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Abstract: A new method is proposed for constant pH molecular dynamics (MD), employing generalized Born (GB)
electrostatics. Protonation states are modeled with different charge sets, and titrating residues sample a Boltzmann
distribution of protonation states as the simulation progresses, using Monte Carlo sampling based on GB-derived
energies. The method is applied to four different crystal structures of hen egg-white lysozyme (HEWL). pK, predictions
derived from the simulations have root-mean-square (RMS) error of 0.82 relative to experimental values. Similarity of
results between the four crystal structures shows the method to be independent of starting crystal structure; this is in
contrast to most electrostatics-only models. A strong correlation between conformation and protonation state is noted
and quantitatively analyzed, emphasizing the importance of sampling protonation states in conjunction with dynamics.
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Introduction

Protein structure and function are strongly dependent on solvent
pH. This dependence is due to changes in the predominant proto-
nation state of titratable groups (chiefly side chains of certain
amino acids and termini of peptide chains) as solvent pH changes.
The protonation state of a titratable group is determined by the
solvent pH, and the relative acidity of the group, measured by its
pK,. The instantaneous pK, of a given group is influenced by its
electrostatic environment, which is determined by the protein
conformation and protonation state of other titratable groups. Pro-
tonation state, in turn, has a strong effect on protein conformation,
principally due to the charge differences between different proto-
nation states.

Due to the tight coupling between protein conformation and
protonation state, the importance of solvent pH in molecular dy-
namics (MD) simulations of proteins has long been recognized.
Traditionally, treatment of pH in MD has been limited to setting a
constant protonation state for each titratable group. This approach
has many drawbacks. First, assigning protonation states requires

knowledge of pK, values for the protein’s titratable groups. Sec-
ond, if any of these pK, values are near the solvent pH there may
be no single protonation state that adequately represents the en-
semble of protonation states appropriate at that pH. Finally, be-
cause the assumed protonation states are constant, this approach
decouples the dynamic dependence of pK, and protonation state on
conformation.

The solution pH is an important extrinsic thermodynamic vari-
able, analogous to temperature or pressure, that is readily con-
trolled experimentally and has considerable spatial and temporal
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variation in living organisms. It is natural to seek simulation
methods that allow the user to directly specify the pH as an input
variable. In the past decade, a number of models have been
proposed for performing MD at constant pH with dynamic proto-
nation states. The earlier of these employed protonation parameters
that were allowed to vary continuously between protonation
states.? This is problematic because a continuous model of pro-
tonation states is not equivalent to sampling from discrete states.
Especially in the case of strongly coupled titratable groups, where
titration curves are highly nonlinear, the continuous model may
lead to inappropriate estimates of physical observables.® Lee et al.
have recently addressed the problem of nonphysical intermediate
protonation states in the continuous model by adding an energy
barrier along the continuous protonation state coordinate that fa-
vors values corresponding to fully protonated or deprotonated
states.*

Other than the method described by Lee et al., most of the
recent work in constant pH MD has involved discrete protonation
states; three such models have been developed. Each of these uses
Monte Carlo sampling to select protonation states based on calcu-
lated energy differences between the possible protonation states.
The methods devised by Baptista et al.> and Walczak and An-
tosiewicz® use Poisson-Boltzmann (PB) methods to calculate pro-
tonation energies, with the former employing explicit solvent
Newtonian dynamics and the latter constant dielectric Langevin
dynamics between the Monte Carlo steps. One drawback to these
approaches is that the potentials used for dynamics are not con-
sistent with those used to choose protonation states in the Monte
Carlo steps. Biirgi et al. avoid the consistency problem by calcu-
lating transition energies using thermodynamic integration (TI)
under the same explicit solvent conditions they use for dynamics.’
However, the TI calculations perturb the dynamics trajectory even
when the Monte Carlo step is rejected. Furthermore, both PB and
TI calculations are computationally expensive, limiting the number
of Monte Carlo steps that can be evaluated.

We propose a model using generalized Born (GB) implicit
solvation® that combines the best aspects of these discrete proto-
nation state models. The same GB electrostatics are used for
calculating protonation state transition energies and dynamics, so
the potentials are consistent. Furthermore, calculation of transition
energies using GB is fast, and there is no need for solvent equil-
ibration, so sampling is fast. This model is tested using simulation
of hen egg-white lysozyme, examining convergence, stability,
agreement with experimental pK, values, and correlation between
conformation and protonation. Close agreement between predicted
and experimental pK, values suggest that this method accurately
samples protonation states, providing a more physically realistic
basis for studying dynamics of systems with titratable groups.

Theory and Methods

Algorithm

The proposed method employs GB solvated MD, with periodic
Monte Carlo sampling of protonation states. Between Monte Carlo
steps, the system evolves according to standard generalized Born
solvated MD.”'° This sampling scheme and the justification for it

Table 1. Reference pK, Values for Titratable Side Chains.

Residue PK, et
Aspartate 4.0
Glutamate 4.4
Histidine-8 6.5
Histidine-& 7.1
Lysine 10.4
Tyrosine 9.6

Reference pK, values for aspartate, glutamate, lysine, and tyrosine were
taken from Bashford et al.*” The reference pK, values for histidine were
taken from Kyte.*®

are essentially the same as those described by Baptista et al.,” with
the exception that there is no solvent equilibration step because the
MD is conducted in implicit solvent.

