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Abstract: We describe a complete implementation of all-atom protein molecular dynamics running entirely on a

graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent.

We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We

evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation

running on a single CPU core.
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Introduction

Graphics processing units (GPUs) originated as specialized hard-

ware useful only for accelerating graphical operations, but they

have grown into exceptionally powerful, general purpose com-

puting engines. Modern GPUs far exceed CPUs in terms of raw

computing power.1,2 As a result, the use of GPUs for general

purpose computing has become an important and rapidly

growing field of research. Many important algorithms have

been implemented on GPUs, often leading to a performance

gain of one to two orders of magnitude over the best CPU

implementations.3

Molecular dynamics simulations of macromolecules are

extremely computationally demanding, which makes them a nat-

ural candidate for implementation on GPUs. With currently

available MD codes, for example, it is impossible to simulate

the folding of any but the smallest, fastest folding proteins.4,5

MD uses a combination of several algorithms. A few previous

studies have investigated GPU implementations of specific algo-

rithms used for MD. For example, Elsen et al., implemented a

simple implicit solvent model (distance dependent dielectric).1

Stone et al., have examined a GPU implementation for electro-

statics.2 Anderson et al., have implemented several algorithms,

including integrators, neighbor lists, Lennard-Jones, and bond

forces (but not torsions or constraints).6

Here, we present the GPU implementation of a complete,

modern implicit solvent model for all-atom protein simulation in

traditional force fields, with a very high performance compared

to a single CPU core. We discuss some aspects of GPU architec-

ture that impact the design of the code, and describe important

optimizations needed to obtain good performance. We then eval-

uate it, and show that it can sometimes provide over 700 times

the speed of highly optimized CPU based implementations.

Challenges of Porting to a GPU

While GPUs offer tremendous computing power, this comes at

the cost of reduced flexibility. GPUs are different from CPUs in

several fundamental ways that impact how they can be pro-

grammed. It is important to understand these differences to

obtain good performance.

Scaling

CPUs typically provide a small number of very fast processing

units, whereas GPUs have a large number of slower processing

units. For example, the current high end Intel Xeon CPU has

four processor cores,7 while the current high end ATI GPU

(Radeon 4870) has 800 math units.8 That number is likely to
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continue increasing with future generations. Algorithms used for

MD are traditionally evaluated based on how they scale with the

number of atoms being simulated, but scaling considerations are

only meaningful when the number of atoms is large compared

to the number of math units. GPUs have already reached a point

where, for small or medium sized proteins, the number of math

units may be comparable to the number of atoms. On such a

processor, the total amount of computation to be done may be

much less important than how fully the available processing

resources can be utilized.

Memory Access

One feature that CPUs and GPUs have in common is that mem-

ory access is much slower than computation, although GPUs

have much faster memory systems, some having greater than

100 GB/second. Loading a value from memory can stall the

processor for tens or even hundreds of clock cycles. CPUs deal

with this by including a large amount of very fast cache mem-

ory. This allows programs to access memory in random order,

and as long as the amount of data in use at one time is not too

large, execution is fast.

In contrast, GPUs have only a very small amount of special

purpose cache memory and hide latency with massive multi-

threading. Programs cannot rely on caches to hide latencies from

random memory access. Instead, it is absolutely essential to

group related data together and access it in contiguous blocks.

In many cases, it is more efficient to repeat a calculation than to

store the result in memory and reload it later.

Communication Between CPU and GPU

Data access from the math units to GPU local memory is slow

compared to computation, but transferring data between the

GPU and CPU across the PCIe bus is much slower still. For this

reason, communication between the GPU and CPU should be

kept to an absolute minimum. Ideally, the simulation should be

executed entirely on the GPU, and results should be sent back to

the CPU only infrequently for analysis and reporting. This

requires that all parts of the computation be implemented on the

GPU, including force evaluations, constraints, integration, etc.

Otherwise, it will be necessary to transfer coordinates and/or

forces between the CPU and GPU as part of each time step,

which will reduce performance.

To test the effect of data transfers between the CPU and

GPU, we modified the molecular dynamics code described in

the next section to transfer all of the atomic coordinates from

GPU to CPU and back again at each time step. No extra compu-

tation was done with these values; they were simply transferred

and then discarded. Simulating the 576-atom villin headpiece

with implicit solvent on an ATI Radeon 4870 GPU, this change

caused the overall performance to decrease by 20%.

