function matrix.

K, () =G8U,; | (1 - P) 4 -P %11 - P)ligy,)

(5)
Q,=(U;1e1U,) .

Generally the properties |U;) are so chosen that
they have definite time-reversal symmetry, that
is, they are either even or odd in all the momentum
coordinates. In this case £;;=0. A single property
|U;) then! satisfies the equation

5 t
= Cyy(0)=- /0 dtK,,(1Cy(t-7)

) (6)
Ky;(1)= (iU, 14 PP ey )

where K,,(t) is called the memory function.
It can be shown that |U,(¢)) obeys the exact
equations

5?; lU,@) = —J:dtK”(t— U N+ F ) (1)

MEMORY FUNCTIONS-°*° 977

with |F,0) = e!“PP%(1-D,)|igU)),

where |F,(f)) is called a “random force” by analogy
with the Langevin equation for the velocity of a
Brownian particle. This equation is nevertheless
rigorous for the ket |U;), and moreover, according
to its definition, we see that (U;(0) |F,(¢)=0.
Equation (7) was named the “generalized Lan-
gevin Equation” by Mori!? who first derived it.
The integral represents a systematic retardation
or “frictional effect.” It is easy to see from Eq.
(7) that

K“(t) :< Fj(o) [Fj(t)>
=(i2U,| ' B2 | 8U ) ®)

so that the memory function is proportional to the
correlation function of the random force. This
enables one to construct models for the time evo-
lution of the autocorrelation function based on
arguments similar to those used in the “classical”
theory of Brownian motion. For example, if it is
assumed that the random force has a white spec-
trum, '3 then K;,(¢)=26(¢) and the ordinary Lan-
gevin equa'cion13 results with relaxation rate or
friction coefficient!! X = [§ dtK,;(t). On the other
hand, if the random force is a Gaussian Markov
process, according to Doob’s theorem, 1 it must
have an exponential correlation function so that the
memory is exponential, i.e.,

K, ()=K;;(0)e™,

with K;;(0)=(U,|1U,). The autocorrelation func-
tion will then obey the equation

o c,,(t)=-<r},w’,)ftm-hfc,,(t-r). ©)
0

This kind of analysis was first applied with con-
siderable success to the linear-momentum auto-
correlation function. It should be noted that
(U,10,12) =(1U,1?) is an equilibrium average. The
coefficient A can be chosen such that C,,(¢#) gives
the correct transport coefficient. Finally, if it is
assumed that the autocorrelation function of the
random force has a Gaussian dependence on the
time, a different, and in many ways more reason-
able, result is obtained.

The generalized Langevin equation[Eq. (7)] con-
sequently contributes a great deal to our under-
standing of the memory-function equation.

Mori'® has shown that the random force also
obeys a generalized Langevin equation, with a
random force which obeys yet another Langevin
equation. The net result of Mori’s analysis is an
infinite sequence of Langevin equations in which
the dynamical property in the nth equation is the
random force of the (n— 1)th equation. Moreover



978 G.D. HARP AND B.J. BERNE 2

the “memory function” K,(¢) in the nth equation is
proportional to the autocorrelation function of the
random force in the nth equation. Thus,

or |Fn(t)>=-fthKn+l(T)an(t_T»
0

+|Fn+1(t)>’ n=0,1,..., (10)
| Fo(t)y = |U,(8)),
Ky 1(0)=(F 1 (0)| F, 1 (0))/{ F,(0)| F,(0)),
and (F,(0)| F,(2) =(F,(0)| Fy(£))5,;.

This leads to the contimied fraction representation
of the Laplace transform of C;;(¢#):

where

é”(s) =1/s+K;(0)/s + K,(0)/s + K3(0)/ * + /s +K,(s) .

(11)
The quantities K,(0) are well-defined equilibrium
moments. This specific representation is valid
only when the property has time-reversal sym-
metry; otherwise, frequency factors also appear.
A sequence of approximations to Cy,(#) can be
arrived at in the following way. Suppose that the
autocorrelation function of the random force
| F,(t)) has a white spectrum, i.e., K,(¢)=2X,5(t)
[where 2,,() = ;° dtK,(t)]. Then K,(s)=Xx, andthis
assumption truncates the continued fraction and
thereby yields a time-correlation function in terms
of the equilibrium moments, K;(0),..., K, . 1(0),
and the constant 2,, (Which can be determined
from the known value of the relevant transport
coefficient). The following are examples of the
above procedure.

(i) Truncation at |F,()); Ry(s)=2g,

K1(0)=<U1|U,> 5

1 12
s+ (U [T}/ (s +2y) ) 12

&,,(s)=

This result is entirely equivalent to the exponen-
tial memory.
(i) Truncation at | F4()); K3, (s) =X,

K (0)=(T, | 8,) LT, 10;) (U, | Uy) =4,
AORIUALAY (13)
Cyy(s)=1/s WU U/ s+8Y/s+2 .

This is equivalent to having a memory function
Kyy(s)=(U; | Uy)/s + 83/s 425 . (14)

These approximations will be tested against mo-
lecular dynamic results in a later section.

The classical autocorrelation function Cy;(¢) and
its corresponding memory function K;,(¢) are real

even functions of the time, and can consequently
be expanded in an even power series,

= (—1) n
C”(t) ?O(Zn)! 72ntz )

(15)

K”(t) 2 I-LGtz"

(2n)'

where 7,,=( (i £)'U,|G2)'U,) =(U;”| UMY
Han=(Anl 4y, (16)

where | 4,) = [i(1 - P)2]"| i2U,).

It should also be noted that the power spectra of

C;;(¢) and K,,(2),

Gylw)=(1/2m) [  dtemetc,, () ,
(17)

=(1/2n) [ dt e K, (1)

are even functions of w and have the additional
property that

Ly(w)

’

f_::’dw WG (W)=, ,
o (18)
Lao dw 0™ Ly (@) = fgy -

These are called sum rules or moments of the
frequency spectrum. The first few moments are

%=1, Ho=(U,| T3y ,

‘)’z=<[71|U.1) ’ te=( i},[i},)—(f],'l},)z,
RALAS we=(UP Uy (0,1 T,)* (19)
76:<Ul(3)'U(13)> ’ —2(&,‘5’;)((),“},) .

There is a relation between the moments of G;;
and L;,;

Ho=72

2
Ho=Y4— V2,

Hg=VYg— 2‘)’4’)’2""}’2 ’

. (20)
Note that u,, depends on v ,, ., and ¥’s of lower
index.