At each Monte Carlo step, a titratable site and a new protona-
tion state for that site are randomly chosen. A transition free
energy for the protonation or deprotonation is calculated according
to

AG = kBT(pH - pKa,ref)ln 10 + AC;elec - AGe]ec.ref (1)

where kj is the Boltzmann constant, 7 is temperature, pH is the
specified solvent pH, pK, .. is the pK, of the appropriate reference
compound (see later and Table 1), AG,.. is the electrostatic
component of the free energy calculated for the titratable group in
the protein, and AG,,.. . is the electrostatic component of the
transition free energy for the reference compound, a free dipeptide
amino acid described later. This equation is based on a division of
the total transition free energy into electrostatic and nonelectro-
static portions. The nonelectrostatic transition free energy com-
prises all free energy contributions not accounted for in the GB
electrostatics, including the quantum mechanical bond free energy
and proton solvation free energy. It is difficult to calculate the
nonelectrostatic transition free energy, but it can be assumed to
have approximately the same value independent of electrostatic
environment. Under this assumption, a reference compound with
known pK, can be introduced to cancel the nonelectrostatic portion
of the transition free energy, resulting in eq. (1). The electrostatic
portion of the transition free energy (AG...) is calculated by
taking the difference between the potential calculated with the
charges for the current protonation state and the potential calcu-
lated with the charges for the proposed state; because there is no
need for solvent equilibration, this is done in a single step. Equa-
tion (1) can then be used to calculate the total transition free
energy, as all other terms are known. This method of calculating
transition free energies is similar to that employed by Biirgi et al.,”
except that in our proposed model only charges change between
different protonation states, while they change van der Waals radii
as well. Changing van der Waals radii may be added in a further
refinement of this model, but good results are seen with changing
only charges.

The total transition free energy, AG, is used as the basis for
applying the Metropolis criterion to determine whether the transi-
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tion will be accepted. If the transition is accepted, MD is continued
with the titratable group in the new protonation state; if not, MD
continues with no change to the protonation state.

Computationally, the time to evaluate a Monte Carlo step is less
than that required for an MD step, so constant pH MD using this
approach is only slightly slower than traditional constant protona-
tion state GB MD.

Under this model, the total charge on the molecule is generally
nonzero and changes when a titratable group changes protonation
state. Because GB solvation does not employ periodic boundary
conditions and the free energy associated with introducing and
solvating a charge are included in the nonelectrostatic portion of
the transition free energy accounted for above, the changing total
charge does not present a problem.

Molecular Dynamics

MD was performed using a prerelease version of AMBER 8,°
modified to implement the algorithm described above (these mod-
ifications have been included in the released version of AMBER
8). The ff99 force field'' was employed. The first GB model
developed by Onufriev, Bashford, and Case'®'*'? (igh = 2) was
used for solvation. Salt concentration (Debye—Hiickel based) was
set at 0.1 M. The cutoff for nonbonded interactions and computa-
tion of effective Born radii was 30 A. Solute temperature was
weakly coupled to a Berendsen temperature bath'* at 300 K with
a time constant of 2 ps. Lengths of bonds including hydrogen were
constrained using SHAKE. The time step was 2 fs.

Protonation State Models

Titratable group models were developed for the side chains of
aspartate, glutamate, histidine, lysine, and tyrosine. Protonation
states for a given group differ only in partial charges. When a
group’s protonation state changes, charges on all of its side-chain
atoms are changed to reflect the new state. Titratable hydrogens
have zero charge in the deprotonated state. The titratable hydro-
gens in aspartate, glutamate, and tyrosine have zero van der Waals
radius in the AMBER force field, so when their charge is zero they
have no nonbonded interactions with the system, although they
retain defined positions. Van der Waals radii for titratable hydro-
gens on lysine and histidine were left unchanged at their ff99 value
of 0.6 A. This does not seem to substantially affect results, because
pK, predictions for amine (LYS) and carboxylic acid (ASP and
GLU) residues were of comparable quality (see Results and Dis-
cussion).

Partial charges were taken from the protonated and deproto-
nated residue definitions in the AMBER 99 force field. This force
field does not define a deprotonated tyrosine; charges for the
deprotonated tyrosine were calculated using Antechamber'® with
the RESP charge method based on HF/6-31G* calculations con-
ducted with Gaussian 98.'® Although the largest charge changes in
these charge sets are concentrated near the titratable proton, every
atom has some charge difference between protonated and depro-
tonated forms. If peptide backbone charges are changed when the
protonation state changes, it is not possible to use a single refer-
ence free energy. Due to the 1-4 electrostatic interactions defined
in the AMBER force field, backbone atoms have specific electro-

static interactions with side-chain atoms of neighboring residues.
To avoid this problem, backbone charges were fixed at the values
defined for the protonated state across all protonation states. A
charge correction was added to the beta carbon of the deprotonated
state such that the total charge difference between protonated and
deprotonated states was 1.

In this charge-change only model of protonation states, a dep-
rotonated group can gain a proton only at the location of a zero
charge “ghost” proton. A titratable group may unrealistically favor
the deprotonated state if its ghost proton rotates into an unfavor-
able position for protonation. This problem is especially severe for
carboxylic acids, where the syn location for the proton is much
more favorable than the anti. When a ghost proton moves into the
anti position it is unlikely to protonate, and unlikely to move until
it protonates, because no forces act on a ghost proton. This prob-
lem is addressed by building a carboxylic acid model with two
protons on the oxygen, kept 180 degrees apart by an improper
torsion. Because rotation of the carboxylic group to exchange the
oxygen atoms is also slow, we define two protons on each oxygen
of the carboxylic groups. The protonation state charge sets are
defined such that no more than one of the four protons has a
nonzero charge at any time.

