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A unified memory kernel function is proposed on the basis of molecular dynamics simulations 
and comparison with experimental data. A frozen-solvent-like friction arises from the near­
neighbor solvent cage effect, while the interaction between the system and the disordered heat 
bath or "broken cage" gives rise to a white-noise friction. On short time scales, the apparent 
friction is a "series addition" of these two limits, each solute molecule experiencing either an 
intact cage or a broken cage environment. For longer time scale behavior, the solvent is able to 
evolve, and some system molecules can experience both types of environments during the 
course of their own dynamics: the effective friction for these molecules then appears as a 
"parallel addition" of the same two contributions. This leads to a memory kernel having a 
simple exponential behavior. As the time scale for the system dynamics becomes still longer, 
the cage becomes indistinguishable from the heat bath, and a purely Markoffian relaxation 
with delta-function memory kernel ensues. This unified memory kernel model has been found 
to be applicable to ultrafast chemical reaction rates and diffusion properties both in molecular 
dynamics simulations and laboratory experiments. 

I. INTRODUCTION 

Recent molecular dynamics (MD) computations, 1-4 
theoretical studies,5.6 and experimental observations' on cis­
trans isomerization have indicated that the functional form 
of the memory kernel or TDF (the time dependent friction) 
may depend on the reacting system variables, including the 
solute/solvent mass ratio and the form of the barrier poten­
tial. This dependence is a necessary consequence of nonlin­
ear couplingl~ between the "system" and the neighboring 
solvent. From a practical point of view, it is the cause in 
experimental work8 of the inability to carry over a friction 
formalism from barrierless experiments to isomerization re­
actions when a barrier is present. Methods for extending the 
linear theory of Grote and Hynes9 thus become a challenge 
for chemical reaction dynamics, since interactions in any 
real liquid, even among simple Lennard-Jones particles, are 
nonlinear. 

In the cis-trans isomerization problem, the functional 
form of the memory kernel may be vastly different for react­
ing systems with different barrier potentials.2.3 This effect is 
of maximal importance for "ultrafast" reactions when the 
barrier (or well) frequency is high in comparison with the 
relevant frequencies of the solvent motion. In such cases the 
MD results show that the TDF can be expressed as a combi­
nation of two limits: (1) a delta function, which represents 
the Brownian white-noise limit; and (2) a near constant, 
which represents the frozen solvent limit. This type of mem­
ory kernel leads to a specific form of the Grote-Hynes9 or 
(extended) Kramers equation. 3

" For many experimentally 
examined isomerization reactions having an activation bar­
rier, this model has been found to exhibit a realistic behav­
ior.' 

On the other hand, the MD simulations have shown that 
the memory kernel for barrierless systems and low solvent 
viscosities displays an exponential behavior.2 The exponen­
tial version of the memory kernel has been used frequently 
because of its mathematical simplicity and because of its rel­
evance to arownian motion theory.I~12 

The natural extension of past work is to find a generally 
valid unified form of the memory kernel that is applicable 
not only to the above two types of problems,2,3 but to inter­
mediate cases as well. This is the task of this paper (part I). 
In a forthcoming paper (part II), we propose an analytical 
model for the relevant angular velocity autocorrelation func­
tion (A V ACF). These models will then be applied to the 
discussion of reaction rates and diffusion properties. 

II. MEMORY KERNEL 

The computation of the memory function using MD 
methods has a long history starting with the elegant work of 
Berne and Harp, 13.14 and also of Levesque and Verlet. IS Ac­
cording to the TDF model of Levesque and Verlet, the fric­
tion is described by a four-parameter formulation, which is 
based on molecular dynamics simulations of a pure Len­
nard-Jones fluid. 