Consider the vectors |a) and |B) .
to the Schwartz inequality,

Kal|py|<Kala)Xp|s)y /2.
Let

lay = |0, |8) = e't-2;

According to

Then we have
|, ()| <(U, | Uy) (21)

Thus, the memory function is bounded above and
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below by its initial value.
A complex function of the time C(¢#) is called pos-
itive definite if and only if

n
27 2,0(t;=1)z5>0
Bk=1
holds for every choice of the finitely many real
numbers £, ..., f, and complex numbers z,, ..., 2,.
According to Bochner’s theorem, '® a continuous
function F(f) is the characteristic function of a
probability distribution W(w), if and only if F(#) is
continuous, positive definite, and F(0)=1.
Thus if F(#) satisfies the conditions of Bochner’s
theorem, we have

F)=["7 dw &' W(w)

where W(w) is a probability distribution of the ran-
dom variable w.

We have shown elsewhere!” that the time-corre-
lation function C,;(#) and the corresponding normal-
ized memory function K,,(t)=K,,(t)/K;,(0) both
satisfy the conditions of Bochner’s theorem and
may thus be regarded as characteristic functions
of probability distributions. From Eq. (17) we
see by Fourier inversion that

Cc,(= f_:odw Gylw) etoh,
Izn(t)=f_:°de”(w) etet, (22)

Pyy(w) =L,,(w)/K,,(0) .

Thus we see that the power spectra may be re-
garded as probability distributions of the random
variable w. Moreover from the sum rules we can
find the moments of these distributions in terms of
equilibrium averages. From Eqgs. (19) and (22) we
have -

(Wmyg = f_: dw W Gy (@)= ¥ 4y
i (23)
(") p= f_; dw WP Pyy(w) = pha,/ kg -

This theorem also implies that
G, (w)=0, P,(w)=0 (24)

and, thus, contains within it the Wiener-Khinchin
theorem.

It is often a very complicated problem to com-
pute these power spectra or the corresponding
correlation functions. Consequently, functional
forms are usually adopted. There nevertheless
exists an approximate method for finding P,,(w),
based on information theory. For this purpose
we define an information measure or “entropy”
measure of the distribution as

S[Py(@)]= = [7 dw Py (w) InPy; (w)

according to information theory, *® if a certain set
of moments of P;;(w) are known; then the optimum
P,;(w) is that which maximizes S[P;;(w)] subject to
the moment constraints. Suppose, for example,
that we only know the first two moments

(@%=1, (w?)=uz/ko.
Then we must find P,,(w) such that
8S[Py(w)]=-8/"" dw P;y(w) InP,,(w) =0,
and
5.1 dw Py (w)=0, éf_::dw w?Py(w)=0

are satisfied. This problem is trivial to solve us-
ing Lagrange multipliers. P;;(w) turns out to be

Ppy(w) = (1y/2m )2 04" Pz (25)

On Fourier inversion [see Eq. (22)], we have

Kll(t)=Kll(0)I}”(t)=(L.,’|vl>
% e-(!’/z)((ffllfl',)/(ﬂ,lﬁ,)-(r},lﬁ,))’tz . (26)

This approximation turns out to be very useful.
Higher moments could have been included to give,
hopefully, a better approximation to the memory
function. Such approximate memory functions are
not only useful in determining the detailed behavior of
time-correlation functions, but also give ap-
proximate transport coefficients in terms of equi-
librium moments. For example, let L be a trans-
port coefficient determined by C,,(#):

L [, dt Cyyt);

L can also be written in terms of the memory func-
tion, i.e.,

L'« fo “dt K, (H) <3Py (w=0) .

We see that in the two-moment information-theory
approximation,

L ac(pg/8mpg) 2

This shows at once the utility and weakness of this
approximation. It would be nice if we could use

the known transport coefficient in our optimization
procedure but we have not yet found a way to do this,

III. EXPERIMENTAL CORRELATION AND MEMORY
FUNCTIONS

In Sec. II it was shown that properties like V,
.-I., -ﬁ, and e‘g' # obey generalized Langevin equa~
tions. Consequently, if the “random forces” cor-
responding to each of these properties are assumed
to have white spectra it follows that their respec~
tive correlation and memory functions defined in
Table II are given by:
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TABLE II.

The dynamical variables V J u, and R are defined in Table 1.
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The variables whlch appear here for the

first time are 3 is the c.m. acceleration, A is d3/dt, N is the torque about the c.m., N = dN/dt, Iis the moment of

inertia, and Kis an arbitrary vector.

Time-correlation

Time expansion of correlation function

Time expansion of corresponding memory

function [Egs. (15) and (16)] [Egs. (15) and (16)]
_ o vy 24a®) 1,446 (e <a2>> <a2>}
Vo= TS @)= <2> 2\ ]
_ Q-3 2AND) L ) N% e[ )2
Al(t) (J2> t (J2> 4t (J1> KJ(t) <J2> 2 <J2 (J2 +
2 4 2 2 2y 2 2
Dy = G0) T ’; %+ﬁ—,(%—+ %V¥>+ A (LL M)+
N 32 (Ch
Dy() = (P,(T(0)* T (1)) -5 <12 ) (?ﬂz #)th- ..
- - - 2y 42 4 2 2 2
Fy(R, 0= (K RO l_KZX%%L“LE{ZF <(1fz)2K4+(a2)KZ)+°" By (t) = K %l_%(%<02>2K4+<_a3.2K2>+...
X <e”-{' ﬁm) . '
W(t) = e-!t/m’ K, (t)=(t /M)5(8) particular memory functions as representing a
e/l molecule’s temporal memory of its interactions.
Ay(t)=ert T K, ()= £R0(1) , However, in the case of the dipolar autocorrelation
D,(1) = e"2PR!, Kp(#)=2Dg(t) , function D,(#), this interpretation is not so readily
-6 t apparent. That is, both the dipolar autocorrelation
Dy(t)=e™" function and its memory will decay in the absence
FS(K £) = -x Dt & (1) =K*D5(p) , of external torques. This decay is only due to the

where £ and £; are the translational and rotational
friction coefficients, Dyis the rotational diffusion
coefficient, and D is the translational diffusion
coefficient. Moreover, &, £, Dy, and D are often
related to the hydrodynamic properties of the sys-
tem through phenomenological relations like
Stokes’ Law.

In most cases the assumption of a random force
with a white spectrum is completely wrong. We
already have an indication of this from the short-
time expansions in Table II which indicate a % de-
pendence whereas the exponential gives a |#| de-
pendence at short time. Moreover, the molecular-
dynamics calculations indicate gross departures
from simple exponentials.

In this section we examine the structure of the
above time-correlation functions and memories and
compare them with the “experimental” results of
two molecular-dynamic simulations discussed in
the Appendix. In addition, we compare these “ex-
perimental” functions with the simple theories
presented in Sec. II.