Reference Compounds

Reference free energy differences for the titratable groups were
calculated for single amino acids as dipeptide (blocked) molecules,
having the sequence acetyl-amino acid—methyl amine. A titration
of the dipeptide reference compound was performed with solution
pH set to pK, . (Reference pK, values are listed in Table 1.)
AGcc.ror Was adjusted based on the results of this titration to give
equal populations in the protonated and deprotonated states for
titrations of the reference compound having pH equal to pK,. For
the simple case of a titratable group with only two protonation
states, AG,je..r Should be equal to the free energy difference
calculated between the states by thermodynamic integration (TI).
Calculations of AG .. . Were checked by performing TI between
the protonated and deprotonated states using the parameters de-
scribed earlier to calculate AG-, according to

1
ad
AGTI=j <ﬁ dA 2)
0 A

where V is the potential and A is the coupling parameter between
the charges for the protonated and deprotonated states. Eleven
equally spaced values were used for A. At each value of A, the
reference compound was equilibrated for 40 ps and sampled for
1.6 ns. The free energy difference was calculated in Mathematica'”
by numerical integration of a fourth degree polynomial fit to the
(aV/aA) values. In all simple cases AG; matched AG,.. ¢ tO
within 0.05 kcal/mol. This consistency is, of course, expected, and
is really just a check on the correctness of our implementation of
the Monte Carlo algorithm. It has recently been demonstrated that
AG; values calculated using the GB model adopted here are
similar to those computed using explicit solvent models.'®
Calculations for the carboxylic residues were complicated by
having four protonated states defined (syn and anti on each of the
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oxygens). For these residues, AG; (which was calculated between
the deprotonated state and one of the syn protonated states) dif-
fered from AG.,. .. by approximately kT In 2 due to the statis-
tical effects of multiple protonated states (only the two syn sites
see appreciable populations). In addition to balancing the relative
populations of the protonated and deprotonated states, it is impor-
tant that the relative proton affinities of the syn and anti states are
correct. Based on relative populations of the syn and anti states in
test titrations of the model compound, the free energy of the syn
state was calculated to be 1.6—1.9 kcal/mol lower than the anti
state. This is in close agreement with quantum mechanical calcu-
lations and experimental estimates,'® so it was assumed that the
force field accurately accounts for the free energy difference
between the syn and anti states, and no adjustment was made to
the relative energies of these states.

Test System Molecular Models

Hen egg white lysozyme (HEWL) was selected as the test system
because it is well studied”-*>*' and has a number of residues with
pK, values that differ markedly from their reference values. Struc-
tures 1AKI, 1LSA, 3LZT, and 4LYT from the PDB were selected
as starting crystal structures. The structures were chosen to facil-
itate comparison with earlier work” and provide a diversity of
crystal properties. The structures are from orthorhombic, tetrago-
nal, triclinic, and monoclinic space groups, respectively. 3LZT is
at high resolution (0.92 A), 4LYT is at low resolution (2.5 A), and
1LSA has crystal contacts that have been problematic in earlier
studies.

Each structure was prepared using WHAT IF*? to optimize the
hydrogen bond network® (by flipping side chains of HIS, ASN,
and GLN) and strip crystal waters. Hydrogens were added to the
structures using the LEaP module of AMBER. They were then
minimized with 100 steps of steepest descent followed by 100
steps of conjugate gradient using the SANDER module of
AMBER and the MD parameters described earlier.

Simulations starting from the 1AKI structure were performed at
0.5 pH increments from pH 2.0 to 4.0 with aspartates and gluta-
mates titrating, from pH 4.5 to 6.5 with aspartates, glutamates, and
histidine titrating, and from pH 9.0 to 12.0 with tyrosines and
lysines titrating. Simulations starting from 1LSA, 3LZT, and
4LYT were performed at 1.0 pH increments from pH 2.0 to 7.0
with all aspartates, glutamates, and histidines titrating and from 9.0
to 12.0 with all tyrosines and lysines titrating. There were 10 fs
between Monte Carlo steps. Nontitrating residues were fixed at
their most probable protonation states (protonated for basic resi-
dues and deprotonated for acidic residues). Protonation state mod-
els for terminal residues have not yet been created, so terminal
residues are fixed at their most likely neutral pH protonation state
in all simulations: protonated for the N-terminus and LYS-1 side
chain and deprotonated for the C-terminus. This approximation is
expected to have little effect on the titrating sidechains. The
C-terminal residue is approximately 10 A from the nearest acid-pH
titrating group and the N-terminal residue is nearly 15 A from the
nearest basic-pH titrating group, so direct interactions are small.
There may also be an indirect interaction in the high pH simula-
tions due to perturbation of the conformations sampled because the
N-terminus (experimental pK, of 7.8—8.0?") is held in the proton-

ated state. The C-terminus is sufficiently acidic (experimental pK,
of 2.63-2.87") that the indirect interaction should be negligible.

PK,, Prediction Calculations

Constant pH simulations can be analyzed in a fashion entirely
analogous to that used for experiments that give protonation in-
formation for individual side chains as a function of pH. As long
as the protonation fraction is a monotonic function of pH, the pK,
of a side chain can be defined as the pH value for which the
protonated and deprotonated populations are equal. The special
case of an ideal titratable group having no interactions with other
titratable groups has a sigmoidal titration curve, and behavior
characterized by the Henderson—Hasselbalch (HH) equation

B [A7]
pK. = pH — log, [HA] 3)

Following the reasoning of Baptista et al.,” the system is assumed
to be ergodic, so the ratio of time that a titratable group spends in
the protonated and deprotonated states can be used as a ratio of
concentrations. This can be combined with the pH according to eq.
(3) to yield a prediction of the pK,. When a titratable group has
sufficiently weak interactions with other titratable groups, its be-
havior is well described by the HH equation, and pK, values
calculated from simulations at different pH values will differ only
by random error. As interactions increase, the HH equation will
not adequately describe the titration curve.

