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Free energy hysteresis errors and other problems can arise from coordinates that are only optimized to
accurately parameterize the separatrix. In this sense, an accurate separatrix is necessary but not sufficient
to ensure reaction coordinate accuracy. For diffusive dynamics we prove that maximizing the peak in the
projected transition path probability p(TP|q) is equivalent to separatrix optimization. Thus methods
based on this criterion [27] may find coordinates that accurately parameterize the separatrix, but not ear-
lier and later stages along the reaction pathway.
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1. Introduction

Many reaction rate theories and simulation methods for com-
puting rate constants assume the availability of an accurate reac-
tion coordinate [1]. Reaction coordinate error has been
thoroughly investigated in the low-to-intermediate friction regime
[2,3]. Theories that resulted from those endeavors include the var-
iational transition state theory (VTST) [2,4] and reactive flux meth-
ods for transmission coefficients [5,6]. This Letter focuses on the
high friction, or ‘diffusive’, barrier crossing regime where transmis-
sion coefficients are often too small to be calculated efficiently [6,7].
Most theories of reaction dynamics in the high friction limit also as-
sume a priori knowledge of accurate reaction coordinates or suffi-
cient components to construct an accurate reaction coordinate.
These theories have converged upon the committor probability, pB

or pfold, as the ideal reaction coordinate for systems with diffusive
dynamics [8–15]. The committor probability at a configuration x
is the probability that a trajectory initiated with Boltzmann distrib-
uted momenta from x will relax to the product state (B) rather than
to the reactant state (A). The committor probability identifies reac-
tants as points with pB = 0, products as points with pB = 1, and a
spectrum of intermediate values between. The special value
pB = 1/2 indicates a transition state. The committor probability itself
provides limited physical insight, so models that show how the
committor probability depends on intuitively meaningful physical
variables are useful [13,15–18]. Several new methods can optimize
physical models of the committor probability coordinate from
atomistic simulation data [13,16–18]. These new methods provide
a rigorous link from molecular simulations to accurate mean first
ll rights reserved.
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passage times [11,19] and low dimensional Fokker–Planck and
Smoluchowski models of the dynamics [1,20–22].

In addition to the mechanistic insights gained from linking sim-
ulations to simple dynamical models, accurate reaction coordi-
nates have practical computational advantages. Several authors
have noted that inaccurate reaction coordinates can cause hyster-
esis in computed free energy profiles [3], free energy landscapes
that are inconsistent with the dynamics [15], erroneously low acti-
vation barriers [2], and paths that do not follow the true mecha-
nism [23]. These problems can arise even when the reaction
coordinate seems obvious. For example, Bolhuis et al. [24] showed
that the Ramachandran angles which had been used in many stud-
ies of the alanine dipeptide, are inaccurate reaction coordinates.
Ma and Dinner used a pioneering neural network method to model
the committor probability and show that the reaction coordinate
includes an essential solvent component [13].

This Letter contrasts methods that optimize the reaction coordi-
nate at all stages of the reaction [13,16–18,25] from methods that
only optimize the separatrix [22,26,27]. We discuss problems that
can arise from reaction coordinates obtained by separatrix optimi-
zation methods. We review expressions for the mean and variance
of the true committor distribution on a trial isosurface. Finally, we
use these expressions to prove that maximizing the peak in the
transition path probability [22,27] is equivalent to optimizing the
separatrix.

2. Reaction coordinate and separatrix optimization methods

Committor analysis has been used to identify or validate reac-
tion coordinates in many systems [9,10,15,28–33]. We briefly re-
view committor analysis below, but first note that the expense of
the trial-and-error committor analysis procedure has recently
motivated more systematic and efficient approaches. The seminal
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advance from Ma and Dinner [13] generated a training set of pB-
estimates throughout the reaction pathway. They used a genetic
algorithm with least-squares to construct a neural network model
from thousands of candidate reaction coordinates and the training
set data. Peters, Trout, and Beckham noted that the shooting point
outcomes from transition path sampling are pB-realizations that
can be used with likelihood maximization to efficiently identify
reaction coordinates [16,17]. Borrero and Escobedo [18] extended
these ideas to use data from forward flux sampling [34] simula-
tions. The String method of Maragliano et al. [35] requires the sub-
space of all important variables as inputs, but given an acceptable
subspace the string method can provide an accurate coordinate.
Bolhuis combined the String method with likelihood maximization
to help identify the important variables [36]. Noe et al. [25] use
state-to-state transition probabilities from short trajectory data
to construct complex maps of the committor probability through-
out the reaction pathway. This and related network analysis meth-
ods [37–42] are extremely powerful when the overall pathway is a
network of parallel and in-series pathways between intermediates.
The above methods optimize the reaction coordinate at all stages:
in the early pre-organization steps, in the transition state region,
and in the late re-organization steps.