(1) 

The short-time Gaussian portion represents a collisional 
contribution, while the long-time portion represents a col­
lective or hydrodynamic part that ultimately leads to Stokes 
law friction acting on a macroscopic particle in the fluid. 
This model was modified by Grote, van der Zwan, and 
Hynes l6 for higher viscosity liquids, and was then applied to 
the calculation of rate constants for atom-transfer reactions. 
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An obvious shortcoming of these models, when applied 
to chemical reaction dynamics in the condensed phase, is 
that the fitting parameters no, Ao, Bo, and a o are based on 
the molecular dynamics of the pure solvent. Information is 
missing about the influence of the solute on the friction, 
which is particularly important when the solute particle is 
not too large and is very dissimilar to the solvent particle. 

In a recent paper, Straub, Borkovec, and Berne4 have 
discussed the dynamic friction on intramolecular degrees of 
freedom. With the harmonic approximation of the potential 
barrier and by constraining the reaction coordinate to either 
the well minimum or the barrier maximum, these authors 
found that the functional form of the memory kernel 
changes with increasing solvent mass. They also found that 
the friction along the reaction coordinate depends on the 
bond length. However, no explicit functionality was given. 

From a large number of MD simulations of reactant­
solvent systems,I-3 we have found that the memory kernel, 
within the reactivity period for an isomerization reaction, 
can be successfully fit to a four-parameter empirical func­
tion, 

~(t) =.!iff + @8(t) + 1ffe- at
; 

or in frequency space, 

t(s) = .!iff/s+ @ +~, 
a+s 

(2a) 

(2b) 

where .!iff, @ , 1ff, and a are positive constants, which depend 
on the relative "time scales," measured by the intrinsic ac­
celerations, of solute and solvent particles. Some examples 
are given in Figs. 1-3 corresponding to the five systems de­
scribed in Table I. As the solvent viscosity increases, .!iff in­
creases relative to @ , and, as the barrier height increases, the 
value of ~ decreases. Thus, the functional form of the fric­
tion can change completely with variations in solute/solvent 
parameters. The following special cases can arise. 

Case 1. Low barrier, .!iff = @ = 0: 

~(t) = 1ffe- at
• (3) 

This case is depicted in Figs. 1 (lower curve) and 2 (also Fig. 
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FIG. 1. Memory kernels in frequency space. The symbols represent MD 
results for system I (lower curve) and system III (upper curve). For both of 
these systems the barrier height is zero. The solid lines are best fits to the 
Laplace transform ofEq. (3) and to Eq. (2b), respectively. In all figures, 
the variables are expressed in conventional Lennard-Jones reduced units. 
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FIG. 2. Memory kernel in frequency space. The symbols represent MD re­
sults for system II. The barrier height is only 3kT, the system masses are 
equal to the solvent masses, and thus the barrier frequency (J)b is relatively 
low for this system. The solid line is a best fit using the Laplace transform of 
the "barrierless" memory kernel in Eq. (3). 

2 of Ref. 2). If the mass of the reacting system with zero 
barrier is comparable to or greater than that of solvent mole­
cules, this formalism provides a reasonable description of 
rotational diffusion. 17 In fact, Fig. 2 illustrates that when the 
reacting particle is similar in size and mass to the solvent 
particle, Eq. (3) may still be a good description of the mem­
ory kernel even though the barrier frequency does not equal 
to zero. 

Case 2. High barrier, ~ = 0: 

~(t) =.!iff + @8(t). (4) 

Equation (4) is particularly important for liquid phase iso­
merizations, having been investigated in detail in previous 
papers.2,3 Examples are depicted in Fig. 3. As the viscosity 
increases, the first term starts to dominate the second, until a 

50 200 

FIG. 3. Memory kernels infrequency space. The symbols represent MD 
results for systems IV ( X 2) (upper curve) and V (lower curve). For both 
of these nonzero barrier cases, the system masses are small compared with 
the solvent masses. Thus, the barrier frequencies {J)b are relatively high, and 
the time scale for system motions is short compared to that for solvent mo­
tions. The best fits of ;(s) (shown as solid lines) over this relevant frequen­
cy range are given by the Laplace transform ofEq. (4). As indicated already 
in Ref. 2, the "knees" in these curves near reduced frequencies of 75 are 
poorly represented by the barrierless form of the memory kernel. 
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TABLE I. Input data and fitting parameters. 