Titration data are often represented in a Hill plot, where log,,
(A~ |/HA) is plotted vs. pH. A titration curve for a titratable group
governed by the HH equation has the form of a straight line with
a Hill coefficient (slope) of 1. Titrating groups with non-HH
behavior will have Hill coefficients that differ from 1. The Hill
coefficient can be determined by linear regression of the titration
data points on a Hill plot. Because the coefficient calculated by
regression may differ from 1 due to random error or non-HH
titration behavior, a ¢-test should be used to decide whether the
Hill coefficient suggests statistically significant non-HH behavior.
In such cases, further simulations can be conducted to plot a full
titration curve.

Results and Discussion

A method for constant pH MD simulations should be computa-
tionally efficient and capable of reproducing accurate titration
curves. Furthermore, when applied to macromolecules, an ideal
method would yield pK, predictions in close agreement with
experimental values, converge rapidly to these predictions and
maintain the stability of the trajectory. As previously mentioned,
the proposed method is only slightly more computationally expen-
sive than traditional GB MD. Here, we evaluate how well the
proposed method meets the remainder of these criteria, and inves-
tigate non-HH behavior and conformation-protonation state corre-
lations suggested by the results.
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Figure 1. Deprotonated fraction for 5-ns simulations of aspartate
model compound at pH values between 2 and 6. Solid line represents
Henderson—Hasselbalch titration curve for residue with pK, of 4.0.
The small systematic error apparent near the midpoint is due to error

in the value calculated for AG, . rof-

Convergence

Small systems, such as the reference compounds, converge to the
relative protonation state populations predicted by the HH equa-
tion within a few nanoseconds of simulated time. For example, a
titration curve for 5-ns simulations of the aspartate model com-
pound, shown in Figure 1, closely matches the predicted titration
curve.

Convergence in larger systems, such as HEWL, is much more
difficult to achieve. As seen in Figure 2, the predicted pK, value
for most residues stabilizes within a few hundred picoseconds.
This stabilization does not represent convergence; the same resi-
due may stabilize at a significantly different pK, value if a differ-
ent random seed is used in an otherwise identical simulation.

T T T T T T T T T
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—— ASP-18
— ASP-48

ASP-66
- ASP-87
— ASP-101

ASP-119

e

Error (predicted - experimental pKa)
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Figure 2. Time evolution of predicted pK, for acidic residues in
simulation of HEWL at pH 3.0, starting from structure 1AKI. Each
point represents the predicted pK, calculated from all protonation data
collected up to that time in the simulation. Residues ASP-52 and
GLU-35 do not converge due to H-bonding issues and large offset (see
text), respectively, and are not shown on this plot.
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Figure 3. Deprotonated fraction for GLU-7 from 1-ns simulations
starting at | AKI at pH values between 2.0 and 6.5 (data also presented
in Table 3). Solid line represents best fit titration curve, which has pK,
of 3.85.

Because the random error due to incomplete convergence may
produce larger effects than those caused by a small change in pH,
titration curves for titrating groups in proteins can be noisy. This
is demonstrated by comparing the protein titration curve seen in
Figure 3 to the model compound data of Figure 1, noting that the
protein data are for GLU-7, one of the better converged residues in
HEWL. Despite the precision problems posed by these random
errors, pK, predictions are generally fairly accurate, and the impact
of noise can be reduced by combining results from multiple
simulations, as seen later.

We believe that the major limiting factor on convergence is
conformational sampling. As shown later, the instantaneous pK, is
strongly dependent on conformation, so if two simulations sample
conformation space differently, it should be expected that they
would have differing protonation state populations. Sufficiently
complete conformational sampling is achievable for small systems,
but is currently computationally infeasible for systems the size of
HEWL.

Accepting that complete conformational sampling is out of
reach for HEWL, titrations of 1 ns were performed to allow
sufficient time for predicted pK, stabilization, if not convergence.
For the simulation shown in Figure 2, each of the titrating residues
was evaluated for a protonation state transition an average of
11,000 times, of which between 160 and 840 transitions were
accepted.

Simulation Stability

Because this method involves instantaneous changes in protona-
tion state, which result in nonphysical discontinuities in energy and
force, we examined system stability across protonation state
changes. When the protonation state changes, there is a discontin-
uous change in total energy reported by AMBER equal to AG,,...
Most of this energy change represents transfer of energy between
the energy modes governed by the force field and those outside the
scope of the force field (e.g., quantum mechanical energy of the
bond and solvation free energy of the proton). The remainder of
the change represents Boltzmann sampling of the energy levels of
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Figure 4. Alpha carbon RMSD from crystal coordinates for residues
4-125 of 1AKI structure of HEWL at five different solvent pH values.
Plots are representative of behavior of other simulations. RMSD for
constant protonation state (no titration) MD under similar conditions is
shown for comparison.

different protonation states. Even when temperature regulation is
removed, there is no trend to the changes in total energy. Average
kinetic energy does follow the fluctuations in total energy, so
temperature fluctuations are increased somewhat by this method.
However, even in the worst case of a very small system (the
reference compound) with no temperature regulation, root-mean-
square temperature fluctuations were only about twice as high for
a simulation where protonation state changed rapidly as they were
for a simulation where protonation state was fixed. In the more
common case of a larger system with temperature regulation and
slower protonation state changes, temperature fluctuations are
fairly small—on the order of 5 K for the HEWL titrations de-
scribed here.