In Table IIthe explicit short-time expansions of
the relevant time-correlation and memory functions
are presented. Note that the time dependences of
¥(t) and A,(¢) are determined only by interactions
between a molecule and its environment. That is,
in the absence of torques and forces these functions
are unity for all time and their memories are zero.
There is some justification, then, for viewing these

fact that there is a distribution of rotational fre-
quencies w for each molecule in the gas phase.
particular, we have for a gas of rigid rotors,

(Q(0) -U(t)) o= f, dJ PW) cos[Jt/1],
where P(J) is the probability distribution for the
magnitude of the angular momentum. The decay
of this function as well as the results of the Stock-
mayer simulation of carbon monoxide is presented
in Fig. 1. Note that the gas phase and Stockmayer
results are practically identical which indicates
that this potential with the small dipole moment of
CO is of little importance in rotational relaxation.
Note further that for the dipolar correlation func-
tion: (a) The coefficientof the #2 term, KT/I, de-
pends only on the temperature and a molecule’s
moment of inertia. Therefore, the dipolar cor-
relation functions from both of the simulations
should have the same initial curvature. (b) Mo-
lecular interactions enter in the #* term which is
positive. Therefore interactions will delay the
decay of the gas-phase function. These points are all
illustrated in Figs. 1 and 2, That is, the dipolar
correlation functions all have the same initial cur-
vature and the function from the modified Stock-
mayer simulation which has a substantial angular-
dependent potential decays slower than the gas-
phase function. The memory functions for the
Stockmayer and modified Stockmayer simulations
are presented in Fig, 3 as well as the angular-
momentum autocorrelation function from this lat-

In
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o <P (§(0)-T(1)> FOR CO GAS AT 68°K

- o <PRy(lie)U(1)> FOR CO GAS AT 68°K

i <P, (5 (o) u(1)> FROM STOCKMAYER
Ak <Py(u(0)-U (1) FROM STOCKMAYER

AUTOCORRELATION FUNCTIONS

1 (in 1073 sec)
FIG. 1. €U (0)“Tu(®)) and (P, T (0) *{ (#)) in the gas
phase and in the liquid phase using the Stockmayer
potential.

ter simulation. The memory for the gas-phase

or Stockmayer dipolar function decays monotoni-
cally and is positive for the 0 <¢<10"*2gec. On the
other hand, the modified Stockmayer memory de-
cays in an entirely different fashion. It goes neg-
ative in ~2%107*® sec and is approximately equal
to the angular-momentum function for this simula-
tion. This is a very important observation because
it presents the possibility of obtaining approximate
angular-momentum functions from IR band-shape
studies. From Table II we see that the decay of
K(t)/Kp(0) will be dominated initially at least by
molecular interactions, provided (N?) I2/J?)%>1,
This is actually not a difficult criterion to satisfy.
In the modified Stockmayer simulation this ratio
is ~9. 8 and experimentally this ratio is ~4.5 for
liquid carbon monoxide at 78 °K. There are prob-
ably other physical systems for which this ratio is
much larger. In the event that this criterion is

L /<Pl(a(o)~i(vn>
6

<Pylul0)- G (1) >

AUTOCORRELATION FUNCTION

t (in 107" sec)

FIG. 2. ({0 T (#)) and (P, (& (0) *T (¢))) from the
modified Stockmayer simulation.
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FIG. 3. Memory functions for (i (0)*U (#)) from the
Stockmayer and modified Stockmayer simulations. A;(¢)
from the modified Stockmayer simulation is also plotted.

satisfied, K,(¢)/Kp(0)~A,(t)to terms in # at least.
In the case of the modified Stockmayer simulation
we have just seen that this approximation is actual-
ly valid throughout the interesting negative region of
of A;(¢). Hopefully, this approximation will also

be valid in real systems and the interesting neg-
ative region of A;(¢) can be verified experimentally
from IR band-shape studies by determining K ,(¢)/

K 5(0).

For completeness consider also the correlation
function D,(¢), which can be, and has been, obtained
by Fourier inversion of experimental rotation-vi-
bration Raman band shapes.® From the short-time
expansion of this function (Table II) we see that
this function will (a) have a time dependence in
the absence of interactions, (b) decay faster ini-
tially than (U(0) * U(£)), (c) decay slower in the
presence of interactions than in their absence.

The gas-phase behavior of this function is given
by

(Py(T(0): T(W)) =1 J, cos(@t/DPW) I+ .

In the limit #- the gas-phase function goes to %,
whereas in the limit #-~in a system with inter-
actions (P,(@(0)- u(t))) goes to zero. These char-
acteristicsareall illustrated in Figs. 1and 2 where
the results from the Stockmayer and modified
Stockmayer simulations and from a system of gas-
phase molecules are presented.

The time-correlation functions have already
been discussed from the point of view of the Lan-
gevin equation. We saw that the white spectrum
probably underestimates the correlations in the
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random force since the time-correlation functions
are in point of fact nonexponential. At the other
extreme we might expect a fluid to have some
characteristics of a simple Einstein solid, i.e.,

a collection of independent oscillators, eachoscil-
lating at the same frequency w;. The velocity auto-
correlation function and its memory would then
simply be $(¢)=cosw,?, K (t)=w}. In this particu-
lar instance the memory is a constant, that is, the
molecule knows about all its past interactions.

We might expect that the actual motion of a fluid
particle will have both a diffusive or Brownian
character and a solid or vibratory nature. If this
were true then the velocity autocorrelation func-
tions should decay in a damped oscillatory fashion,
This is indeed the case. All of these studies show
clearly that there is an interval of time for which
the velocity autocorrelation function is negative
(see, for example, Figs. 10 and 12). This be-
havior is also displayed in Rahman’s® results for
liquid argon and in Alder’s!® results for systems

of hard spheres at high densities, This similar
behavior is interesting since neither Rahman’s
nor Alder’s systems have internal degrees of
freedom while these systems do.

Likewise, all of these studies show clearly that
in liquids with potentials that have a strong noncen-
tral character there is an interval of time for
which the angular-momentum correlation function
is negative (see Fig. 14) whereas in liquids for
which the pair potential has a small noncentral
character this function remains positive and
changes very little over the observed time inter-
val. 2

Since these autocorrelation functions go negative,
the events leading to their decay are correlated.

In other words, a molecule must retain some
memory of its interactions for a definite time
period. This behavior is illustrated in the memory
functions for the velocity and angular-momentum
autocorrelation functions for the modified Stock-
mayer simulation, Figs. 6 and 8, and for the
velocity autocorrelation function for the Stock-
mayer simulation, Fig. 4. Note, each of the
memories discussed here was calculated using the
numerical method outlined elsewhere.!” All of
these memories quickly decay in an approximately
Gaussian fashion to almost zero in the time inter-
val 0= #2 3% 10" secand they all have small posi-
tive tails which display much slower time depen-
dences. 3X%10°!® sec is approximately the average
time that it would take a molecule to travel from
the center of its cage of nearest neighbors to the
“cage wall.”