System" M/m VoikT ())b sf f!1j C(J a 

I I 0 0 0 0 135.8 33.47 
II I 3 18.05 0 0 134.7 35.39 
III 1/16 0 0 215.76 0 5581.77 213.76 
IV 1/16 3 72.186 901.84 7.40 0 0 
V 1/16 5 93.19 1194.56 5.28 0 0 

aIn reduced units, the Lennard-lones parameters 0' and E have the value 
unity for all solvent and solute particles. The best fitting parameters are in 
arbitrary units. The standard deviations are in the range from 1.9% to 
3.5%. 

virtually constant TDF is reached. This is the frozen solvent 
or matrix isolation limit. 

Case 3. High barrier, low viscosity, .s;tf ;:::0, '(f = 0: 

(5) 

In this case, the memory kernel becomes approximately 
Markoffian. 

In general the full Eq. (2) must be used to map reaction 
processes in an intermediate regime. This is illustrated by the 
upper curve in Fig. 1. Comparing this curve with the curve in 
Fig. 2, we notice that the form of t(s) and thus ;(t) is gov­
erned by the relative time scales of the reactive motion and 
the solvent motion. The former is described by the barrier 
frequency (determined by mass of reactive particles, height 
of barrier). The latter depends on the solvent viscosity. Al­
though systems II and IV possess the same barrier height, 
system II represents a "slow" motion [exponential version 
of ;(t)] because of the similarity in mass and size of the 
reactive particles to the solvent particles. System IV, because 
of its much lighter reactive mass, presents a "fast" solute 
motion, and its ;(t) is thus described more accurately by Eq. 
( 4 ). System III, though barrierless (small "chemical" 
forces) but with a very light system mass, belongs to the 
intermediate case. Its TDF must therefore be described by 
the full expression (2a). The best fitting parameters for these 
five systems are listed in Table I. 

III. PHYSICAL PICTURE 

To see how these cases and the general case in Eq. (2) 
may arise, we consider the following. By the fluctuation­
dissipation theorem, the TD F is equal to the normalized ran­
dom force autocorrelation function. IS The TDF, according 
to the Wiener-Khintchine theorem,19 can furthermore be 
expressed in terms of the cosine transform of the power spec­
trum D(w) of fluctuations in the random force. 

1 1-;(t) = - D(w ) cos wt dw. 
21T 0 

(6) 

This approach to chemical reaction dynamics was recently 
rekindled by Pollak. 20 More recently it was pointed out by 
ourselves,2 and also by Zwanzig,21 that the calculation 
(MD) or estimation of such power spectra would provide an 
alternate approach to the determination of the memory ker­
nel for real systems. This is certainly true in the bilinear 
systemibath coupling regime,20 but the approach may also 
be applicable to certain nonlinear problems, as already evi-

dent from the work of Lindenberg and her co-workers' and 
of Grigolini.6 

It is easiest to visua~ze the desired connections using 
frequency-space friction ;(s). The Laplace transform of Eq. 
(6) yields, 

• 1 1- s ;(s) = - D(w) ~ 2 dw. 
21T 0 + w 

(7) 

Now consider a simple spectral density function that is white 
(constant in w) at low frequencies but has a cutoff wo, 

D( w) = 4K OE;;;wE;;;wo, 

D(w) = 0 w > wo, 

where K is a constant. In this model, 

!-() 2K t - I Wo ~ S =- an -, (8) 
1T s 

which leads, for small wo/s, to, 

t(s) = 2K [~_ J..(~)3 + ... ] ;:::2K ~; 
1T S 3 s 1T S 

and for large wo/s, to, 

t(s) =2K[~_~+ "'];:::'K. 
1T 2 Wo 

Each of the first two terms of Eq. (2b) have one of these 
forms, indicating perhaps that the spectral density in MD or 
experimental systems can be approximated as having a low 
frequency branch w~ - ) and a high frequency branch w~ + ) 
relative to relevant frequencies s of the solute. 