Conformational stability, as well as energetic stability, is of
interest in biomolecule simulations. Experimentally, HEWL is a
stable protein across a wide range of solvent pH values, and this
should be reflected in the trajectories of the titrations. Figure 4
compares alpha carbon root-mean-square deviation (RMSD) vs.
crystal structure for titrations starting from 1AKI at a range of pH
values to a nontitrating trajectory. Most importantly, this plot
shows that after an initial relaxation period, RMSD stabilizes for
each trajectory. One simulation was continued to 3 ns to confirm
stability: there were no significant excursions beyond an RMSD of
2.5 A. In general, RMSD for titrating trajectories increased more
rapidly and stabilized at higher values than for the nontitrating
trajectory. Traditional MD trajectories are known to be biased
toward conformations that are compatible with their fixed proto-
nation state;>* it seems reasonable that allowing protonation states
to change would reduce this bias and allow greater conformational
sampling, producing a higher RMSD. One might also expect that
simulations conducted at pH values close to the pH of the crystal
structure would tend to sample conformations closer to the crystal
structure. Indeed, Figure 4 shows that the pH 4.0 trajectory stabi-
lizes at the lowest RMSD relative to the 1AKI crystal structure,
which was solved at pH 4.5.

PK, Predictions

Although the primary aim of this work is to improve the physical
realism of dynamics, it is difficult to validate the quality of
simulated dynamics as a function of pH, because HEWL appears
to have no major structural changes in the pH range considered
here. HEWL was selected because it has been well studied, so it
provides a good test system for determining whether protonation
states are accurately sampled, and accurate sampling is a pre-
requisite for simulating pH-dependent conformational changes.
Therefore, pK, values, which can be calculated from the simula-
tions using eq. (3), are compared to experimentally measured
values as the primary quality measure used to validate the pro-
posed method.

In comparing predicted pK, values to experimental measure-
ments, it is useful to have a method for combining predictions from
simulations conducted at different solvent pH values into a single
composite pK, prediction, taking account of their relative accura-
cies. This is commonly achieved by plotting the data at each pH on
a Hill plot and performing linear regression. In regression, each
data point is weighted according to the inverse of its variance
(more properly, the variance of the distribution from which the
data point is drawn). It is expected that the variance of a data point
will be dependent on the absolute difference between the pH at
which it was taken and the predicted pK,. This follows from eq.
(3), which becomes increasingly sensitive to small changes in the
number of time steps spent in each protonation state as the quotient
of these numbers becomes very large or very small. It is compu-
tationally infeasible to run sufficient simulations to determine a
separate variance model for each titratable group, so data for all
titratable groups were pooled to determine a global variance model
for the method. Figure 5 shows a scatter plot of absolute difference
between the pH and predicted pK, (offset) vs. pK, prediction error.
The running (windowed) variance line on this plot shows that
variance is roughly uniform when the offset is less than 2.0 pH
units, and increases rapidly outside of this range. Because there are
insufficient data to empirically determine a variance at each offset,

T T T T ™ T T T

4~ - RUnNNiNg variance { —

Error (predicted - experimental pKa)
=)
T

L 1 L 1 i 1
0 2 4
fiset (predicted pKa - simulation pH)

|
2

4 E
O

=

Figure 5. Scatter plot of difference between predicted pK, and solvent
pH (offset) vs. difference between predicted and experimental pK,
(prediction error). Points represent all predictions with offsets between
—5 and 5. Variance is calculated with a window size of 40 data points.
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Table 2. pK, Predictions for Acidic Residues of HEWL, Calculated from 1-ns Simulations Starting from
1AKI at Specified pH.

pH 2.0 pH 2.5 pH 3.0 pH 3.5 pH 4.0 pH 4.5 pH 5.0 pH 5.5 pH 6.0 pH 6.5 Comp. Exp.
ASP-18 0.97 2.02 1.92 2.05 1.98 2.12 2.20 1.93 — — 1.83 2.66
ASP-48 2.84 0.75 2.03 1.29 1.94 0.92 2.17 1.96 —o — 1.87 2.50
ASP-52 2.15 2.04 —0.14 2.05 —0 2.38 —© 2.54 — —© 2.08 3.68
ASP-66 2.57 1.51 1.92 0.40 —0 — — 2.82 — — 2.00 2.00
ASP-87 3.14 2.17 2.66 2.36 3.12 0.84 —© —o0 —o0 — 2.69 2.07
ASP-101 3.56 3.76 3.96 3.90 3.80 3.67 4.07 3.85 3.69 4.09 3.80 4.09
ASP-119 3.70 2.29 2.50 2.40 2.36 2.46 2.49 2.69 3.15 — 2.60 3.20
GLU-7 3.89 3.88 3.87 3.99 4,18 342 3.93 3.82 2.68 3.39 3.85 2.85
GLU-35 3.87 5.97 6.48 5.27 5.65 5.60 6.78 5.31 5.19 5.36 5.32 6.20
HIS-15 — — — — 6.26 5.87 6.69 6.69 6.71 6.26 6.45 5.71

Composite pK, is the average of predictions with absolute offset less than 2.0 (see text for discussion). Where
experimental pK, values®' were given as a range, the midpoint of the range is used; where only an upper bound was

given, the upper bound is used.

a simplified variance model is drawn from these data: uniform
variance for offsets less than 2.0 pH units and very high (effec-
tively infinite) variance for larger offsets. This leads to uniform
weights for the small offset data points and zero weight for those
with large offset. Because the non-HH behavior in this system is
small, and in general does not affect the predicted pK,, the number
of free parameters in the fit is reduced by restricting the slope of
the fitted line to 1. The composite pK, calculated by the fitting
process described here can be determined by the mathematically
equivalent operation of averaging all pK, predictions with an
offset less than 2.0 pH units.