This applies not just to transferring data, but also to issuing

commands. With any device controlled by a CPU but not physi-

cally part of it, there is a time delay between issuing a command

and the beginning of its execution. In the case of a GPU, this la-

tency can be greater than the time required to actually perform

the calculation. For example, on an ATI Radeon 4870 GPU run-

ning under Windows XP, the latency of executing a kernel is

�25 ls with the AMD Stream SDK 1.0.9 Given this processor’s

maximum theoretical performance of over one teraflop,8 25 mil-

lion floating point instructions could have been executed in that

time. To combat this, it is necessary to do as much computation

as possible in each function, combining what would logically be

several function calls into one whenever possible.

Flow Control

Another important feature of GPUs is that the processors are not

independent of each other. Threads are arranged in groups (typi-

cally between 16 and 64 threads on current GPUs), and all the

threads in a group must execute exactly the same instruction at

the same time (i.e. SIMD execution). This requires branching

and other types of flow control to be used with care, since there

is a large performance penalty if multiple branches need to be

followed by the threads in a single group. When branch diver-

gence occurs within a thread group, all threads will pay the cost

of executing both sides of the branch. Whenever possible, it is

best to avoid branching altogether. When it is absolutely neces-

sary, it should be done in a spatially coherent way so that adja-

cent threads will usually follow the same branch.

Development Tools

Aside from the technical differences between CPUs and GPUs,

the development tools available for GPU programming are much

less mature than those for CPU programming. Our initial efforts

on AMD boards were marked by considerable problems with

buggy compilers, errors introduced by the requirement that array

indices be floating point, limitations on the number of registers

available in a kernel and the iteration count available in do-

loops, to name several of the early ongoing issues. AMD and

NVIDIA have expended considerable effort in fixing these types

of problems, and as a result porting code to the GPUs is now

much less painful. A major improvement on the AMD side was

the introduction of the CAL9 framework which allowed us to

discontinue the use of the Microsoft DirectX 9 compiler which

was the source of many problems. Nonetheless, problems caused

by immature development tools are still frequently encountered.

In summary, realizing the full potential of the GPU still

requires considerable effort in reworking the data structures and

code to take advantage of the particular GPU architecture, and

not all algorithms are amenable to these types of architecture.

The AMD and NVIDIA implementations described here are dif-

ferent in many ways, reflecting the different strategies required

to optimize the performance for the different boards.

Implementation

ATI Implementation Details

The ATI implementation is based on the Brook stream program-

ming language.10 Brook extends the C programming language to

allow general-purpose programming on a GPU. The primary

Brook constructs are streams and kernels. Streams are collec-

tions of relatively homogenous data that can be operated on
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independently in parallel. Kernels are the subroutines running on

the GPU which carry out the parallel operations on the streams.

In the current context, an example stream would be the atom

coordinates which are input to a kernel that computes the

bonded forces on each atom.

For the generations of ATI boards that were available while

the software was under development, scatter capability (i.e. indi-

rect writes such as a[i] ¼ x) was not available. To circumvent

this limitation, the different force and SHAKE calculations are

carried out using two kernels:

1. A computational kernel to calculate the force or modified

coordinates in the case of SHAKE and output the results to

the frame buffer.

2. For each computational kernel a corresponding helper kernel

to gather and sum the results stored in the frame buffer and

update the final atom-indexed force array with the sum or

updated coordinates in the case of SHAKE.

Bonded and Nonbonded 1–4 Interactions

The four bonded interactions (harmonic, angle, proper, and

Ryckaert-Bellemans dihedrals) and the 1–4 nonbonded Lennard-

Jones and Coulomb interactions are calculated by a single ker-

nel. The inputs to the kernel are streams containing the indices

of four covalently bonded atoms and the bond parameters (force

constants, ideal bond lengths and angles, . . .) needed to calculate

all possible bond and nonbonded 1–4 interactions among the

four atoms. The kernel output is the sum of these six forces for

each of the four atoms. For example, if the atom indices are (i,
j, k, l), then the harmonic bond forces between atoms (i, j), (j,
k), (k, l), angle bond force (i, j, k) and (j, k, l), both proper and

Ryckaert-Bellemans dihedral forces, and the 1–4 nonbonded

force between (i, l) are computed. Many of the atom sub groups

will occur in more than one input group. For example, the input

atom indices (i, j, k, l) and (i, j, m, n) both implicitly include the

harmonic bond (i, j) interaction. To prevent the harmonic bond

interaction between atoms (i, j) from being included more than

once, the input force constant for the duplicate entry is set

to zero. A similar approach is followed for the other force sub-

types to insure that each valid interaction is included exactly

once and that invalid interactions do not contribute to the output

force.

