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A new method is presented for performing molecular simulations at constant pH. The method is a
Monte Carlo procedure where trial moves consist of relatively short molecular dynamics
trajectories, using a time-dependent potential energy that interpolates between the old and new
protonation states. Conformations and protonation states are sampled from the correct statistical
ensemble independent of the trial-move trajectory length, which may be adjusted to optimize
efficiency. Because moves are not instantaneous, the method does not require the use of a continuum
solvation model. It should also be useful in describing buried titratable groups that are not directly
exposed to solvent, but have strong interactions with neighboring hydrogen bond partners. The
feasibility of the method is demonstrated for a simple test case: constant-pH simulations of acetic
acid in aqueous solution with an explicit representation of water molecules. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2731781]

I. INTRODUCTION

A fundamental property of many systems in chemistry
and biology is the ability to exchange protons with the envi-
ronment. In particular, the structure and function of many
proteins depends strongly on the protonation state of titrat-
able amino acid residues, as demonstrated by pH dependence
of stability or activity.l_13 Over the last decade or so several
molecular simulation methods have been proposed in which
protonation states are variable and the pH is a fixed param-
eter. These methods have recently been reviewed by Mongan
and Case."

The earliest approach is due to Mertz and Pettitt," who
treated the protonation state as an additional continuous de-
gree of freedom, assigned it a fictitious kinetic energy, and
incorporated it into an extended Lagrangian, as is done in
Car-Parrinello'® or Nosé-Hoover dynamics.”"20 Similar
methods have been proposed by Borjesson and
Hl'inenbergelrzl’22 as well as Brooks and co-workers, who
added a restraining potential to reduce simulation time spent
in unphysical fractional protonation states. >

In a second category of methods, the system is restricted
to physically meaningful, discrete protonation states. Ordi-
nary molecular dynamics is performed; periodically, Monte
Carlo moves between different protonation states are at-
tempted. In the methods of Baptista and co-workers, 0%
Mongan and Case,14 and Antosiewicz and (:0—\7vorkers,29_33
the trial Monte Carlo moves consist of an instantaneous
switch between protonation states. Changing the protonation
state of an acidic group without allowing the solvent to relax
will lead to a large, unfavorable change in energy and thus a
low probability for acceptance of Monte Carlo moves.
Therefore, these methods must necessarily make use of a
continuum solvation model, which can adjust to the new pro-
tonation state instantaneously. (The method of Baptista is a
hybrid, in which ordinary molecular dynamics is run with
explicit solvent, instantaneous protonation-state moves are
made with continuum electrostatics, and after each move, the
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solute is frozen in the new protonation state to allow the
solvent molecules to relax.) In contrast, the method of Biirgi
et al.,** in which trial moves are free energy calculations,
that does not require the use of implicit solvent. However,
performing an entire free energy calculation for every trial
move is prohibitively expensive, unless the free energy cal-
culations are very approximate.

In this paper, a new method is presented for performing
molecular simulations with variable protonation states. As
with earlier methods, our approach is not intended to de-
scribe the dynamics of proton transfer to and from solution,
rather, to visit conformations and protonation states with the
correct statistical probability for a system in equilibrium with
a bath at constant temperature and pH. The method falls in
the second category described above: it alternates sampling
over configurations for a given protonation state with Monte
Carlo moves attempted between physically meaningful, dis-
crete protonation states. Trial moves consist of relatively
short molecular dynamics trajectories (not free energy calcu-
lations) using a time-dependent potential energy that interpo-
lates between the old and new protonation states. In essence,
this procedure is hybrid Monte Carlo®™ with a time-
dependent Hamiltonian. It samples conformations and proto-
nation states from the correct statistical ensemble, indepen-
dent of the trial-move trajectory length, which may therefore
be adjusted to optimize efficiency. Because moves are not
instantaneous, the method does not require an impicit solvent
model, and should also be useful in describing buried titrat-
able groups that are not directly exposed to solvent, but have
strong interactions with neighboring hydrogen bond partners.
The feasibility of the method is demonstrated for a simple
test case: simulations of acetic acid in aqueous solution at
constant pH, with an explicit representation of water mol-
ecules.