In the following we focus our attention on approx-
imate velocity and angular-momentum autocor-
relation functions generated from postulated mem-

ory functions. The theory that partially justifies
each of these approximations has been outlined in
Sec. II, Practically all of the proposed memory
functions that we shall consider have already been
used by other authors to generate velocity autocor-
relation functions and/or power spectra which they
subsequently compared to Rahman’s data. How-
ever, it is still informative to examine (a) how
well these postulated memories reproduce our ex-
perimental memories, and (b) how well the approx-
imate autocorrelation functions generated from
these postulated memories reproduce our experi-
mental autocorrelation functions.

The specific memories and their exact functional
forms for K,(f) and K,(¢) that we shall considerare
as follows.

The exponential memory? of Berne et al. :

Ki(@t) = é—‘%l exp[ ((a >f ll)(t)dt)] ,
(27)
K3(t)= g;) eXP[ (%’:—) A.r(t')dt’>:|,

where the asterisks imply that these are postulated
memory functions.

(2) Singwi and Tosi’s® Gaussian memory which
is referred to hereafter as Gaussian memory I:

K;,"(t)=§Z—:§ exp{—[ £ <" >J zp(t')dt) ” -
" (28

KX(#) = E—Jlﬁag exp{ [ t2<§JN:)> A,(t')dt')a]} .

(3) The Gaussian memory of Berne® and Martin
and Yip?* which is referred to hereafter as Gaussian
memory I

co-G ol -4(5 -5

(N%) £ (% _(N%
603 e"p[ <<‘ﬁf> - <J2>>] :
These two memories (a) satisfy the first two mo-

ments of the exact memories (see Table IT), (b)
do not necessarily satisfy the relations

Jowwar=1)," kx)ar*

(29)
KJ(t

LA, wat=[f" K% Watl*,

(¢) are examples of memory functions whose pow-
er spectra are maximal in the information-theory
sense when their power spectra are viewed as
probability distributions (see the discussion of
Bochner’s theorem and information theory in
Sec. II).

(4) The three-parameter Mori memory:



2
_(d®) _q (o sinQt+Q cosQt >
K*(t) = <vz> e " '_ﬂ_“‘ — 5
‘ (30)
(N®Y o4 (aJsinQ,t+ Q; cosf ¢ >
*(4) = 3/ =a

KJ(t) <J2> e ~dJ QJ 3

where

1@y (@D @\
=2 @D ((Tz%‘u%)([ ‘“”dt) ’
(Ca2)/(a®) - (a?) /( v?) = a®)t/? ,
1 (J% ((N% (N * -1
%173 (V% (W'(J%)(fo AJ(t)‘“) ’

ai)l/z

Q

]

Q= ((N?)/(N? —(N®)/(JI?) -

These memories were derived by truncating Mori’s
continued fraction at Ky(s) = A; (see Sec. II). As a
consequence, these two memories both satisfy the
relations discussed in (a) and (b) of the Gaussian

II memories above.

Each of these postulated memories was used to
solve the appropriate Volterra equation for the ap-
proximate autocorrelation functions y*(#) and A¥(¢#).
The specific numerical technique used is discussed
elsewhere.!” Three different experimental autocor-
relation functions were tested, the velocity auto-
correlation function from both the Stockmayer and
modified Stockmayer simulations and the angular-
momentum autocorrelation function from the mod-
ified Stockmayer simulation. The parameters
needed for the postulated memory functions for
each of these three autocorrelation functions are
tabulated in Table III.

Consider first the postulated and experimental
memories displayed in Figs. 4-9. The exponential
memories are the poorest approximations to the
experimental memories: For short times they de-
cay too rapidly and for long times too slowly. The
differences between the short-time behavior of the
Gaussian I and the experimental memories are

TABLE III. Data for approximate memory functions.

Simulation Stockmayer Modified Stockmayer
v at 1.1503 0.9564 10713 sec
x10~13 sec
[CA; @) at 0.5710 %1013 sec
‘ %’% 0.6469 0.7406 x10%8/sec?
. x10%6/sec?
éz—z; (1.050+0.20)  (1.4067x0.12) x10%%/sec?
x10%2/sect
N
%ﬁ? 1.2932x10%/sec?
k)
7 (3.3249 +0.20) x10%%/sec?
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1.0

Numerical Solution to
Volterra Equation

Exponential Memory

Gaussion Memory I

K(t)/ K(o)
FN

Time t in IO-Issec

FIG. 4. Memory functions for ¥ (#) from the Stockmayer
simulation. The approximate memories are the exponen-
tial and Gaussian I memories.

quite dependent on the magnitude of the positive
tails present in these latter memories: If the tails
are large, then the differences are large. To some
extent this is also true of the three-parameter
Mori memories. Note that these latter memories
also go negative near ~3x10™!® sec while none of
the other memories do. The Gaussian II memories

1.0
= Numerical Solution to
8k Volterra Equation
W @ Gaussian Memory II
6 * Mori's 3 Parameter
Memory
s [\«
x
< 4r
< [ .
2+
- *
o . *
* * x * *
-1 1 1 1 1 1 1 1 1 1
0 5 10

. X -3
Time t in 10 sec

FIG. 5. Memory function for ¢ (#) from the Stock-
mayer simulation. The approximate memories are
Gaussian II and Mori’s three-parameter memories.
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.
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FIG. 6. Memory function for ¥ (¢) from the modified
Stockmayer simulation. The approximate memories
are the exponential and Gaussian I memories.

are excellent approximations to the short-time be-
havior of the experimental memories. Note further
that none of the approximate memories takes into
account the presence of the tails in the experimen-
tal memories.

Consider next the experimental and approximate
autocorrelation functions displayed in Figs. 10-15.

1.0
8k —— Numerical Solution to
Volterra Equation
o \x o Gaussian Memory II

61 * Mori's 3 Parameter
- L Memory
A

*
< a4t
< F
*
2k
*
*
0 TR s ® E20 ® o—e—s
- | 1 1 1 1 1 1 1 1 il
0 5 10
. . -13
Time t in 10 sec
FIG., 7. Memory functions for ¢ (¢) from the modi-

fied Stockmayer simulation. The approximate memories
are the Gaussian II and Mori’ s three-parameter memo-

ries.

Time t in IO.'3sec

FIG. 8. Memory functions for A ;(¢) from the mod-
ified Stockmayer simulation. The approximate memo-
ries are the exponential and Gaussian I memories.

All of the approximate autocorrelation furctions
are better than the truncated moment expansions

in representing the experimental correlation func-
tions (see Table II and Figs. 11, 13, and 15). The
Gaussian II autocorrelation functions approximate
both the long- and short-time dependences of the
experimental autocorrelations better than the func-
tions from either of the other three memory forms.

