iheatbbd: Heat equation, parallel example problem for IDA Discretized heat equation on 2D unit square. Zero boundary conditions, polynomial initial conditions. Mesh dimensions: 10 x 10 Total system size: 100 Subgrid dimensions: 5 x 5 Processor array: 2 x 2 Tolerance parameters: rtol = 0 atol = 0.001 Constraints set to force all solution components >= 0. SUPPRESSALG = TRUE to suppress local error testing on all boundary components. Linear solver: IDASPGMR. Preconditioner: IDABBDPRE - Banded-block-diagonal. Case 1. Difference quotient half-bandwidths = 5 Retained matrix half-bandwidths = 1 Output Summary (umax = max-norm of solution) time umax k nst nni nli nre nreS h npe nps . . . . . . . . . . . . . . . . . . . . . . . 0.01 8.24107e-01 2 12 14 7 14 7 2.56e-03 8 21 0.02 6.88124e-01 3 15 18 12 18 12 5.12e-03 8 30 0.04 4.70754e-01 3 18 24 22 24 22 6.58e-03 9 46 0.08 2.16600e-01 3 22 29 30 29 30 1.32e-02 9 59 0.16 4.56595e-02 4 28 37 43 37 43 2.63e-02 10 80 0.32 2.10964e-03 4 35 45 59 45 59 2.37e-02 10 104 0.64 2.96578e-05 1 40 54 72 54 72 1.90e-01 13 126 1.28 9.48261e-20 1 42 56 72 56 72 7.58e-01 15 128 2.56 1.43303e-20 1 43 57 72 57 72 1.52e+00 16 129 5.12 3.83430e-20 1 44 58 72 58 72 3.03e+00 17 130 10.24 7.96444e-20 1 45 59 72 59 72 6.06e+00 18 131 Error test failures = 1 Nonlinear convergence failures = 0 Linear convergence failures = 0 Case 2. Difference quotient half-bandwidths = 1 Retained matrix half-bandwidths = 1 Output Summary (umax = max-norm of solution) time umax k nst nni nli nre nreS h npe nps . . . . . . . . . . . . . . . . . . . . . . . 0.01 8.24111e-01 2 12 14 7 14 7 2.56e-03 8 21 0.02 6.88118e-01 3 15 18 12 18 12 5.12e-03 8 30 0.04 4.70932e-01 3 19 23 20 23 20 1.02e-02 9 43 0.08 2.16547e-01 3 23 27 32 27 32 1.02e-02 9 59 0.16 4.52248e-02 4 27 33 44 33 44 2.05e-02 10 77 0.32 2.18677e-03 3 34 41 67 41 67 4.10e-02 11 108 0.64 2.20402e-19 1 39 49 86 49 86 1.64e-01 13 135 1.28 1.28263e-19 1 41 51 86 51 86 6.55e-01 15 137 2.56 7.25407e-19 1 42 52 86 52 86 1.31e+00 16 138 5.12 6.59799e-18 1 43 53 86 53 86 2.62e+00 17 139 10.24 4.90599e-17 1 44 54 86 54 86 5.24e+00 18 140 Error test failures = 0 Nonlinear convergence failures = 0 Linear convergence failures = 0