Il. THEORY

Consider a molecular system which may exist in a finite
number of states I', each defined by the presence or absence
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of various labile protons. The only states considered are
those in which protons are covalently bound to particular
acidic groups, or are entirely absent. Classical mechanics is
used for simplicity, but extending the present treatment to
quantum statistics is straightforward with the path-integral
formulation.*>® Each atom i e I has mass m;, position r;,
and momentum p;. The system energy is given by a Hamil-
tonian,

2
H(F’rief’pier):|:2 M:| +U(F’rief)’ (1)
iel 2mi

where U is a potential that depends explicitly on the proto-
nation state as well as on the positions of the atoms. The
system can exchange energy and labile protons (but not other
atoms) with a bath at temperature 7 and constant pH. By
definition,

pH = —log,o ay+, (2)

where ay-+ is the proton activity. The proton chemical poten-
tial wy+ is given by

Busr = Biyye + In ay- (3)

=Busy. — pH(In 10), 4)

where B=1/kzT and ,u,gﬁ is the standard-state proton chemi-
cal potential. The probability distribution for observing the
system in a particular state I" with positions r;.r and mo-

menta p,.r is then given by a semigrand ensemble,***
p(F’rieF’pieF)
1 r
= EhNFQF exp(ﬁMH*n}ﬁ - BH) (5)
== - exp([ Buyy — pH(In 10)Jnyy. - BH), (6)
2 hTQyp
where

1
=) f hTQF exp([,B,u.gﬁ —pH(In 10)]n£I+ - BH)
r

x 1 &rid*p; (7)
iel’

is a semigrand partition function. Here / is Planck’s constant,
and N, Qr, and n{F are the number of degrees of freedom,
the degeneracy (i.e., the product of factorials of numbers of
indistinguishable atoms of each kind), and the number of
labile protons, for each state I". Equation (6) provides a pre-
cise definition for the term “constant-pH simulation:” just as
a constant-temperature simulation is one that visits points in
phase space with the Boltzmann distribution, a constant-pH
simulation visits protonation states and points in phase space
for each state with probability distribution given by Eq. (6).

It is convenient to replace the “real” system described
above by a fictitious system for which protons do not vanish
in deprotonated states, but instead are replaced with “ghost”
atoms, in a similar approach to that used in alchemical free
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energy calculations.”® This fictitious system is to be defined
in such a way that the marginal probability distribution for
the system being in a given protonation state and with real
atoms at given positions is the same for the real and fictitious
systems. The ghost atoms have the same mass, holonomic
constraints, and interactions with covalent neighbors. How-
ever, they do not interact with any other atoms. For the fic-
titious system, the number of atoms, constraints, and degrees
of freedom are constants, equal to the numbers for the
state(s) of the actual system in which all labile protons are
present. At this point the potential U is assumed to have the
particular form,

U(rvrier) = UFF(F’rieF) + Ul\éall:lence!H+(r7rieF) + bF' (8)

The first two quantities are given by a molecular mechanics
force field,* ™ the parameters of which will depend on the
protonation state. Here Uya<"*H+ denotes intramolecular (va-
lence) force field terms acting on labile protons. All other
terms in the force field are included in Ugg. The quantities b
depend only on the protonation state, not on the positions,
and represent the energy of forming covalent bonds to labile
protons. This energy is not taken into account by the force
field itself. The Hamiltonian for the fictitious system is then
defined to be

,2 _
f[(rvr[ap[) = |:E M‘| + U(Fari)’ (9)
i 2m;
ﬁ(r’ri) = Ugp(l',r;cp) + Ulvia}gence'H+(F,ri) + I;l"’ (10)

which includes kinetic energies and force field valence terms
for all labile protons whether they are present or absent (i.e.,

replaced by ghost atoms). The quantities by are now defined
so that they are the sum of the energy of forming covalent
bonds to labile protons, the standard proton chemical poten-
tial, and a correction related to the different ideal gas free
energies of the real and fictitious systems,