1.0

8F ~— Numerical Solution to
Volterra Equation

e Gaussian Memory II

S .6f * Mori's 3 Parameter
<’ Memory
~ -
= - *
< 4
*
2k
- ¥*
Y — %
- ‘ 1 1 1 1 1 1 L 1 1
¢} 5 10
. . -3
Time t in 10 sec
FIG. 9. Memory functions for A;(¢) from the modified

Stockmayer simulation. The approximate memories are
the Gaussian II and Mori’s three-parameter memories.
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FIG. 10. Approximate velocity autocorrelation func- b in units of 10 “sec

tions from the Stockmayer simulation using the exponen- FIG. 12. Approximate velocity autocorrelation func-
tial and Gaussian I memories. tions from the modified Stockmayer simulation using the
exponential and Gaussian I memories.
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FIG. 11. Approximate velocity autocorrelation func- FIG. 13. Approximate velocity autocorrelation func-
tions from the Stockmayer simulation using the truncated tions from the modified Stockmayer simulation using the
moment expansion of ¥(#), and the Gaussian II and Mori’s truncated moment expansion of §(¢), and the Gaussian

three-parameter memories. II and Mori’s three-parameter memories.
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8} —_ AJH) From Simulation

L e A_(t) From Exponential
Memory
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FIG. 14. Approximate angular-momentum autocorrel-
ation function from the modified Stockmayer simulation
using the exponential and Gaussian I memories.

By comparing the Gaussian II autocorrelation func-
tions to the experimental ones, we can get some
idea of how the tails or long-time behavior of the
experimental memories affect their autocorrela-
tion functions. K,(¢), from the modified Stockmayer
simulation, has the largest tail. From Fig. 13 we
see that this tail primarily delays §(¢)’s approach
to zero. On the other hand, the tails from the
other two experimental memories seem to have
very little effect on their correlation functions.
This is not quite true when one compares J,"A(t)dt
and J,"y*(#)d! for the correlation functions gener-
ated from the Gaussian II memories to the appro-
priate experimental values presented in Table IIL
(a) For the Stockmayer simulation we have

S ke ae~1.22x10" sec,
while
[ w0 de~1.15%x107 sec.
(b) For the modified Stockmayer simulation we have
STt dt~1.16x10™ sec,
while
J v at~0.96x107° sec,
ST A3 at~0.70x107% sec,

Ino

while
ST A0 dt~0.57x10™ sec.

In each case the integral of the approximate corre-
lation function is larger than the integral of the
experimental function. Also, the difference be-
tween the integral of an approximate and the inte-
gral of an experimental function is proportional to
the magnitude of the long-time behavior of the cor-
responding experimental memory. In these three
examples the neglect of the tail in the experimental
memory functions leads to a maximum error of
~23% in the integral of the resulting approximate
autocorrelation function.

We conclude the following from the above discus<
sion: (1) The experimental memories for our ve-
locity and angular-momentum autocorrelation func-
tions decay initially to approximately zero in a
Gaussian fashion. (2) This initial decay can be ad-
equately approximated by knowing the 2nd and 4th
moments of the corresponding autocorrelation func-
tions. (3) The correlation function generated from
this approximate memory gives a good approxima-
tion to the exact correlation function at least
through this latter function’s first minimum.

We shall now briefly examine the structure of

1.0
——A,(t) From Simulation

o Ay(t) From Gaussian
Memory II

<N%> 2

oA, (=1- + '

2 <42

02
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< o TN * * %
—— v -
* *
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=2
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*
_'4 1 1 %l 1 1 1 1 1 1
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FIG. 15. Approximate angular-momentum autocorrela-
tion from the modified Stockmayer simulation using the
truncated moment expansion of A;(¢), and the Gaussian
II and Mori’s three-parameter memories.
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our CO fluids in terms of the four static pair cor-
relation functions g.....(7), &c.c?), £col?), and
Zo-07). These functions are essentially general-
izations of the radial distribution function for mon-
atomic fluids and are defined as follows. (1)
&c.m(7): Suppose one molecule’s c.m. system is lo-
cated at the origin; then g, ., (») is proportional to
the probability of finding another molecule’s c. m. a
distance 7 away from the first one. (2) gc.c(?):
Suppose a carbon atom is located at the origin; then
Zc.c(¥) is proportional to the probability of finding
another carbon atom a distance » away. (3)
Zc-o(): Suppose a carbon (oxygen) atom is located at
the origin; then g¢_o(#) is proportional to the prob-
ability of finding an oxygen (carbon) atom a distance
v away. (4) go-0(7): Suppose an oxygen atom is
located at the origin; then go_o(7) is proportional to
the probability of finding another oxygen atom a

987

distance 7 away.

These four functions from the Stockmayer and
modified Stockmayer simulations of CO are pre-
sented in Figs. 16-19. Consider first the c. m.
functions. These functions for the two simulations
are almost identical and look very much like the
radial distribution functions one obtains from x-
ray diffraction studies of monatomic liquids such
as argon. There is a strong peak at ~ 3. 9 A which
represents the locations of a molecule’s first-
nearest neighbors. The total number of molecules
under this first peak corresponds to ~ 6 first-near-
est neighbors for each molecule. There are also
two less intense peaks which represent the loca-
tions of a molecule’s second- and third-nearest
neighbors.

The three atomic-pair correlation functions from
the Stockmayer simulations are similar to g, . (*)

2.0

9..0(N

3.0

CARBON - OXYGEN PAIR CORRELATION
FUNCTION FOR CARBON AND OXYGEN
ON DIFFERENT MOLECULES

CENTER OF MASS PAIR CORRELATION
FUNCTION

FIG. 16. The c. m. and carbon-
oxygen pair-correlation functions
from the Stockmayer simulation.
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FIG. 17. The oxygen-oxygen and
carbon-carbon pair-correlation func-
tions from the Stockmayer simula-

tion.
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except that the positions of the first-, second-, and
third-nearest neighbors are not so clearly defined;
the peaks in the atomic-pair correlation functions
are broader and lower than the corresponding peaks
in g..m.(r). Note that the atoms on two different
molecules can move closer together than their
c.m. . Thatis, g..n () is zero for 73 3.2 A while
gc-c() is zero for 7% 2.2 A, These atomic-pair
correlation functions seem to indicate that the CO
molecules in the Stockmayer simulation are, on the
average, randomly oriented with respect to each
other.

The three atomic-pair correlation functions from
the modified Stockmayer simulation are similar to
the corresponding functions from the Stockmayer
simulation except for an asymmetric splitting of
the first-nearest-neighbor peak in these former
functions. This splitting indicates that, on the
average, two molecules which are separated by
approximately the first-nearest-neighbor distance

are not randomly oriented with respect to each
other. That is, there are preferred relative ori-
entations for molecules from this simulation.