The strategy of computing forces that do not ultimately con-

tribute to the final output force superficially seems to increase

the computational time. However, the advantages of this

approach are two-fold:

1. The number of helper gather kernels required is reduced from

15 to 4,

2. The number of memory accesses is significantly reduced.

The computational effort used in the helper kernels is mini-

mal. However the overhead associated with the launch of each

kernel is significant relative to the overall computational time

for the relatively small systems considered here and in aggregate

the overhead required is a significant fraction of the total time.

For larger systems or for boards with scatter capability, this

advantage may diminish in importance depending on the per-

formance of scatter.

The number of memory accesses is minimized since if the

coordinates for atoms i, j, k are retrieved to calculate the angle

bond force, then under the merged approach adopted here the

coordinates can be ‘reused’ for the calculations of the (i, j) and
(j, k) harmonic bond forces. In general memory accesses are ex-

pensive relative to computations in terms of clock cycles

required. For the 576-atom villin headpiece, the total number of

bonded interactions was 4197, the merged list had 1770 entries.

Of the 1770 entries, 552 of the Ryckaert-Bellemans interactions,

1652 proper dihedral, 2485 angle, 5016 bonded, and 267 1–4

force calculations were not used (i.e., force contribution was set

to zero). However, the speedup over an earlier unmerged collec-

tion of kernels for each of the bond and 1–4 nonbonded interac-

tions was a factor of 6.2 for villin.

Nonbonded Interactions

The nonbonded interactions include the 6–12 Lennard-Jones and

Coulomb potentials. The inputs to the computational kernel are

the two Lennard-Jones parameters, the atomic charges, and an

exclusion matrix of size N2/4, where N is the number of atoms

in the system. The output is the computed nonbonded forces.

The entries in the exclusion matrix are encoded such that the (i,

j) element of the matrix signals whether atoms with indices 4j,

4jþ1, 4jþ2, 4jþ3 are to be excluded from interacting with atom

i; this reduces the number of memory access and storage

required. The choice of four j-entries per entry was made based

on the degree of loop unrolling of the inner loop (see below).

The encoding is accomplished by setting the initial value of

each entry to 210 ¼ 2 3 3 3 5 3 7. If atom 4j is to be

excluded, the entry is divided by two, if atom 4jþ1 is to be

excluded the entry is divided by 3,. . . The kernel then decodes

the exclusion entry by testing whether the modulus of the exclu-

sion matrix entry divided by (2, 3, 5, 7) for the four atoms

(4j24jþ3) respectively, is nonzero. For instance if atom 4jþ2 is

to be excluded from interacting with atom i, but the other three

atoms (4j, 4jþ1, 4jþ3) are to be included, then the exclusion

matrix entry at (i, j) is 42. Since 42 is divisible by 2, 3, 7, but

not 5, the interaction of atom i and atom 4jþ2 is excluded,

while the other three interactions are included. The exclusion

matrix can be reduced to size O(N) at the expense of making

the kernel slightly more complicated. However, empirical tests

showed this reduction does not lead to a significant lowering of

the computational time required for the proteins of sizes being

simulated here.

For the current ATI implementation, the computation time

for the nonbonded terms scales as N2 due to the absence of a

scatter capability. In contrast, the Nvidia implementation makes

use of scatter capability and the computation time scales as N2/

2. The nonbonded computational kernel (as opposed to helper

kernel to gather the total force on each atom) unrolls both the

inner and outer loops over the atoms by four. One objective of

unrolling is to take advantage of streaming SIMD extension

(SSE)-like capabilities available on some graphic boards. For

example in calculating 1/r, the code
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float4 r2; inverse r;

. . .

inverse r ¼ rsqrtðr2Þ;
is used, where r2 contains the four squared distances between

atom i and atoms j, jþ1, jþ2, jþ3. The function rsqrt( ) com-

putes 1/Hr for all four distances using SSE-like instructions to

reduce the number of processor cycles needed. Unrolling also

lowers the number of memory accesses since atom coordinates

and parameters are reused: the coordinates and parameter associ-

ated with atom i only need to fetched from memory once to cal-

culate the force between it and atoms j, jþ1, jþ2, jþ3 and not

four times as would be required for more naı̈ve implementa-

tions.