_ id r
br=br—ﬂg+n;++k3T1n ? ( ) (11)
(),
where
04T = — f exp| - 8| 2 L Il &, (12
RTQ er2mi |)icr "

~id _ |pi|2
QU= | exp|-B| 2 -
i <M

- BU{JS“C““*) [ &rlldp. (13)

il i

In Eq. (12), the integral is over the momenta for all atoms in
state I'. In Eq. (13), the integral is over the positions for
ghost atoms only and momenta for all atoms (real and ghost).
These integrals will be independent of the positions of the
real atoms r;_r. The ratio Q'/ Q' is not dimensionless, but
different choices of units will merely result in adding the
same overall constant to each l;r.
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The fictitious system will be sampled from the probabil-
ity distribution,

p(T,r;,p,) = — exp[— pH(In 10)n;,. — BH], (14)

I | —

where
E=>, J exp[— pH(In IO)nIl:I+ - pHIII &rid®p;. (15)
r i

In that case, the marginal probability distribution that the
system is in a state I" and that the real atoms have positions
r;.r, obtained by integrating over positions of ghost atoms
and all momenta, will be the same for the real and fictitious
systems,

Jp(r’rieF’pieF)H d3pi=jﬁ(r,ri,Pi)H d3’”iH & i»

iel igl i
(16)

as desired.

In principle, the quantities l;r could be estimated from
the dissociation energy of a labile proton, the standard proton
chemical potential, and Eqgs. (12) and (13). It is convenient,
however, to simply treat them as adjustable parameters and

f exp(— BLUpr(HA, ;) + Ut

FF
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fit them so as to reproduce experimental acid dissociation
constants, thereby compensating for errors in the force field
(as well as obviating the need for the ideal gas correction or
the proton standard chemical potential). For example, con-
sider an acid that exists in a protonated state HA and a depro-
tonated state A~ with a measured pK,. The difference in
parameters Ab= I;H A—l; A- 18 to be chosen such that the mar-
ginal probability of observing each protonation state at a
specified pH is equal to the fraction which would be ob-
served experimentally in dilute solution; that is,

JMManfm%

pK,=pH-log), (17)
Jﬁ(A_’ri,pi)H d’rid’p;
p(HA)
:pH_lOgO,~ ) (]8)
5(A)
or equivalently,
BA) = —— (19)
P = oK,
This will be the case if Ab is set to
alence,H+(HA’ri)])H d3r,~
: (20)

Ab = - pK,(In 10) + k3T In

f exp(— BlUre(A™,1) + Ugence’HJr(A_,ri)])H dSVi

The ratio of configuration integrals in Eq. (20) may be esti-
mated by standard methods for free energy calculations, such
as the Bennett acceptance ratio method.” ™ The parameters
thereby obtained might be expected to be fairly transferable
among chemically similar functional groups, although this
will depend on the particular force field used.

In order to sample protonation states, positions, and mo-
menta of the fictitious system, a Markov chain is constructed,
defined by a transition probability distribution P(I",r;,p;
—T",r/,p/) such that

2 ‘I‘ﬁ(r’ri’pi)P(F7ri’pi—> F/’ri,’pil)l—-[d}rid3 i
r i

=p(",r/,p;), (21)

where p(I'’,r/,p]) is given by Eq. (14). Two kinds of tran-
sitions will be performed: transitions in which the positions
and momenta are changed, but the protonation state is kept
the same, and transitions in which the protonation state as
well as the positions and momenta are changed.