In time space, the TDF of Eq. (8)' has the form 
(2K/1Tt) sin wot, which decays at short times like, but a bit 
faster than, (2Kwo/1T)exp[ - w~t2/6]. Thus, the connec­
tion between our proposed TDF for ultrafast reactions and 
that proposed by Levesque and Verlet in Eq. (1) for pure 
fluids is not so different as it might at first appear. 

To understand further the physical meaning of this fric­
tion model, it is illuminating to divide the surrounding sol­
vent into two parts: (1) the inner core (or "cage"), which is 
comprised of nearest solvent neighbors; and (2) the outer 
core (or heat bath), which is made up from the remainder of 
the solvent. This picture is qualitatively similar to the one 
proposed some time ago by Adelman,22 and in a different 
context by Zwanzig.23 On short time scales, the cage is rela­
tively stable and the forces are slowly varying. This corre­
sponds to the frozen-solvent-like friction. Both the "stiff­
ness" of the cage and the number of solvent molecules 
comprising the inner core are related to the solvent viscosity. 
In this picture, the resultant potential field inside the cage 
does not grow infinitely with increasing solvent viscosity. 
Only the number of molecules contained in the cage becomes 
larger, and the temporal persistence of the cage becomes 
greater. Thus, at high viscosities, the influence from outer 
core molecules is diminished and the local effective friction 
displays the "saturation effect" mentioned in Refs. 2 and 3. 

Interactions between the reacting system and the rapid­
ly fluctuating outer core solvent molecules conform to a 
white-noise model. This Markoffian contribution is most 
important when the solvent viscosity is so low that the cage is 
not sufficiently rigid to "screen" solute motions from the 
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continually disruptive influence of the outer core. At low 
viscosities, one can say that a limit is being approached 
where the local solvent interchange time is fast compared 
with the reaction time. When this limit is reached, the cage 
effectively disappears, and a purely white-noise contribution 
remains. Typically, however, in ultrafast reaction kinetics, 
some intermediate case will apply. 

IV. UNIFIED FRICTION 

All dynamical time scales of the solute can be taken into 
account if it is assumed that the solute can be divided into a 
fraction O2 undergoing "sufficiently fast" time scale dynam­
ics and another fraction (1 - O2 ) undergoing "slow" time 
scale dynamics. As suggested above, the solvent time scale 
here refers to a solvent interchange time at the reaction inter­
face, or equivalently to the lifetime of the solvent cage. This 
view will be seen to be consistent with the time scale argu­
ments used here. As the reactive mass of the solute is de­
creased relative to the solvent mass and the barrier forces are 
increased, O2 ..... 1. 

It can also be assumed that at any given instant of time, 
the solvent environment neighboring a solute is either an 
intact cage with weight 0 1 or a broken cage with weight 
(1 - 0 1 ). As the solvent viscosity increases, 0 1 ..... 1. 

For the O2 fraction of solute molecules undergoing fast 
time scale dynamics, an initially existing solvent state cannot 
change during the solute dynamics. For some solute mole­
cules, this is an intact cage with friction ;c; for others it is a 
broken cage, with white-noise friction; w. Thus, for fast time 
scale solute reactions, the dynamics appears as a weighted 
average3 of the dynamics corresponding to the intact cage 
environment and the broken cage environment. The friction 
is a weighted sum, as in a series electrical resistance circuit. 3 

The remaining solute fraction (1 - O2 ) comprises 
those solute molecules having slow time scale dynamics rela­
tive to the solvent motions. Such solute molecules are sub­
jected to an environment that changes between intact cage 
and broken cage during their reactive excursions, the dy­
namical path being dominated by the one having lowest fric­
tion as in a parallel resistance circuie: 

; c~ I = olL- I + (1 - 0 1); ,;;- I. 