Another optimization technique employed was to partition the

inner loop over the atoms into roughly equal-sized blocks that are

processed independently. Hence if the number of blocks is speci-

fied as p, then for a fixed outer loop index i (in practice i, iþ1,

iþ2, iþ3 since the outer loop is unrolled by four), p GPU threads

are used to process the inner loop. The first thread would handle

atoms with indices j ¼ 1, q, the second thread would handle

atoms with indices j ¼ qþ1, qþ2, . . . 2q, . . . and the pth thread

would handle atoms with indices j ¼ q 3 (p 2 1) þ 1, N, where
q ¼ int(N 2 1/p) þ 1. The advantage of this approach is that it

allows the thread scheduler on the GPU board to allocate resour-

ces more efficiently. While one block of work is waiting for coor-

dinates and parameters to be retrieved from memory, another

block whose data is available can be processed. The disadvantage

to this approach is that more gathers are required to sum the total

force on each atom: for p blocks, p gathers will be required to

sum the contribution from each block. For the current generation

of boards, a value of p equal to four was found to be optimal. For

larger values of p, while the computation kernel was faster, the

speed up was offset by the increased time to do the gathers, result-

ing in negative or little net gain.

OBC Implicit Solvent

The implicit solvent model used here is based on the OBC Type

II model.11 The electrostatic part of the solvation free energy is

given by the equation

DGpol ¼ �1=2

X
qiqj=f

GBðrij;RI;RjÞð1� 1=ewÞ

Here qi is the charge on atom i, Ri is the Born radius for atom i,
rij is the distance between atoms i and j, and ew is the solvent

dielectric. fGB(rij, RI, Rj) is taken to have the functional form:

fGBðrij;RI;RjÞ ¼ ½r2ij þ RiRj expð�r2ij=4RIRjÞ�1=2

Since the Born radii are a function of the conformation of the

biomolecule and hence the ri, the force dDGpol/dxik is given by

the equation

dDGpol=dxik ¼ ð@DGpol=@rijÞð@rij=@xikÞ þ RN
mð@DGpol=@RmÞ
ð@Rm=@rijÞð@rij=@xikÞ

The calculation of the OBC force is implemented with three

N2 loops. The first loop calculates the Born radii based on the

current biomolecule conformation. The next loop computes

(@DGpol/@rij) and accumulates the @DGpol/@Rm for each atom i.
Using the term @DGpol/@Rj calculated in the second loop, the

third loop computes the second term of the force and adds it to the

term @DGpol/@rij to get the implicit solvent force on each atom.

The optimization strategies employed for the nonbonded

interactions discussed above were also applied to both of the

implicit solvent loops with the same degree of unrolling and par-

titioning of the inner loop. One approach that was tried but was

unsuccessful in reducing the computational time was to merge

the second loop of the implicit solvent calculation with the non-

bonded calculations. The obvious advantage of this approach is

that only two sets of N2 loops instead of three would be needed.

This approach would also remove one set of gathers required to

sum the forces. However, the required time actually increased.

Further analysis showed that the number of cache misses

increased significantly and the register requirements were much

higher.

Another approach attempted was to merge the calculation of

the Born radii with the third loop, thereby removing the need

for the initial N2 loop. The drawback to this strategy is that the

Born radii used in the two remaining loops are then based on

the conformation at the previous timestep. Given that the Born

radii change slowly relative to the femtosecond timestep

employed, the approximation appeared to be worth the reduction

in computational effort. However energy conservation studies

using a Verlet integrator showed the approximation led to unac-

ceptable drift in the energy, and as a result, this approach was

abandoned.

SHAKE Algorithm and Stochastic Dynamics

Stochastic dynamics was applied to the system as outlined by

van Gunsteren and Berendsen12 The bond lengths between

hydrogen atoms and their heavy atom partners were constrained

to their ideal value using the SHAKE algorithm.13 The stochas-

tic dynamics algorithm with constraints is implemented in four

major steps (see Performance section of Ref. 12): an integration

step, followed by an application of SHAKE, followed by another

integration step and a final application of SHAKE. Each of the

steps is implemented as a O(N) loop and no effort was made to

optimize these steps since the contribution of this portion of the

simulation to the total simulation time is small.

One small change to naı̈ve implementations of stochastic dy-

namics and then SHAKE algorithm was to not compute the new

coordinates until the last major stochastic dynamics step; instead

the change between the new and old coordinates is passed

between the method calls (Dx), as opposed to intermediate coor-

dinate values (x). This reduces the number of additions and sub-

tractions and hence minimizes the error introduced through

rounding. We observed a significant improvement in the degree

of energy conservation when this small change was included

with runs using the velocity Verlet algorithm.