The first kind may be performed with any of the usual

means for visiting states according to the canonical distribu-
tion; for instance, molecular dynamics with periodic resam-
pling of velocities from the Boltzmann distribution, ordinary
constant-temperature Monte Carlo, Langevin, or Nosé-
Hoover dynamics.”fzo’éo All of these methods generate tran-
sitions between points in phase space within the same proto-
nation state I', such that the transition probability distribution
O(,r;,p;—T,r!,p;) satisfies

J p(I',r;,p)Oo(l',r;,p; — F>ri,’pi’)H dS"id3Pi

=p(Tr;.p;). (22)

The second kind of move may be attempted with arbi-
trary probability pr_ -+ as long as this probability is symmet-
ric,

Pr—r'=pri_r- (23)

A trajectory is run for a time ¢, during which the potential
energy is switched between the two protonation states. That
is, dynamics is run with the time-dependent Hamiltonian,
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HFHF'(T’r[»pi) = E 2_ + UF*?F,(T’I‘[)’
i«
where
UF—»F'(T: O’ri) = ﬁ(rvri)s (24)
UF*,FI(TZ t,ri)zﬁ(r',r,-), (25)
UF*»F'(T’I.[) = UF’*»F(I - T’ri)' (26)

The potential may be switched from one protonation state to
another in any manner, as long as forward and reverse
switches are mirror images of each other under time reversal,
i.e., Eq. (26) is satisfied. (Note the switching in one direction
does not necessarily need to be symmetric in time.) The sim-
plest possibility is linear interpolation

Up_p(7r) = (1 - f) T(,r) + (f) O, r), (27)

but more complex switching schemes could be be used.

Hamiltonian dynamics defines a reversible, volume-
conserving map X— ¢x between points in phase space.m_63
Here ¢x denotes the final point of a trajectory started from
the initial point x=(r;, p;). Let o denote momentum reversal;
that is, if x=(r;,p;), then ox=(r;,—p,). Then

doPx = oX.

In the present case there are two time-dependent potentials
Ur_p» and Upr_y satisfying Eq. (26). Let ¢ and ¢ be the
maps generated by dynamics with Up_,» and Uy _p, respec-
tively. If dynamics with U_ - takes an initial point X to a
final point ¢x, then dynamics with Upr/_ will take o¢x
back to ox. That is,

Yyopx = oX.

In addition to being reversible, the map generated by Hamil-
tonian dynamics is volume conserving (whether or not the
potential is time dependent). That is, the Jacobian of the
variable transformation from initial to final phase points is
unity,

agx

=L (28)

and likewise for ¢. Equivalently, if & is the Dirac delta func-
tion,

o(x —x') = 8(¢x - ¢x’),

and likewise for . Momentum reversal is also volume con-
serving,

S(x—-x")=d(ox —ox').

Therefore, the conditional probability distribution p(I",x
—1I'",x") for attempting a trial move to a protonation state
I'" and phase point x’, given the current protonation state I"
and phase point x, is symmetric with momentum reversal,
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p(Cx —T1".x")=pr_p 6’ — ¢x) (29)
=pr_rolox’ — o¢x) (30)
=priro(yox’ - Yodx) (31
=prs_r(ox’ - ox) (32)
=p(I'"",ox" —I',0x). (33)
That is,

p(Cr,p; — I''.x/,p)) =p(I",x/,—p; = [',r,—p)).

It should be noted that a discretization of Hamilton’s
equations such as the velocity Verlet integrator will also give
a reversible, volume-conserving map. This is shown explic-
itly in the appendix. Therefore, the trial-move probability
distribution will also be symmetric for discrete, approximate
molecular dynamics trajectories, independent of the time
step.