Another group of methods are based on properties of the tran-
sition state ensemble and transition paths. Antoniou and Schwartz
[26] first obtain a transition state ensemble by sampling configura-
tions with committor probabilities near pB = 1/2, and then seek the
coordinate with the narrowest distribution in the transition state
ensemble. Best and Hummer [22,27] seek the coordinate that gives
the maximum peak in p(TP|q), the projected probability of observ-
ing transition paths from a Boltzmann distributed ensemble of
points on the q-isosurface. These two methods optimize only the
parameterization of the separatrix.

A coordinate having one isosurface that accurately parameter-
izes the separatrix may still poorly describe progress at earlier
and later stages. Events before and after the separatrix are often
mechanistically important [43] so reaction coordinates that accu-
rately describe these early and late stages have advantages over
Fig. 1. Free energy surface for cage-to-vacant cage hopping of methane in a gas
hydrate [44]. The diagonal blue line indicates a dividing surface between the
acceptor cage and a shallow stable intermediate. The separatrix is the plane of
symmetry, which passes through a shallow intermediate. The diagonal blue line is a
dividing surface between the acceptor and intermediate states. (Above) Free energy
calculations using a linear coordinate gave hysteresis because after crossing the
separatrix methane can advance along the coordinate by following the black arrow.
(Below) Free energy calculations converged without hysteresis for a bipolar
coordinate that shares the same separatrix.
coordinates that are only accurate at the separatrix. Consider an
example from our work on methane diffusion by hopping from
occupied to vacant cages in clathrate hydrates [44]. Fig. 1 shows
the free energy landscape with isosurfaces of two coordinates that
were studied in our work. The linear progress coordinate and the
curvilinear bipolar coordinate [45] both give the same separatrix
by symmetry. However, free energy calculations using the linear
progress coordinate resulted in hysteresis. Hysteresis occurs be-
cause the linear progress coordinate does not follow the direction
in which the pathway leaves the stable intermediate. The curvilin-
ear bipolar coordinate does follow the path out of the intermediate
at early (pB � 0.3) and late (pB � 0.7) stages. These two coordinate
systems would appear equally acceptable for a separatrix optimi-
zation method. This example illustrates the practical difficulties
that can arise from coordinate inaccuracy even when the coordi-
nate is accurate at the separatrix.

Stable intermediates are common along protein folding path-
ways [46], so reaction coordinates from separatrix optimization
may poorly describe progress along the early and late stages of
the pathway. It may also be impossible to identify simple and
physically meaningful coordinates that describe an entire protein
folding pathway, but network analysis methods like that of Noe
et al. [25] can compute pB-values on a complex network of inter-
connected channels.

3. Improved version of committor analysis

Committor analysis was originally introduced by Du et al. [9]
and by Geissler et al. [10] to evaluate reaction coordinate error.
The analysis begins with a Boltzmann distributed sample of atom-
istic configurations on an isosurface q(x) = q for a trial coordinate
q(x). For the remainder of this manuscript, q denotes a specific va-
lue of the coordinate dependent function q(x). In our notation, q
and q(x) may or may not be equal depending on the argument x
in q(x). At each sampled configuration x, pB(x) is estimated by ini-
tiating N trajectories from x with Boltzmann distributed velocities.
The fraction of trajectories from x that commit to the product basin
provides a pB-estimate, p̂BðxÞ [15]. The pB-estimates from the Boltz-
man distribution of configurations on the isosurface are combined
into a histogram. For an accurate reaction coordinate according to
the pB-definition, the histogram for each isosurface tested will give
a distribution of pB-estimates that is sharply peaked around a char-
acteristic value for that isosurface [15]. Most studies in the litera-
ture only test for accuracy of the pB = 1/2 surface, i.e. for an
accurate parameterization of the separatrix. However, multiple
isosurfaces of q(x) can be tested to ensure an accurate model of
the committor probability at early stages, at the transition state,
and at late stages along the reaction pathway [12,13,30].