The Gaussian-distributed random numbers used in the sto-

chastic dynamics algorithm are generated using the KISS14 and

Box and Mueller15 algorithms. The KISS algorithm is a combi-
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nation of three simple random number generators that yields a

uniform distribution of values on the interval [0, 1]; it has been

shown to pass a number of stringent tests.16 The Box-Mueller

algorithm takes the output values from KISS and transforms

them into a Gaussian distribution. A large set of random values

(�106) is generated on the CPU using these algorithms and writ-

ten to the GPU; the random values cannot be generated effi-

ciently on the GPU due to a lack of integer arithmetic on the

available ATI boards. For even relatively small proteins, the set

of random values is quickly consumed. To generate a new set of

random values on the CPU and copy them to the GPU each

time a set is exhausted slows the program significantly. Hence

the following strategy was adopted: once the set of random val-

ues is consumed, the values are recycled after being randomly

permuted. After 100 such shuffles, a new set of random values

is generated on the CPU and copied to the GPU, overwriting the

previous set. In practice for a protein of 544 atoms, a new set

was generated every �100,000 timesteps and for a 1254 atom

protein every �40,000 timesteps.

NVIDIA-Specific Implementation Details

The NVIDIA implementation of the kernel was first meant to be

a rough port of the existing ATI code into CUDA, a C-like lan-

guage present on all NVIDIA GPUs from the 8xxx series

onward. In general, the CUDA implementation followed the ATI

implementation outlined above. However, it immediately became

clear that exploiting architectural features of CUDA allowed for

significantly more efficient execution, with differences from the

ATI implementation as detailed below.

Bonded and Nonbonded 1–4 Interactions

Relatively little effort was put into the CUDA implementation

of bonded and nonbonded 1–4 interactions because it only con-

sumes about 1/6th of the total execution time and because

CUDA allows one to spread the calculation over many inde-

pendent threads. The only caveat here is that the interactions

were padded such that no thread divergence based on the type

of bonded interaction would occur within a warp since the exe-

cution of such divergence is cumulative. An attempt was made

to use the texture unit to accelerated reading atomic information

from GMEM. While this slightly accelerated G8x/G9x kernels,

it slightly decelerated GT2xx kernels so it was discarded.

Nonbonded Interactions

Due to the existence of scatter, thread synchronization, and a

16 K of high-speed shared memory in each processor within

CUDA-compatible GPUs, each nonbond kernel can exploit the

symmetry of the force calculation matrix to calculate fij, then

reverse its sign to generate fji. This reduces the magnitude of the

overall calculation by a factor of �2 while incurring a small

amount of overhead to coordinate this calculation. To do so, the

kernel operates on the unique set of p x p tiles of the force

matrix that are either above or along the diagonal, where p is the

warp width (see Fig. 1). For each of these tiles, there is a corre-

sponding swath of p atoms along the x and along the y axis.17

Each tile is then operated on by warps of p threads within a

larger thread block, up to eight warps on G8x/G9x and up to 10

warps on GT2xx. For each of these tiles, there is a correspond-

ing swath of p atoms along the x and y axis. To calculate the

force data for such a tile, p threads then read one atom’s worth

of data from the x swath into their register space and then the

corresponding set of atomic data for the tile’s y swath into the

shared memory. Furthermore, because all the threads in a warp

are guaranteed to execute synchronously, each thread can

interact with one atom’s data in shared memory at a time for p
iterations without any fear of overlap or any need for overt

synchronization.

Additionally, as mentioned above, there were 3 O(n2) non-

bond kernels in the ATI implementation. However, unlike the

ATI client, merging the nonbond kernel with the first loop of

the implicit solvent kernel was a big win, improving perform-

ance by 20%. The difference here lies in the ability of the

shared memory to hold a sufficient number of intermediate val-

ues to make this a net win.

SHAKE Algorithm and Stochastic Dynamics

Essentially the same update and SHAKE algorithm as imple-

mented on the ATI client was implemented for the CUDA cli-

ent. One noteworthy difference between the two codes was that

the Gaussian-distributed random values used in the update algo-

rithm are generated on the GPU since integer arithmetic is avail-

able on the Nvidia boards; this is in contrast to the ATI client

where the values are generated on the CPU and transferred to

the GPU. As a result, the random values were not recycled using

permutations as is done on the ATI client. One observation par-

ticular to the Nvidia client is that optimal performance for this

section of the code was achieved when the workload was spread

evenly across all SMs even when those SMs ran very small

thread blocks (<30 threads).