Moves are accepted with probability given by the Me-
tropolis criterion,

!

a(r’ri’pi_) rl’ri’pi,)

5" r!p!
=min|:1,—p£ L p’)} (34)
p(F’ri’pi)
=min[1,exp(= pH(In 10)Ang+ — BAH)], (35)
where
Ang+= n{l; - ”£1+’ (36)
AH=H(T',r',p') - HT,r,p). (37)

Note that AH includes the change in kinetic as well as po-
tential energies. The transition probability distribution
R(,r;,p;—I",r/,p/) is the product of the trial-move dis-
tribution and the acceptance probability

R(F’ri’pi - F,’ri”pi’)

=p(Tr,p;— I'.x/,p))a(l’,r,p;, — T, x/.p)), (38)
which satisfies detailed balance
ﬁ(r’ri’pi)R(r9ri’pi - F,’ri,’pi,)

=5(F,»ri”pil)R(F,’r, pl’ _)F’ri»pi)’ (39)

i°

since p(I",r;,p,)=p(I",r;,—p;). The net transition probability
distribution due to both kinds of moves is then
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i°

R(F’ri’pi - F,J.i,’pi,)s

P(T,r,p;— T ,x/,p))
g
r+1’

I"+r I"+I

x I1 or;—r))ép;—p)), I'=T"
L i

where the second term for the case I'=T"" is due to rejected
protonation-state-change moves. The transition probability
distribution given by Eq. (40) satisfies Eq. (21), as desired.

lll. NUMERICAL RESULTS

To demonstrate the feasibility of the method, simulations
of acetic acid were performed using the force field param-
eters of Jorgensen et al*” in a bath of 249 TIP4P water
molecules.”* The parameters for each protonation state are
given in supplemental information.> Constraints were ap-
plied to bond lengths and angles for the water molecules and
the labile proton in acetic acid. Simulations were performed
in a cubic box of length 19.8 A. The electrostatic energy and
forces were computed using the Ewald sum.® Although
there is still controversy in the literatture,66 some degree of
consensus has emerged that Ewald summation is most likely
the most reliable method for giving results that match as
closely as possible those of an infinite aperiodic system.m’(’8
The particular form of the Ewald sum used in this work is
the inclusion of the mean of the Ewald potential, so that the
sum remains independent of the choice of screening param-
eter, even for a system with net charge. Such a choice gives
ionic solvation free energies that become independent of sys-
tem size for relatively small solvent boxes. "

A parameter Ab was determined for the OH covalent
bond from Eq. (20). To compute the ratio of configuration
integrals (i.e., the free energy change), the change in the
force field parameters for the two protonation states was di-

1 T T T g’___a___-g
o .-
L ,6/ o 1
0.8 - ,’/O -
/
D// 1
/7
0.6 — 0 _
o /
< e i
a /
04 — ,/ =
p
L s 1
/
0.2 [~ // a -
,é/
L ’9/, 4 1
o) Sndutiill o I . ! . ! :
3 4 5 6 7
pH

FIG. 1. Fraction of acetate ion, p(A~), as a function of pH. Squares, dia-
monds, circles are the fractions observed in three independent constant-pH
simulations; dotted line is 1/(1+10"%« ") with pK,=4.76.

_¢ [1— > Prar"]Q(F,ri,Pi*F’l'i”Pi/)"‘ > {Prﬂr"—fR(Fal‘i,p,-aFf/,l';-',PZ-')H &Ir'dp”
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(40)

vided into 34 steps (“lambda values”). For each step, inde-
pendent molecular dynamics simulations were run for 10 ns,
at a constant temperature of 298.15 K, and resampling ve-
locities from the Boltzmann distribution at 0.5 ps intervals.
All molecular dynamics simulations were run with a time
step of 2 fs and the velocity Verlet integrator.60

The free energy change for each step was estimated us-
ing the Bennett acceptance ratio method,57 and added to ob-
tain the total free energy change for switching force field
parameters from the deprotonated state to the protonated
state, 97.00+0.03 kcal/mol. Using this value and the experi-

mental pK, for acetic acid (4.76), Ab was set to
—103.49 kcal/mol. That is, the potential energy for a confor-
mation in the deprotonated state was just that given by the
force field (with parameters for the deprotonated state) the
potential energy for a conformation in the protonated state
was that given by the force field (with parameters for the
protonated state) minus 103.49 kcal/mol.