One can get a rough estimate of what these pre-
ferred orientations are by looking at the most
probable orientations for two molecules in the gas
phase. There the probability of finding two mole-
cules in a particular orientational configuration
(R, 6y, 05, ¢) is simply proportional to the Boltz-
mann factor exp[- BV(R, 6;, 6,, $)], where V is
the orientation-dependent potential of interaction
between the two molecules. The most probable
orientation then corresponds to the minimum of V,
V1, and the least probable corresponds to the
maximum of V, Vy. However, if f(Vy-V,)<1,
then no particular orientation will be favored and
the molecules will be essentially randomly ori-
ented with respect to one another. Suppose we fix
R at 3.9 ﬁ, the first-nearest-neighbor distance
for the c. m. of two molecules in our liquids, and
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look for the maxima and minima of the angular-de-
pendent parts of the Stockmayer and modified
Stockmayer potentials. For the dipole-dipole term
in the Stockmayer potential we find Vj=2u2/R® and
Vyp=-2u%/Rs. For CO at 68°K,B(V, - V) is ap-
proximately 0.05. Therefore, this simple analysis
predicts that the molecules from this simulation
should be essentially randomly oriented with re-
spect to each other.

Suppose we assume that the quadrupole-quadru-
pole interaction is the dominant term in the angu-
lar part of the modified Stockmayer potential.
Then for this term we find V,=6Q2%/R% and V,
=-3Q%/R®. For CO at 68°K,B(Vy~ V,) is approxi-
mately 6. Therefore, configurations correspond-
ing to V; should be favored relative to those cor-
responding to V4. There are four equally prob-
able configurations for V. If we assume that the

most probable distance between the c.m. of two
molecules is 3.9 A and if we assume that the most
probable configurations for two molecules are
those corresponding to V, then the atomic-pair
correlation functions should have two peaks of the
same height in the neighborhood of 3.9 A: one at
~3.4 A and one at ~4. 4 A. Therefore, the above
simple analysis accounts for the locations of the
first two peaks in the atomic-pair correlation func-
tions from the modified Stockmayer simulation but
it does not account for their relative intensities.
We shall now discuss the three Van Hove self-
correlation functions obtained from our CO simu-
lations. These functions are defined as follows.
(1) Gg(r,t) is the probability that the ¢c.m. of a
molecule moves a distance 7 in time ¢, given that
it was at the origin at £=0. (2) GS(7,?) is the
probability that the carbon atom on a given mole-
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FIG. 19. The oxygen-oxygen and
carbon-carbon pair-correlation func-
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from the modified Stockmayer simu-
lation.

cule moves a distance 7 in time #, given that it
was at the origin at £=0. (3) GQ(r, 1) is the prob-
ability that the oxygen atom on a given molecule
moves a distance 7 in time ¢, given that it was at
the origin at =0.

GS(r,t)and GS(r, t) determine the incoherent dif-
ferential scattering cross section for slow neutrons
from CO through a weighted sum of their space-
time Fourier transforms. Each of the functions is
normalized to unity when integrated over all space,
i.e.,

ar [*Gylr, tyrPdr=1.

The mean-square displacement of the c.m. of an
atom or a molecule is given by the second moment
of the appropriate self -correlation function. For
example, tpe mean-square displacement of the
c.m., ([AR,n (6)F), is given by

(31)

4 [ Glr, D7t dr= (R em T (32)

where
Aﬁ Coem. (t) = ﬁc.m.(t) ——ﬁ'c.m.(o) .

Suppose we are given the mean-square displace-
ment of the c. m. of an atom or of a molecule.
Then, we have shown elsewhere that we can use
information theory to develop an approximation for
the corresponding Van Hove function. We first de-
fined the information entropy of Gs(r,t), S[Gs(7,t)],
as

S[Gs(r, 1) ]=-4n fo "G, 1) InGg(r, ) dr .

We then maximized S[G (7, ) | subject to the con-
straints (31) and (32). We found that G(7, ¢) is then
given by

Gs(r, 1) =[aW@) ]2 exp[ - ¥/ W(Q@)] , (33)
where

W(t) = 2 (AR, () ?) .



)

This is the well-known Gaussian approximation
for G4(r,#). Vineyard® motivated the Gaussian ap-
proximation for monatomic systems when he pointed
out that Gg¢(r, f) is a Gaussian for a particle which
is moving in a gas, or diffusing according to the
simple diffusion equation, or vibrating in an har-
monic lattice. Dasannacharya and Rao® have de-
termined G4(r, ) experimentally for liquid argon
by Fourier inversion of their incoherent differen-
tial scattering cross sections for slow neutrons.
They found that, within experimental error, Gg(r, )
is also a Gaussian in liquid argon. Janik and Ko-
walska?” have suggested that the Gaussian approxi-
mation might also be extended to systems with in-
ternal degrees of freedom. However, Rahman’s
molecular-dynamics studies of liquid argon indicate
that G4(r,#) is not a Gaussian except for short and
long times. We also find non-Gaussian corrections
to our Van Hove functions, but before discussing
these corrections it is informative to examine the
Gaussian approximation further.

If one wanted to predict slow-neutron incoherent

scattering from CO, then, in the Gaussian approx-
imation, all one would need would be the mean-
square displacements of the carbon and oxygen
atoms, i.e., ((ARc(®)])?) and ((ARo(1)]?), respec-
tively. These two functions depend in general on
both the average translational and rotational be-
havior of a molecule, as well as translational-ro-
totional coupling. For example, if we express

ﬁc and R o in relative and c.m. coordinates then
it is easy to show

([Belt) 1) = (AR, . (0 ) + 2 Mo 7/M)
X (AR, (1) - AL(E))
+2(Mo7/M)P1L = (1(0) - L)1,
(ARo(t) P) = (AR .. () ) = (2Mc7/M)
X (AR g, () - AL(D))
+2(MF/M)?L - {(11(0)- £())T

(34)

where II is a unit vector pointing along the inter-
nuclear axis from the oxygen atom to the carbon
a.tom,__a7 isthe equilibrium internuclear separation,
and AU (#)= () - £(0). Note that the atomic dis-
placement functions depend on the dipolar correla-
tion function. Hence, this portion of these func-
tions could be determined by IR band-shape stud-
ies. One can prove that

(AR o (DY =2(V2) [Et -t Vot at .

Therefore, the approximate velocity autocorrela-
tion functions we considered previously could be

used to generate ([AR,.,. (/) ?). In fact, Berne,®®
‘Desai and Yip® have used the exponential memory
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to generate the approximate mean-square displace-
ment of an argon atom in the liquid. Desai and
Yip® then used the Gaussian approximation to pre-
dict neutron scattering from liquid argon.