Performance

Speed

To assess the improvement in speed from using GPUs rather

than CPUs, we ran a series of benchmark calculations on several

different protein systems, utilizing the ATI and Nvidia GPU

codes. For comparison, the same calculations were run on one

core of a 2 3 2.66 GHz Dual-Core Intel Xeon (running Mac OS

X) with the AMBER9 program18 built with commercial Intel

compilers. We ran simulations of the D14A variant of the

lambda repressor monomer (1254 atoms)19,20 in a fully extended

conformation, the N68H mutant of the villin headpiece subdo-

main (582 atoms)21 in a folded conformation, the Fip35 WW

domain (544 atoms)22,23 in both folded and extended conforma-

tions, and one chain of the a-spectrin subunits R15, R16, and

R17 from chicken brain (5078 atoms).24

The solvent was an Onufriev-Bashford-Case (OBC) general-

ized Born model11 for both minimization and molecular dynam-

ics. The parm03 and parm96 force fields (as noted in Table 1)

were used for the CPU calculations, but in the case of villin,

where both force fields were used, the difference in CPU per-
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formance was negligible. After a standard energy minimization

step, 40,000 Langevin dynamics iterations were run for each of

the benchmark systems using a nonbonded ‘cutoff’ of 999 Å

and no periodic boundary conditions to ensure an O(N2) calcula-

tion. The Langevin collision frequency was 91/ps and the bath

temperature was 300 K. Bonds involving hydrogen were con-

strained with SHAKE with default settings.

As expected for an N2 calculation, there was no important

speed difference on the GPU or the CPU when comparing

folded and extended conformations of the same system. To

exhaustion, the variable determining the simulation performance

was the system size. The times are given in Table 1. These

benchmarks show that running on the ATI GPU can result in

more than 603 speedup over the CPU for small systems of

�600 atoms. These smaller systems gain more than 1003
speedup on the Nvidia GPU. Both GPUs are capable of more

than two orders of magnitude speedup compared to the CPU

when calculating an MD trajectory for the larger systems, such

as lambda repressor (�1200 atoms).

Table 1. Benchmark Results.

Molecule Atoms Force field Platform Ns/day Improvement

fip35 544 parm03 CPU/AMBER 4.5 –

fip35 544 parm03 ATI 279.2 62

fip35 544 parm03 Nvidia 576.2 128

Villin 582 parm03 CPU/AMBER 3.9 –

Villin 582 parm03 ATI 260.8 67

Villin 582 parm03 Nvidia 528.5 136

Lambda 1254 parm03 CPU/AMBER 0.79 –

Lambda 1254 parm03 ATI 141.7 179

Lambda 1254 parm03 Nvidia 201.6 255

a-spectrin 5078 parm99 CPU/AMBER 0.023 –

a-spectrin 5078 parm99 ATI 14.2 617

a-spectrin 5078 parm99 Nvidia 16.9 735

Improvement is the speedup obtained by running on the GPU versus run-

ning AMBER on the CPU.

ATI: Radeon HD 4870 GPU.

Nvidia: GeForce GTX 280 GPU.

Figure 1. The set of pxp tiles required for force calculation-only the pink and green tiles need to be

calculated. Force data for the grey tiles can be generated by negating the sign of the forces calculated

for the corresponding green tile on the other side of the pink diagonal.
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The scaling of performance with number of atoms is quite

different for the GPU codes than for the CPU calculations. On

the CPU, the scaling is very close to O(N2), indicating that non-

bonded interactions are dominating the calculation time. In con-

trast, when going from 544 atoms to 1254 (a factor of 2.3), the

ATI code only slows down by a factor of 2.0. The scaling in

this regime is actually sublinear. This is not surprising, given

that the number of atoms in the smaller system (544) is less

than the number of math units in the GPU (800), and it is diffi-

cult to generate enough parallel computation to use all math

units and hide latencies. Even when going from 1254 atoms to

5078 (a factor of 4), both GPUs still scale subquadratically (a

factor of 10.0 for ATI and 11.9 for NVidia). This suggests that

the speedup of GPUs over CPUs could be even greater for still

larger systems.

Another important performance metric is the overall proces-

sor utilization. By seeing how close we come to the peak theo-

retical performance of the GPU, we can see how efficiently our

implementation makes use of the large computational resources

available. The results are shown in Table 2. Note that we use

two different methods for calculating GFLOPS which yield dif-

ferent numbers. See Appendix A for details. The performance

increases with increasing system size, but even for a-spectrin we

are only reaching a fraction of the processor’s peak theoretical

performance. This suggests that further optimization might sig-

nificantly improve the performance, especially for small pro-

teins, by better exploiting the resources of the GPU.