Tables 2 and 3 show pK, values predicted from 1-ns simu-
lations starting from the 1AKI structure of HEWL. In general,
the composite predictions show close correspondence to exper-
imental data, and variation between simulations at different
solvent pH values is small. A few problematic cases are worthy
of mention. ASP-52 has a hydrogen bond to ASN-46 in all four
crystal structures. While this bond is maintained, ASP-52 is
prevented from protonating. In most simulations, this hydrogen
bond is stable throughout all or nearly all of the simulation,

leading to a very low predicted pK,. The simulations yielding
the best results for ASP-52 (pH 2.0, 2.5, and 3.5) were those in
which ASP-52 and ASN-46 were dissociated for much of the
simulation. A similar effect of hydrogen bonding leading to
erroneously low pK, predictions was seen with GLU-35, but to
a lesser extent. Results for the three tyrosine residues were
markedly poorer than results for the other residue types. This
may be due to slower conformational sampling due to steric
hindrance of the large aromatic ring, and ignoring the effect of
the polarizability of the aromatic ring.

The overall quality of the pK, value predictions can be mea-
sured by the RMS error of predicted pK, values relative to exper-
imental values, which is 0.86 for simulations starting from the
1AKI structure, as shown in Table 4. RMS error for null model
predictions, where each residue’s pK, is predicted to be equal to
the reference value given in Table 1, are also shown in Table 4.
The current method gives predictions that are an overall improve-
ment on the null model, and superior for each type of titrating
residue, except lysine. Prediction results for lysine are actually
more accurate than for any other residue (RMS error 0.64), but due

Table 3. pK, Predictions for Basic Residues of HEWL, Calculated From 1-ns Simulations Starting from

1AKIT at Specified pH.

pH 9.0 pH 9.5 pH 10.0 pH 10.5 pH 11.0 pH 11.5 pH 12.0 Comp. Exp.
TYR-20 11.21 10.73 9.91 11.86 11.02 10.82 10.84 10.86 10.3
TYR-23 11.54 12.02 12.43 11.45 11.38 11.08 11.27 11.30 9.8
TYR-53 10.88 10.38 11.08 11.41 10.48 11.18 10.89 10.90 12.1
LYS-13 9.77 9.12 9.54 10.08 9.38 9.38 9.34 9.58 10.5
LYS-33 9.47 9.93 9.44 10.04 9.36 9.55 9.62 9.63 10.6
LYS-96 9.86 9.70 9.96 10.22 10.13 8.98 9.96 9.97 10.8
LYS-97 9.55 9.87 10.08 10.15 10.13 10.17 10.21 10.02 10.3
LYS-116 9.97 10.14 10.27 10.14 10.33 10.11 10.20 10.17 104

Composite pK, is the average of predictions with absolute offset less than 2.0 (see text for discussion). Where
experimental pK, values were given as a range, the midpoint of the range is used; where only an upper bound was given,

the upper bound is used.
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Table 4. RMS Errors of Predicted pK, Values From Experimental Values.

All structures 1AKI 1LSA 3LZT 4LYT Null model
All residues 0.82 0.86 0.77 0.88 0.95 1.19
Aspartates 0.69 0.80 0.72 0.86 0.78 1.34
Glutamates 0.88 0.94 0.97 1.01 0.54 1.68
Histidine 0.21 0.74 0.11 0.10 0.01 0.69
Tyrosines 1.29 0.88 1.10 1.23 1.69 1.50
Lysines 0.64 0.83 0.57 0.51 0.78 0.21

All structures refers to composite pK, predictions using data from all simulations on 1AKI, 1LSA,
3LZT, and 4LYT. Null model RMS errors are provided for comparison; in the null model, all residues
are predicted to have the reference pK, values given in Table 1.

to the very small shifts of these residue’s pK, values from refer-
ence values, the null model RMS error is very low.

The results reported here are a significant improvement on the
explicit solvent TI-based constant pH MD pK, predictions re-
ported for IAKI HEWL by Biirgi et al.,” which have RMS error of
2.8-3.8 and seem to be far from convergence in 3-ns titrations.
They are also more accurate than Lee et al.’s continuous protona-
tion state results for HEWL, which had RMS error of 1.31 for
nonterminal residues.* The constant pH method employing Pois-
son—-Boltzmann protonation state sampling described by Walczak
and Atosiewicz had RMS error of 0.81-1.12 (depending on pa-
rameters) in application to ovomucoid third domain.® In our opin-
ion, ovomucoid third domain represents an easier prediction prob-
lem than HEWL, as it has fewer residues with pK, values that are
substantially shifted relative to reference pK, values; these
strongly shifted residues have the greatest errors in the Walczak
and Atosiewicz method. It is difficult to compare the quality of the
proposed GB constant pH MD method to that of Baptista et al.,” as
they have only reported on application of their method to succinic
acid, and not to proteins.