Committor analysis tests whether a single coordinate q(x) can
predict the long-time dynamics along its own q-axis, or whether
other variables are needed. For a good reaction coordinate, the initial
position along the q-axis governs the resulting distribution of positions
along the q-axis at longer times regardless of other coordinates in the
initial positions. This criterion is not specific to a separatrix, but
rather it can be applied to any isosurface of a coordinate q(x).

Peters showed how statistical error in the pB-estimation process
can be deconvoluted from the actual reaction coordinate error [47].
The result is a version of committor analysis that is quantitative,
and less expensive than the original pB-histogram test. Instead of
using highly accurate pB-estimates with N � 100 trajectories per
estimate to directly compute the committor distribution, a histo-
gram of inexpensive ðN � 100Þ estimates can be related to the dis-
tribution of exact pB-values using the binomial convolution [47]:

Hðp̂BjqÞ ¼
Z 1

0
dpBBN;pB

ðp̂BÞPðpBjqÞ: ð1Þ



Fig. 3. Beta distribution model of P(pB|q) for an isosurface q(x) = q with l = 1/2
showing different values of the variance r2.
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In Eq. (1), p̂B is an estimate of the committor probability computed
from N trajectories, pB is the actual committor probability, P(pB|q) is
the distribution of exact committor probabilities on the trial surface
q(x) = q, BN;pBðp̂BÞ is the binomial distribution with N trials and
parameter pB, and Hðp̂BjqÞ is the limiting histogram that would be
obtained from pB-estimates at an infinite set of configurations
[47]. Fig. 2 depicts the discrete histogram of pB-estimates and the
corresponding continuous distribution of true committor
probabilities.

P(pB|q) can be defined as

PðpBjqÞ ¼
Z

dxqEQ ðxjqÞd½pB � pBðxÞ� ð2Þ

where

qEQ ðxjqÞ ¼
qEQ ðxÞd½qðxÞ � q�R
dxqEQ ðxÞd½qðxÞ � q� ð3Þ

Following our convention for the difference between q and q(x), we
have similarly used pB to denote a specific value of the coordinate
dependent committor function pB(x) in Eq. (2).

Also note that configurations from the distribution qEQ(x|q)
should be sampled using a stiff restraining potential or a narrow
square-well around the desired value of q in a simulation [7]. As
explained in Frenkel and Smit, the use of a restraining potential
or a narrow delta function approximant is not equivalent to the
formal sharp surface integral over the isosurface q(x) = q [7]. The
difference was not emphasized in our earlier work, but it becomes
important in relating p(TP|q) to the distribution of committor prob-
abilities P(pB|q).

As we have shown previously [47], Eq. (1) can effectively be in-
verted by relating moments of Hðp̂BjqÞ to moments of P(pB|q):

l ¼ lH ð4Þ

and

r2 ¼ Nr2
H

N � 1
� lHð1� lHÞ

N � 1
ð5Þ

Here lH and r2
H are the mean and variance of the histogram and l

and r2 are the mean and variance of the true distribution. These are
properties of the coordinate isosurface being tested. Unlike rH and
lH, r and l are protocol-independent in the sense that they no
longer depend on the number of trajectories per pB-estimate used
in the shooting procedure [47]. Eqs. (4) and (5) thus quantify the
true distribution of pB-values on the isosurface q(x) = q as pB = l ± r.

The values of l and r can typically be computed accurately with
less than 1/10th of the trajectories used in a typical committor
analysis [47]. Fig. 3 shows a two-parameter beta distribution mod-
el of P(pB|q) with mean l = 1/2 (i.e. for a trial separatrix), and with
different values of the standard deviation r. The beta distribution
model for P(pB|q) begins to resemble a peak around l = 1/2 for
r < 0.15, thus providing a minimal standard for separatrix
accuracy.
Fig. 2. The histogram of noisy pB-estimates from an isosurface q(x) = q is a discrete
distribution. In contrast, the true distribution P(pB|q) is continuous and always
narrower than the corresponding histogram because of Eq. (1).
4. Proof that p(TP|q) peak maximization is separatrix
optimization