Constant-pH simulations were then run at a series of
different pH values, ranging from 3.0 to 7.0. For each pH,
three independent simulations were run for 10 ns of ordinary
constant-temperature dynamics. Every 10 ps, a change in
protonation state was attempted. This change was itself per-
formed over 10 ps, during which the potential energy was
changed by simple linear interpolation from one state to an-
other (more complicated interpolation schemes did not sig-
nificantly change acceptance probabilities). The overall time
for each simulation was therefore 20 ns. The fraction of
moves accepted was about 20%. Switching the protonation
state over a time longer than 10 ps did not significantly im-
prove acceptance probabilities per unit time, but switching it
more quickly led to lower acceptance probabilities; a switch-
ing time of 10 ps seemed close to optimal.

The fraction of the deprotonated state observed in the
simulations is shown as a function of pH in Fig. 1. There is
a good agreement with the expected titration curve, Eq. (19).
This is a demonstration of the consistency of the method, and
that good sampling over protonation states can be achieved
in explicit solvent with reasonable computational expense.

IV. CONCLUSIONS

A method has been presented for performing molecular
simulations with variable protonation states, such that con-
formations and protonation states are visited with the correct
statistical probability for a system in equilibrium with a bath
at constant temperature and pH. The method relies on rela-
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tively short (in this case, 10 ps) molecular dynamics trajec-
tories used as trial Monte Carlo moves; in essence, hybrid
Monte Carlo with a time-dependent Hamiltonian. Correct
sampling is independent of the trajectory length, so that it
may be adjusted to achieve optimal move acceptance per unit
time.

The primary motivation for the current work was to be
able to conduct simulations with variable protonation states
using explicit solvent. The method should also be useful in
treating groups not directly exposed to solvent, but making
strong interactions with neighboring hydrogen bond partners;
for instance, titratable residues located in the interior of a
protein. The numerical simulations presented in this work
were performed on a system with only one titratable group.
For more complicated systems, it might be useful to perform
moves in which several protonation states are changed at
once.

The present work addresses only the problem of sam-
pling over protonation states. Whether or not this or any
other method can correctly predict experimental protonation
states and pH-dependent conformational changes will de-
pend on the ability of the force field and solvation model
used to describe interactions of titratable groups.
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APPENDIX: REVERSIBILITY AND PHASE-SPACE
VOLUME CONSERVATION OF DISCRETE DYNAMICS

It is shown that the velocity Verlet integrator with a
time-dependent potential energy that symmetrically switches
between two states generates a reversible, volume-
conserving map between phase points. Assume dynamics is
run for N time steps, each of length Af, such that the total
trajectory length is t=NAt¢. The Hamiltonian is given by

pl?
HF*)F,(T’r’p)=2_+UF*}F,(T’I.)’
m
such that
ar or Ar)?
k+1 k+1 1+VFk( )
O’?l'k &pk _ 2m
B A%\ | At
Prs1 TP VFk+VFk+1<1+VFk( )) Ar
(9['/( &pk 2m 2

Since each time step conserves volume, so will the entire
trajectory.
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Ur_r/(7r)=Up_p(t - 71).
The forces are
Fr_p(nr)=-VUr_p/(7r)
and also satisfy
Fr_p/(7r)==Fp_p(t—7r).
Given a phase point at step k, the point at step k+1 is
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Consider a “forward” trajectory r;, p, using the potential
Ur_r, and a “reverse” trajectory ry, p; using the potential
Urr_r. If ry=ry_, and p;=—py_;, then

A | (Ar)?
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=ty =+ P (N = KAy )
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—Ppo- That is, if the reverse trajectory starts at the final point
of the forward trajectory (with momenta reversed), then it
will terminate at the initial point of the forward trajectory
(again, with momenta reversed).

Furthermore, each step of the dynamics conserves phase-
space volume. This can be seen by calculating the Jacobian,
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