The translational-rotational coupling term
(AR,.,.()- AL()) is much more difficult to treat.
However, for homonuclear diatomic molecules
this term vanishes because of symmetry and for
the two systems we studied this term contributed
less than either the translational or rotational
terms. If we ignore the coupling term, then for
short times we have

(AR, () Y= (V2) Prte e
(AR(t) By= [(VE)+ (@KTMg /MM)] 2+ -+
(aRo(t) BY=[(VE)+ RKTM¢ /MM)]| 3+ -+ .

Since M, is greater than M. the displacement of
the carbon atom should be initially greater than
the displacement of the oxygen atom which in turn
should be greater than the displacement of the
c.m. Since 1 -(1(0)- ©(#)) is positive for ¢ >0 the
above order of displacements should persist for
all time, that is, provided the translational-rota-
tional coupling term can be neglected. In the dif-
fusion limit or, equivalently, for long times we
have

([AR,,.() PY=6Dt+C,
(AR G(t) Py=6Dt+C + 2(Mo7/M)? ,
([ARo(t) P)=6 Dt +C + 2(M 7/M)? ,

where C is a constant that allows for the fact that
a molecule in a fluid is not diffusing initially. Note
that for long times the atomic displacements should
be parallel to the ¢. m. displacement provided
again that the translational-rotational coupling
terms can be neglected. These characteristics
are all illustrated in Figs. 20 and 21 where the
atomic and c¢.m. displacement functions from the
Stockmayer and modified Stockmayer simulations
are presented. T_lze translaiional-rotational coup-
ling function 27 (AR, ,,.(£) - Au(#)) is also presented
in these figures. This coupling term is largest
for long times in the modified Stockmayer simula-
tion. The translational, rotational, and translation-
al-rotational coupling contributions to the mean-
square displacement of a carbon atom in the Stock-
mayer and modified Stockmayer simulations are
presented in Figs. 22 and 23, respectively. The
maximum contribution from the coupling term is
~3% in the Stockmayer simulation and ~8% in the
modified Stockmayer simulation. Initially, the
translational and rotational motions contribute ap-
proximately equally to the carbon atom’s total dis-
placement. In the modified Stockmayer simulation
which represents hindered rotational motion, the
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FIG. 20. The atomic displacement functions from the
Stockmayer simulation.

translational contribution is larger than the rota-
tional contribution for all times. Infactfor #5102 sec
the translational contribution is ~4 times the
rotational one. On the other hand, in the Stock-
mayer simulation which represents free rotational
motion there is a region near #=5x10"3 sec where
the rotational contribution is larger than the trans-
lational one. However, for long times the transla-
tional contribution is again larger than the rota-
tional contribution in this simulation.

We shall now discuss the non-Gaussian behavior
of our self-correlation functions. Rahman® pointed
out that it is convenient to do this by introducing
the coefficients C y(f) which for Gg(r, ¢) are defined
as

= 2 o
(R (N> 4
o <(aRe (102> 00°
o
- 2 o
sk s {(ARy (‘r)) > ) o°°° -
* =20 CBRy (1) - BUIHY °°o° -._.--

CORRELATION FUNCTION (in &%)
n
T

0 5 10 s s 20 25
t (in 107" sec)

FIG. 21. The atomic displacement functions from the
modified Stockmayer simulation.
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FIG. 22. Percent Contributions to the mean-square

displacement of the carbon atom in the Stockmayer
simulation.

@ y(t) = [([ARe.m. O P¥)/Cy (ARe.m. () B)¥] -1,

N=2,3,4,
where C y is given by

Cry=1%X8X%... X(2N+1)/3",

The coefficients for G3(r, #) and G§(r, t) are defined
in a similar manner. If a self-correlation func-
tion is a Gaussian then the corresponding coeffi-
cients a,(¢) will vanish. For example, for short
times we have

(AR () FY)= (V2 22F (V2N )=C (V)Y .
Therefore, for short times these coefficients for
G g(r, t) should vanish.

These coefficients are strongly dependent on the
number of molecules used in the simulations. For
example, Figs. 24 and 25 present the coefficients

80 °°°O°°°°°°°°°°°°°°°°°°°000000000
000°°
- 00°
00 - 2
° o 100 (ARG N>
60 o] T
T o bR (12>
Ll
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= % (AR (12D
gaol . " . N
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L T, <R (E>
..'aooao.....‘.
20} .-....o.-o--o... oo
0 1 ] <_—r—“"—_—’r’———__——_
0 5 10 55 20 25
t (in 10 "sec)
FIG. 23. Percent contributions to the mean-square

displacement of the carbon atom in the modified Stock-
mayer simulation.
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2 form of G4(F,#). In scattering from isotropic sys-
Carbon Atom ay(t) tems such as liquids, F(Kk, ) depends only on the
ag(t) magnitude of k, i.e., 2. For such systems, Fg
' :zm may also be written as
T Flk,t)=(4n/k) [ rsinkr Gs(r, Dar .
o
v Fg(k,t) from the modified Stockmayer simulation
-5 : ; : : for k equal 2 A™ and 4 A™! is presented in Fig. 27.
3 These functions were evaluated using Rahman and
Nijboer’s® series expansion for Fg(k, ) which we
com. ay(t) also discuss elsewhere.!” The normalized memory
2k functions for these two intermediate scattering
= functions are presented in Fig. 28. Note that al-
5 though the two intermediate scattering functions
- are quite different, their normalized memories
resemble the velocity autocorrelation for this sim-
ulation (see Fig. 13). To second order in k it can
0 be shown that
2 &,(t)=5k*(V2)o(t) +6(k*) .
Oxygen Afom (1) Thus, for sufficiently small values of 2, we have
2
L CARBON ATOM a, (1)
2t
-5 1 1 1 1 8
~o 5 10 15 20 25
t(in 1073 sec)
FIG.24. Non-Gaussian behavior of G{¥ (#,¢) in the ° §
Stockmayer simulation using 216 molecules. 5 . ) - ] R . , . )
from the Stockmayer simulation using 216 and 512 »
molecules, respectively. The corresponding coef-
ficients from the 216 and 512 molecule systems o cm. ay (1) a, (1)
differ substantially from each other. Therefore, - a3 ‘:)
we feel that these coefficients from our simula- :z I+ %2 (1)
tions are only qualitative indications of the non-
Gaussian behavior of our self-correlation functions. B
Figure 26 presents the results from the modified o
Stockmayer simulation. Comparing the results for
the two simulations we see: (1) None of the self- -5 R S T S S S S SR
correlation functions is a Gaussian for all time.
(2) The self-correlation functions from the Stock- 2
mayer simulation are closer to Gaussians than
those from the modified Stockmayer simulation. B OXYGEN ATOM ay(h) a, (1)
(3) The modified Stockmayer coefficients are al-
ways positive in contrast to the Stockmayer coeffi-
cients. (4) The Stockmayer coefficients for Gg(r, #)
do not vanish for short times.
Finally we conclude this section with a few re-
marks on the c.m. intermediate scattering func- .
tion Fg(k,#). Fg(K,¢)is defined in Table I. Note B o e T e 3,
that Gg(7,¢) is formally defined by 1 tin 16"%sec)
Gs(r,2)= (8(F ~[R,. . (¢) - Rem (0)])) . FIG. 25. Non-Gaussian behavior of G4 (7, ¢) in the

Therefore, F4(K,?) is the spatial Fourier trans-

Stockmayer simulation using 512 molecules.
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FIG. 26. Non-Gaussian behavior of G;")(7,#) in the
modified Stockmayer simulation.