In practice, molecular dynamics simulations on a CPU are

not run as described above. Rather, cutoffs are frequently

applied for both long range interactions and Born radii calcula-

tions. These approximations reduce the complexity of the calcu-

lation from O(N2) to O(N log N) which can be a significant per-

formance gain even for small systems. However, Born radii cal-

culations are formally O(N2), and to our knowledge no GB

formalism exists for which cutoffs are explicitly taken into

account. Thus, the effects of applying a cutoff to GB are

unknown so their use could be extremely dangerous. On the

other hand, application of long-ranged cutoffs in nonperiodic

systems is less risky, but still involves an approximation with an

unknown effect on accuracy. As such, the benchmarks presented

here represent the performance gain of running MD calculations

on the GPU over running the most accurate CPU calculation

possible for a given force field and GB model, rather than a per-

formance gain over typical simulation conditions. However, it is

clear from the performance gain that there is no longer a need

to run CPU calculations which apply cutoffs to long-ranged

interactions and to Born radii calculations. Instead, more accu-

rate simulations can now be run using GPUs which do not

involve approximations to the chosen model.

Even taking the above into account, the speed improvements

listed in Table 1 should not be taken as precise measures of the

intrinsic speed advantage of GPUs over CPUs. The AMBER

benchmarks were run on a single CPU core, but most desktop

CPUs today have two or four cores. Also, it is possible that its

performance could be improved by further tuning. AMBER is a

mature and widely used package, so we expect that significant

work has been done to optimize it, but it is always possible that

further work could yield additional performance gains. Our goal

in presenting CPU benchmarks is simply to give a point of refer-

ence against which the performance of the GPU code may be

approximately measured.

Accuracy

Another important consideration in evaluating any dynamics

code is the accuracy of the trajectories it produces. Both imple-

mentations described here used single precision floating point

numbers throughout, since double precision has only very

recently become available on GPUs and still carries a large per-

formance penalty. Previous work has shown that single precision

is sufficient to produce high quality results in molecular dynam-

ics,5 but only if care is taken to do calculations in a way that

avoids unnecessary loss of accuracy. Also, some floating point

operations on GPUs are not IEEE compliant. Any error resulting

from this should be very small, but given the already limited

precision being used, it is potentially a cause for concern.

To test the accuracy of our GPU codes, we incorporated the

velocity Verlet algorithm into them, ran a series of simulations of

lambda repressor, and measured how accurately energy was con-

served. The results are shown in Table 3. Simulations were per-

formed both with and without bond length constraints. When con-

straints were used, the accuracy of energy conservation was found

to depend strongly on the convergence tolerance used for SHAKE,

so results are shown for three different tolerance values.

The results compare favorably to those for other molecular

dynamics codes, including ones which use double precision.5

Table 2. Computational Performance.

Molecule Atoms Platform GFLOPS

fip35 544 ATI 88 (176)

fip35 544 Nvidia 83 (148)

Villin 582 ATI 95 (188)

Villin 582 Nvidia 87 (155)

Lambda 1254 ATI 239 (475)

Lambda 1254 Nvidia 154 (275)

a-spectrin 5078 ATI 392 (780)

a-spectrin 5078 Nvidia 212 (378)

See Appendix A for details of how the numbers were calculated. The

value in parenthesis is based on the cost estimates that are more appro-

priate for CPUs than GPUs.

ATI: Radeon HD 4870 GPU.

Nvidia: GeForce GTX 280 GPU.

Table 3. Energy Drift per Degree of Freedom (kT/ns/dof).

Constraints Nvidia ATI

None 0.0054 0.0178

H-bonds (SHAKE tolerance 1024) 0.0611 0.1031

H-bonds (SHAKE tolerance 1025) 0.0220 0.0541

H-bonds (SHAKE tolerance 1026) 0.0060 0.0558

All simulations were 1 ns in length and used a time step of 1 fs.

ATI: Radeon HD 4870 GPU.

Nvidia: GeForce GTX 280 GPU.
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This gives us confidence that lack of precision is not harming

the quality of our simulations. We do note that the accuracy is

somewhat lower for the ATI implementation than for the Nvidia

implementation. We are still investigating to determine why this

is true.

Future Work

A complete system for simulating molecular dynamics on GPUs

has been presented. In the interest of creating such a complete

system in a timely manner, some molecular dynamics scenarios

have not been fully explored. It has not escaped the authors’

notice that there remain several areas for which the molecular

dynamics capabilities of this GPU implementation might be

extended and enhanced. What follows are descriptions of a few

such areas for potential enhancement.