The Poisson—-Boltzmann-based pK, prediction methods em-
ployed by Baptista et al. and Walczak and Atosiewicz for proto-
nation state sampling have a long history?> and continue to be an
active area of research.?'"**>® Non-PB-based electrostatics meth-
ods have also found success.?”*® When the best of these electro-
statics-only methods are applied to crystal structures they provide
somewhat more accurate predictions of pK, values (RMS error of
0.5-0.7) in less computer time than the proposed GB constant pH
MD method. Although these methods are fairly accurate, they can
be very sensitive to details of the crystal structure because all
atomic positions are fixed, and they often produce widely varying
pK, value predictions for different crystal structures of the same
protein.?® Models (PB and non-PB-based) that allow for some
conformational rearrangement have much less dependence on
crystal structure,”* ' and a dynamics-based method should be
immune to these effects. This was tested by running simulations
starting from three additional crystal structures (PDB) identifiers
1LSA, 3LZT, and 4LYT). These structures were chosen for max-
imum diversity of crystal characteristics, as described earlier. As
seen in Table 5 and summarized in Table 4, pK, value predictions
were highly consistent across the four structures, with a total
variation in RMS error of only 0.18 pH units. This stands in
contrast to a recent electrostatics study of these structures, which

yielded RMS errors of 1.01, 1.44, 1.15, and 2.03 for 1AKI, 1LSA,
3LZT, and 4LYT, respectively.’

Non-Henderson—-Hasselbalch Behavior

Titrating residues were tested for non-HH behavior [titration
curves that do not match the sigmoidal shape defined by eq. (3)]
using the procedure described earlier; these results are shown in
Table 6. First, it should be noted that, as in most proteins, the
magnitude of non-HH behavior is small—in all significant cases, it
is less than 0.35 deviation in pK, prediction for every 1 unit change
in solution pH. Furthermore, any error will tend to be canceled by
the opposing effects of predictions made from simulations with pH
above and below the residue’s pK,, so ignoring non-HH behavior
in the lysozyme pK, calculations above is a reasonable approxi-
mation. The results in Table 6 also justify the use of only single-
site MC moves for this system—none of the interactions are strong

Table 5. Composite pK, Predictions for Simulations Starting From the
1AKI, 1LSA, 3LZT, and 4LYT Crystal Structures.

1AKI 1LSA 3LZT 4LYT Exp.
ASP-18 1.83 1.69 2.38 2.55 2.66
ASP-48 1.87 2.48 2.04 2.38 2.5
ASP-52 2.08 2.68 1.75 2.65 3.68
ASP-66 2.00 1.18 — 2.19 2.0
ASP-87 2.69 2.66 232 3.34 2.07
ASP-101 3.80 3.74 3.76 3.96 4.09
ASP-119 2.60 2.45 2.17 1.98 32
GLU-7 3.85 3.72 3.89 3.58 2.85
GLU-35 5.32 5.14 523 5.97 6.2
HIS-15 6.45 5.82 5.61 5.70 5.71
TYR-20 10.86 10.82 10.98 11.62 10.3
TYR-23 11.30 11.42 11.39 12.21 9.8
TYR-53 10.90 11.25 10.84 11.10 12.1
LYS-13 9.58 9.87 9.97 9.56 10.5
LYS-33 9.63 9.66 9.94 9.47 10.6
LYS-96 9.97 10.33 10.15 10.04 10.8
LYS-97 10.02 10.04 9.94 9.86 10.3
LYS-116 10.17 10.12 10.19 10.12 10.4

No value is shown for ASP-66 in the 3LZT simulations because none of the
predictions had offsets with magnitude less than 2.
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Table 6. Hill Coefficients for Titration Data Determined by Linear
Regression.

Residue Hill coefficient p-Value
GLU-7 1.006 0.897
LYS-13 0.966 0.755
HIS-15 0.816 0.100
ASP-18 0.763 0.149
TYR-20 0.740 0.131
TYR-23 0.955 0.864
LYS-33 0.939 0.446
GLU-35 0.670 0.017
ASP-48 0.995 0.984
ASP-52 0.838 0.528
TYR-53 0.908 0.393
ASP-66 1.003 0.993
ASP-87 0.751 0.039
LYS-96 0.796 <0.001
LYS-97 0.865 0.004
ASP-101 0.885 0.030
LYS-116 0.908 0.002
ASP-119 1.076 0.575

p-Value is the significance level at which the Hill coefficient differs from
one. Residues with p-values less than 0.05 are indicated in boldface.

enough for any titratable group to block protonation state changes
in a nearby group. Nevertheless, some interaction between titrating
residues leading to non-HH behavior is expected for lysozyme, and
it is reassuring that the proposed method reproduces these effects.

The bold lines in Table 6 indicate which residues have statis-
tically significant non-HH behavior. LYS-96 and LYS-97 interact
with each other due to their obvious proximity in both primary and
tertiary structure. LYS-116 projects toward TYR-23 (titrating N to
O distance 7.7 A in 1AKI); the non-HH effect on TYR-23 is
presumably lost in noise due to the poor tyrosine results. ASP-87
most likely interacts with HIS-15, which reaches 90% confidence
for non-HH behavior. ASP-101 does not appear to have specific
interactions with any single titrating group. However, weak inter-
actions have statistical significance for ASP-101 because it is one
of the best converged residues, and as such has little noise. The
analysis for GLU-35 is dominated by three data points with very
negative errors, representing simulations in which GLU-35 was
significantly H-bonded. When these outliers are eliminated, the
p-value rises to 0.7.

Conformation-Protonation Correlation

A major motivation for the implementation of this method is the
idea that protonation state and conformation are strongly coupled,
such that they cannot be adequately studied in isolation (e.g.,
electrostatics-based pK, predictions and traditional molecular dy-
namics). Results of these simulations support this idea: we exam-
ine the protonation and conformation of ASP-18 in the pH 2.5
simulation starting from 1AKI as an example.