& ()= 3R2VE)P() .

To get some idea of the values of & for which this
expansion is valid look at the second term in the
short-time expansion of &,(#). Note that the term
in k* can be neglected provided

EACVAUAD e

In the particular case of the modified Stockmayer
simulation the %£* term can be neglected provided
k<4 A", The interesting feature of this approxi-

1.0

Fg (k,1)

oo,
O.J
o L1 1 1 1 1 L [

[0} 5 10
t in 10 sec

FIG. 27. Intermediate scattering functions for the
c. m. from the modified Stockmayer'simulation.

1.0

o 5 10
tin 10 B sec

FIG. 28. Intermediate scattering memory functions
for the c¢. m. from the modified Stockmayer simulation.

mate memory function is that it will lead to a non-
Gaussian Gg(7,¢) and thus may provide an approx-
imate method for determining G4(r, ) for inter-
mediate values of 2 when it is known that G4(7, ¢)
deviates from a Gaussian. Note that in the Gaus-
sian approximation, Fg(k,t) is given simply by

52 B8 2
Fs(k,t)=e k“ {LAR ¢, 1, (£)1°) A

The results of using this approximate memory to
compute approximate intermediate scattering func-
tions are presented in Fig. 29 along with the cor-
responding intermediate scattering functions de-
rived from the Gaussian approximation and experi-
ment. Note that the functions derived from the
above approximate memory are better than those
derived from the Gaussian approximation for in-
termediate values of k.
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APPENDIX: MOLECULAR DYNAMICS

The molecular -dynamics calculations were car -
ried out in a manner similar to that used by Rah-
man® in his original study of liquid argon and are
described in detail elsewhere. 1"'?* We shall pri-
marily be interested in the results from two simu-
lations of liquid carbon monoxide. The first which
we shall hereafter refer to as the Stockmayer sim-
ulation used a Lennard-Jones plus dipole-dipole
pair potential. The small dipole moment of carbon
monoxide makes the orientational-dependent part of
this potential so weak that molecules from this
simulation rotate essentially freely, despite the
fact that this calculation was done at a liquid densi-
ty. The second which we shall hereafter refer to as
the modified Stockmayer simulation used a Len-
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FIG. 29. Intermediate scattering functions for the c. m. from the modified Stockmayer simulation.

-13
t IN 10 sec

The approximate

scattering functions were calculated using the Gaussian approximation and from the approximation that the memory for

F,(k,t) is given by % &2 (»®) u(¢).

nard Jones plus dipole-dipole, quadrupole-dipole,
and quadrupole-quadrupole pair potential. The re-
sults from this simulation indicate that this pair
potential is slightly stronger than the potential of
interaction in real liquid carbon monoxide. For
example, the mean-square torque about the c. m.
of a molecule is ~36 x 102® (dyncm)? for this sim-
ulation while the experimental value is

~21 X 10"®*(dyn cm)?.

Both of these simulations were done with 216 and
512 molecules. However, only the results from
the simulations using 512 molecules are presented
here. Varying the number of molecules used al-
lows one to examine the effects of the periodic
boundary conditions on the results.

For the correlation functions discussed here,
the primary effect of increasing the number of
molecules is to reduce fluctuations in these func-
tions that occur for #$4x10™" sec. This effect on
the velocity autocorrelation function ¥(¢) for the
Stockmayer simulation is illustrated in Fig. 30.

We have also tried to assess the effects of in-
tegrating Hamilton’s equations numerically. This
is rather a difficult task since the exact solutions
to these equations are not known. However, we
can use the observed conservation of total energy
and linear momentum as an indication that the
equations are being integrated properly. For the
Stockmayer and modified Stockmayer simulations
using 512 molecules the total energy and linear mo-
mentum were conserved to ~0.05 and ~0. 0006%,

respectively, over our entire range of integration.

Correlation functions from molecular-dynamics
calculations represent time averages over a finite
time interval. However, they are assumed to rep-
resent time averages over an infinite interval. For
a discussion of the errors that can arise from mak-
ing such an assumption see Ailawadi®! and Ailawadi
et al.*

1.0
L — yi) N=512
8f * yiIN:=216
- i y (1) t Standard
” Deviation of (1)
& 6 for N=216
S
c
s L
'S
8 4f
5
2 -
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3
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0 fI N I ° T o T T
v . l
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-13
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FIG. 30. ¥ (t) from the Stockmayer simulation using

216 and 512 molecules.
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Quantum-Mechanical Second Virial Coefficient at High Temperatures
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An expression is obtained for the quantum-mechanical second virial coefficient in the form
of an inverse Laplace transform of the logarithmic derivative of the Jost function. This form
is useful for the calculation of the direct part of the virial coefficient at high temperatures in
cases where the Wigner-Kirkwood expansion breaks down. Explicit calculations are presented
for hard spheres, the square-well potential, and the square-well potential with a hard core.

1. INTRODUCTION

The straightforward method of calculating the
direct part of the second virial coefficient at high
temperatures uses the Wigner-Kirkwood (WK) ex-
pansion.! This essentially is a perturbation expan-
sion of the Hamiltonian in powers of the kinetic en-
ergy and leads to an expression for the second vir-
ial coefficient as a power series in 7% However,
for a large class of potentials, the WK expansion
breaks down. This class includes all potentials
V(7) which are nondifferentiable functions of », as

well as potentials such as the exponential potential
for which higher coefficients in the WK expansion
diverge. DeWitt? has analyzed the quantum cor-
rections to the second virial coefficient for a num-
ber of these potentials and has found that they in-
volve nonanalytic forms of 7Z2. The particular case
of hard spheres has received some attention,3®
and Mohling® has also treated the case of a square-
well potential with a hard core. In these instances,
expansions in powers of 7 are obtained.

The related problem of calculating the exchange
second virial coefficient at high temperatures has