The use of an implicit solvent model represents a tactical

choice in the implementation of the current work. Two advan-

tages of this choice include the avoidance of boundary condition

issues, and minimization of the number of explicit atoms being

simulated. On the other hand, explicit solvent simulations can,

in principle, be performed on GPUs. The most important

enhancement required to perform accurate simulations in explicit

solvent is the implementation of periodic boundary conditions.

Further, the calculation of long range forces would need to be

enhanced to take such boundary conditions into account. Estab-

lished techniques for such long-range force computations can

also improve the asymptotic complexity of the algorithms, com-

pared to the current implementation (see below).

The current work has been restricted to relatively small mac-

romolecules (roughly 500–5000 atoms). Efficient simulation of

significantly larger systems may require algorithms with lower

time complexity than those used in this work. Our GPU imple-

mentations use some force computation algorithms that scale

quadratically [O(n2)] with respect to the number of atoms in the

simulation. This approach is justified in the case of small pro-

teins and smaller molecules, as the simplicity of the algorithms

permits saturation of the parallel processing units. For larger

molecule simulations, it may be more efficient to also provide

linear time [O(n)] and/or log-linear [O(n log(n))] algorithms for

the force calculations. Such methods typically involve separating

nonbonded interactions into short-range and long-range compo-

nents. The long-range components are computed using Fourier

or hierarchical methods,25 while the short-range components are

computed using cell linked list methods.26 Such algorithms with

lower time complexity will be especially important for simula-

tions in explicit solvent, which contain many times the number

of atoms found in implicit solvent simulations. The Fourier

methods, in particular, are well suited to handling periodic

boundary conditions, thus facilitating explicit solvent simulations

as well.

Because our GPU implementations have been developed over

a period of time, some of the latest advances in GPU hardware

have not been fully exploited. For instance, recent ATI hardware

permits ‘‘scatter’’ operations, which involve writing to different

memory locations within a kernel. Our ATI implementation has

avoided scatter operations because they were not available on

earlier generation hardware. It might be possible to achieve

greater computation efficiency by reengineering certain methods

to take advantage of scatter operations. Another recent advance

in GPU computing is support for double-precision floating

point computations on ATI and NVIDIA GPUs. Double preci-

sion arithmetic still carries a significant performance penalty rel-

ative to single-precision arithmetic. It may be worth investigat-

ing situations in which the increased accuracy of higher preci-

sion arithmetic might be worth the additional computational

cost.

Because we find ourselves in the somewhat special cir-

cumstance of creating many implementations of the same algo-

rithms to support different hardware, we are especially sensitive

to the importance of effective software testing environments.

We would like to extend our test cases to be able to apply tests

of correctness to essentially all molecular dynamics simulation

programs.

More generally, there are undoubtedly many additional meth-

ods that could be implemented on GPUs to extend the range of

available simulation scenarios. For example, more sophisticated

force fields, such as polarizable force fields,27 could benefit from

GPU acceleration. The precise details of how best to implement

these methods remain to be worked out. We hope that our cur-

rent work will help form the basis for an ever increasing library

of GPU accelerated molecular dynamics techniques.

Availability

The implementation reported in this manuscript will be made

available at Simtk.org as part of the OpenMM API (http://simtk.

org/home/openmm). OpenMM is designed for incorporation into

molecular dynamics codes to enable execution on GPUs and

other high performance architectures.

Appendix A

The performance numbers in Table 2 were determined by

inspecting the code to count the exact number of floating point

operations in each time step. There is no universally accepted

way of counting operations, however. Addition, subtraction,

multiplication, and division each count as a single operation, but

we also must assign operation counts to transcendental functions

such as logarithm and exponential. These operations are expen-

sive to perform on a CPU, so they are traditionally assigned

large operation counts. GPUs, in contrast, have specialized cir-

cuitry which allows them to be calculated very quickly.

This creates an ambiguity about how to calculate perform-

ance. One option is to assign operation counts that accurately

reflect how quickly a GPU can perform each operation: if an ex-

ponential takes no more time to calculate than an addition, it

should be counted as a single operation. Alternatively, one could

assign operation counts that reflect how expensive an operation

is on a CPU. If a typical CPU requires 20 clock cycles to calcu-

late an exponential, the GPU should be given credit for doing

20 floating point operations, even though it does it much more

quickly.
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We therefore chose to use two different methods for calculat-

ing performance based on the two sets of operation counts

shown in Table 4. The first set reflects how quickly a GPU can

calculate various functions, and is most appropriate when

comparing multiple simulations run on a GPU. The other set of

values reflects how quickly a typical CPU can calculate those

functions, and is most appropriate for comparing the perform-

ance of a GPU to a CPU.
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Table 4. Operation Counts for Transcendental Functions.
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