Hummer [48] has given the conditional probability of transition
paths after projection to a specific isosurface q(x) = q as

pðTPjqÞ ¼
Z

dxqEQ ðxjqÞpðTPjxÞ ð6Þ

where p(TP|x) is the probability that a trajectory initiated from x
with initial momenta from a Boltzmann distribution will generate
a transition path [48]. Shooting procedures can evaluate p(TP|q)
for any type of coupling to the bath modes, but for diffusive dynam-
ics p(TP|q) can be further simplified [48]. For diffusive dynamics the
destinations in forward and backward time for a trajectory initiated
at x are uncorrelated with each other, so again following Hummer
[48],

pðTPjxÞ ¼ 2pBðxÞð1� pBðxÞÞ: ð7Þ

Using Eqs. (7) and (2) in Eq. (6) gives the central result of this letter

pðTPjqÞ ¼ 2
R

dx qEQ ðxjqÞpBðxÞð1� pBðxÞÞ

¼ 2
R

dx qEQ ðxjqÞ
R 1

0 dpB pBð1� pBÞd½pB � pBðxÞ�

¼ 2
R 1

0 dpBpBð1� pBÞ
R

dx qEQ ðxjqÞd½pB � pBðxÞ�

¼ 2
R 1

0 dpBPðpBjqÞpBð1� pBÞ
¼ 2flð1� lÞ � r2g

ð8Þ

The second line of Eq. (8) again uses the convention that pB and
pB(x) refer respectively to one value of pB and to the function
pB(x) which may or may not be equal depending on the argument
x. The last two equalities use Eq. (2) and definitions from our earlier
work [47] on the committor distribution and its moments. The final
equality shows that p(TP|q) is maximized when l(1 � l) is as large
as possible and when r2 is as small as possible. Thus maximizing
p(TP|q) over coordinates q(x) and isosurfaces q is equivalent to seek-
ing an isosurface with l = 1/2 and with the narrowest possible dis-
tribution of committor probabilities. Assuming the maximum in
p(TP|q) for the optimized coordinate corresponds to an isosurface
with l = 1/2, we can estimate the committor distribution width
on the separatrix. Solving p(TP|q)max = 2(1/4 � r2) with the peak
maxima reported by Best and Hummer [22,27], we find r = 0.23
from the three-helix bundle study, and an accurate transition state
ensemble (r = 0.12) from the protein G study. These values illus-
trate the use of Eqs. (4), (5), and (8) to quantitatively compare accu-
racy of results obtained by different shooting protocols [47].

Eq. (8) shows that maximizing the peak in p(TP|q) is equivalent
to the original trial-and-error test for reaction coordinate accuracy.
However, the p(TP|q) peak maximization method can only test the
reaction coordinate at the separatrix, whereas the original commit-
tor analysis can (in principle) also test reaction coordinate accuracy
at earlier and later stages. We note that rigorous and efficient alter-
native methods are now available. These include several methods
to identify low dimensional collective variable reaction coordi-
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nates [13,16–18] and several methods that bypass the need for low
dimensional reaction coordinates [25,35–42].

5. Conclusions

Reaction coordinates that remain accurate at all stages of the
reaction pathway enable accurate models of dynamics along the
reaction pathway and free energy calculations that converge accu-
rately without hysteresis. Methods that optimize the reaction coor-
dinate only at the separatrix may identify reaction coordinates that
are inaccurate at earlier and later stages. For the purely diffusive
dynamics characteristic of protein folding and nucleation, we used
moments of the true committor distribution [47] to prove that
maximizing the peak in the transition path probability distribution
p(TP|q) is equivalent to a separatrix optimization. Thus the p(TP|q)
peak maximization method [22,27] does ensure an accurate separ-
atrix, but does not ensure an accurate reaction coordinate for ear-
lier and later stages of the reaction pathway. In systems with long
reaction pathways and many stable intermediates, coordinates ob-
tained by p(TP|q) peak maximization may result in hysteretic free
energy landscapes or inaccurate coordinate dependent diffusion
models. For these applications, alternative methods that optimize
the reaction coordinate over the entire reaction pathway [13,16–
18], or methods that circumvent the projection onto specific coor-
dinates are recommended [25,35–42].
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