In this scheme, the overall frequency-dependent fric­
tion, which takes into consideration an ensemble of various­
ly behaving solute molecules, would be given by, 

;= OIO~c + (1- 01)02;W + (1- 02);CW, (9) 

where, referring to Eq. (8), ;c::::,21T- IK( - )W6 -) sand;w 
::::'K( + ). Equation (9) incorporates the fact that, as the time 
scale of the reactive particles becomes fast compared with 
the time scale of the solvent, both 0 I and O2 tend toward 
unity. Because of the form of the Grote-Hynes dynamical 
equations for barrier crossing, summing the three contribu­
tions to the friction, as in Eq. (9), is equivalent to averaging 
over the barrier crossing dynamics of the variously behaving 
solute molecules. Of course, if the solute dynamics is suffi­
ciently fast and the instrumental detection capabilities in a 
laboratory experiment are good enough, the average here 
may not be appropriate. The dynamics of sets of individually 

behaving reacting molecules may be resolvable. This situa­
tion would result in a nonexponential decay. 

Equation (9) is exactly equal to the four-parameter em­
pirical expression ofEq. (2) if the following connections are 
made, 

.s;/ = 21T- 10 10 2K(-)W6 - >, 
fXj = (1 - 01)02~+)' 

~ = 21T-I~-)W6 -)( 1 - O2 )10 1, 

a = 21T-IK(-)/~+)W6 -)(1 - 0 1)/01• 

The four independent parameters are now 21T- IK( - )W6 -), 

0 1 , O2 , and K( + ). Using these relationships in Eq. (2b) 
shows that, for any value of O2 ; purely "cage friction" is 
obtained in the high viscosity limit, 0 1 ..... 1, and purely 
"white-noise friction" arises in the low viscosity extreme, 0 1 

..... 0. 

V.SUMMARY 

To probe more deeply into the fundamental physical 
characteristics of condensed phase reaction dynamics, we 
propose an intuitive model in which the "bath" is divided 
into solvent molecules in an "inner" region and an "outer" 
region. On time scales short with respect to the solvent "mo­
tion," the inner and outer regions remain intact. The inner 
region, which is stiff and stable on these time scales, provides 
a frozen-solvent-like friction. The interaction between the 
solute and outer-region solvent gives rise to a white-noise 
friction of the Markoffian type. The overall friction felt by 
the system, in the case where the cage lifetime is long com­
pared with the reaction time, is a weighted sum of these two 
limiting components. When a slow reaction is considered, 
the cage concept is no longer applicable, since the cage and 
the remainder of the heat bath are changing roles on a time­
scale faster than the reaction time. The apparent friction is 
determined by a parallel addition of the same two friction 
components, giving rise to an exponentially decaying mem­
ory kernel. 3 

These results seem to be telling us that even when non­
linearities and non-Brownian time scales are present in the 
reaction dynamics, it is still possible to use a phenomenologi­
cal generalized Langevin equation, and thus the Grote­
Hynes9 (or extended Kramers7

) reaction rate formalism, 
providing the form of the friction is adjusted for each situa­
tion. This paper suggests a possible form for this friction. In 
fact, this form of the friction has already been seen to work 
very well for laboratory experiments7

; and, in this paper, it is 
seen to be a reasonable model for MD data as well. 

In a future paper (II), we will utilize the above friction 
model to extend the Grote and Hynes9 description of activat­
ed chemical rate processes. Assuming the potential is har­
monic and a generalized Langevin equation is applicable to 
the reaction process of interest, we will be able to calculate 
angular velocity autocorrelation functions for the systems 
listed in Table I and compare them with the A V ACFs from 
MD calculations on these systems. Since the A V ACFs sam­
ple different regions of the reaction coordinate than the fric­
tion, and the models investigated here are nonlinear, the usu­
al connections between these two functions have to be 
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considered with great care. An A V ACF averaged over all 
system trajectories should not be related in any simple way 
to the friction near the barrier top. 
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