Essential dynamics (ED)—principal component analysis
(PCA) of trajectory data—is a useful technique for separating
functionally important, slow, large-scale motions from local fluc-

tuations.? Projections of a particular snapshot from the trajectory
onto the most significant principal components (the largest eigen-
vectors) can be used as a dimensionally reduced representation of
a molecular conformation. Best results in correlating conformation
to protonation for a particular residue are obtained when the atoms
included in the PCA are limited to the residue and its immediate
neighbors. The results presented here are based on PCA*® of
ASP-18 and all atoms within 7.5 A of ASP-18 in the 1AKI crystal
structure. In Figure 6, position of the data points represents con-
formation (projection onto the two largest eigenvectors) while
shade represents degree of protonation (darker is more protonated).
A strong qualitative association between conformation and proto-
nation is apparent: the conformational cluster in the upper left is
almost entirely deprotonated, while the cluster in the lower right is
predominantly protonated.

Plots such as Figure 6 illustrate correlation between conforma-
tion and protonation, but deriving quantitative data directly from
such a plot necessitates partitioning into conformational clusters
which, if done by hand, is subjective and effectively limited to two
or three dimensions. Clustering algorithms provide an objective
means for identifying clusters and can operate in high-dimensional
spaces that are not readily visualized. A k-means clustering algo-
rithm** (BEuclidean distance) was employed to conformationally
cluster one thousand 1-ps snapshots, represented by their projec-
tions onto the 10 largest eigenvectors, and pK, was calculated
separately for each cluster. There is no obvious choice for the
value of k (the number of clusters): values that are too low may
force distinct conformations with different protonation character-
istics into a single cluster, while values that are too high may
divide what should be a single cluster into two clusters. It seems
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Figure 6. Coupling of conformation and protonation are illustrated in
this plot, where spot location represents conformation and shade
represents protonation. Specifically, principal component analysis was
performed on a 1-ns trajectory at pH 2.5 beginning from 1AKI. Only
atoms within 7.5 A of ASP-18 were included in the analysis. This plot
shows the projections of 1-ps snapshots from the trajectory onto the
first two (largest eigenvalues) principal components. Shading repre-
sents fraction of time spent protonated in the 1-ps window surrounding
the snapshot: black represents fully protonated, lightest gray represents
fully deprotonated.
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Table 7. pK, Values Calculated for Conformational Clusters.

k=2 k=3 k=4 k=15 k=26 k=1

1 1.95 1.48 0.85 0.91 0.75 0.55
2 2.07 1.95 1.49 1.53 1.39 1.39
3 2.15 2.15 1.64 1.61 1.61
4 2.24 2.26 1.66 1.66
5 2.35 2.24 2.16
6 2.34 2.27
7 2.34

Clusters were generated using the k-means algorithm with Euclidean
distances. Data points to be clustered were projections of trajectory snap-
shots onto the first 10 principal components (see text). pK, values were
calculated for each cluster from the combined protonation state data for
each snapshot assigned to the cluster.

prudent to try a range of values, increasing k until it is clear that
further increases will not identify clusters with unique protonation
properties. For instance, in Table 7 it is clear that k of 2 or 3 is too
small to separate distinct protonation properties. £ = 4 identifies
a very acidic cluster with pK, of less than 1.0, a cluster with pK,
near 1.5 and two more clusters with pK, greater than 2.0. Increas-
ing k beyond 4 serves only to nonproductively subdivide these
clusters.

Mapping the clusters from principal component space back to
atomic coordinates provides a means to identify the physical basis
for the protonation behaviors exhibited by the different clusters.
The centroid of each cluster is taken as the representative of the
conformations in the cluster. The process of projecting a snapshot
onto the principal components is reversed to generate atomic
coordinates in Cartesian space from the centroid coordinates in
principal component space.

Representations of the k = 4 cluster centroids in atomic
coordinates are illustrated in Figure 7. These images show that in
this trajectory, LYS-13 adopts three distinct conformations, with
varying distances from ASP-18 leading to a difference in pK, of
1.4 between cluster 1 and cluster 4. The dramatic differences in the
protonation states sampled in these conformational clusters dem-
onstrates the coupling of the protonation state and conformation,
and emphasizes the need to use techniques that maintain this
coupling by analyzing protonation state in conjunction with dy-
namics.

Figure 7. Rendered images®® representing atomic coordinates corre-
sponding to centroids of clusters 1, 2, and 4 (left to right, having pK,
values 0.85, 1.49, 2.24) from k = 4 clustering in Table 7. ASP-18 is
top center, ASN-19 is in the upper left, and LYS-13 is in the upper
right. Note that bond lengths and angles are somewhat distorted due to
the averaging effects of taking the centroid.

Summary

The method described here, combining GB MD with Monte Carlo
sampling of discrete protonation states, provides a computationally
efficient means for performing constant pH MD. As evidenced by
close agreement between predicted and experimental pK, values,
this method accurately samples protonation states while producing
a conformationally and energetically stable trajectory. Conver-
gence is rapid for small molecules, but much slower for larger
biomolecules. Slow convergence is due to slow conformational
sampling and, in systems that have more strongly interacting
titratable groups than HEWL, barriers to moving in protonation-
state space. We plan to improve the method by combining it with
techniques to accelerate conformational sampling, and by incor-
porating multiple titration site Monte Carlo moves into the proto-
nation state sampling. Results also stand to benefit from continuing
improvement in generalized Born models.*

The analysis of correlation between conformation and proto-
nation state in these results illustrates the strong coupling between
these aspects of molecular configuration; the ability to sample
protonation states concurrently with conformation is an important
step in improving the physical realism of MD simulations. We
hope that the accurate constant pH MD achieved by this method
will facilitate the study of pH and protonation state-dependent
dynamics that have been inaccessible with traditional MD.
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