

Open Knee(s) Founding Data for Next Generation Knee Models

Ahmet Erdemir^{1,2}, Craig Bennetts^{1,2}, Tara Bonner^{1,3}, Snehal Chokhandre^{1,2}, Robb Colbrunn^{1,3}

¹Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic ²Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic ³BioRobotics and Mechanical Testing Core, Lerner Research Institute, Cleveland Clinic

May 18-20, 2015 2015 BMES/FDA - Frontiers in Medical Devices Conference University of Maryland, College Park, MD

DISCLOSURES

AFFILIATIONS WITH COMMERCIAL FIRMS

FUNDING PROVIDED BY

National Institute of General Medical Sciences National Institute of Biomedical Imaging and Bioengineering (partially) National Inst. of Arthritis and Musculoskeletal and Skin Diseases (partially) **National Institutes of Health**

WHY KNEE MODELING?

Joint and tissue functions

MCL function

Gardiner and Weiss, J Orthop Res, 21: 1098-106, 2003.

Pathological impacts

Osteoarthritis

Kalahari et al., Osteoarthritis and Cartilage, 18: 73-81, 2010.

Injury mechanisms

Park et al., J Biomech, 43: 2039-42, 2010.

fair use

ACL impingement

Surgical interventions

Menisectomy

Vaziri et al., Annals of Biomed Eng, 36: 1335-44, 2008.

fair use

STATE OF KNEE MODELS

Display Settings: 🖂 Summary, 20 per page, Sorted by Recently Added

⁴Dhaher et al., J Biomech, , 43: 3118-25, 2010.

STATE OF KNEE MODELS

fair use

STATE OF KNEE MODELS

fair use

⁴Dhaher et al., J Biomech, , 43: 3118-25, 2010.

OPEN KNEE(S) GOALS

- To provide an open, freely available, and collaborative development, testing, simulation and dissemination platform for in silico exploration of the biomechanics of healthy and diseased knees.
 - → Platform for community driven modeling & simulation
- To develop in silico biomechanical models of healthy and diseased knee joints of different genders and ages, supported by specimenspecific joint and tissue level experimental mechanics.

 \rightarrow General purpose models of healthy and diseased knees

OPEN KNEE(S) GOALS

Full knee models

tibiofemoral joint patellofemoral joint

Complete specimen-specificity

geometry material

Comprehensive data

magnetic resonance imaging joint kinematics/kinetics tissue stress/strain

Multiple knees

young/elderly

male/female

healthy/osteoarthritic

STUDY GOALS

- to establish a *workflow* to collect heterogeneous data on cadaver knee specimens for development & evaluation of specimen-specific knee joint models
- to summarize progress on the collection of *specimen-specific* anatomical imaging and mechanics data from varying populations, aka Open Knee(s)

SPECIMENS

oks001	oks002	oks003	oks004	oks006	oks007
Right knee	Right knee	Left knee	Right knee	Right knee	Right knee
Gender: Male Age: 71 years Race: White Height: 1.83 m Weight: 77.1 kg BMI: 23.1	Gender: Female Age: 67 years Race: White Height: 1.55 m Weight: 45.3 kg BMI: 18.9	Gender: Female Age: 25 years Race: White Height: 1.73 m Weight: 68 kg BMI: 22.8	Gender: Female Age: 46 years Race: White Height: 1.58 m Weight: 54.4 kg BMI: 21.9	Gender: Female Age: 71 years Race: White Height: 1.52 m Weight: 49.4 kg BMI: 21.3	Gender: Male Age: 71 years Race: White Height: 1.7 m Weight: 65.8 kg BMI: 22.7

4 more on the way...

EXPERIMENTATION

Workflow

For mature and developing standard operating procedures, refer to http://wiki.simtk.org/openknee/Specifications.

PREPARATION

Preparation

dissection

bone plugs

motion capture markers

registration markers

anatomical landmarks

REGISTRATION

Registration

coordinate system transformations femur - tibia - patella

association of reference states pose & orientation

•

anatomical imaging

joint experimentation

ANATOMICAL IMAGING

JOINT MECHANICS

Tibiofemoral Joint Mechanics

Laxity Testing

Internal/external rotation 0 to ± 5 Nm w/ 1 Nm increment

Varus/valgus 0 to ± 10 Nm w/ 2.5 Nm increment

Anterior/posterior translation 0 to ± 100 N w/ 10 N increment

Combined Loading

Permutations of Internal/External rotation – -5, 0, 5 Nm Varus/valgus – -10, 0, 10 Nm Anterior/posterior translation – -100, 0, 100 N

Varus/Valgus Laxity

Anterior/Posterior Translation ROM

Anterior/Posterior Laxity

Forces (Newtons)

Translations (millimeters)

Torques (Newton-meters)

Rotations (degrees)

@ 0°,30°,60°,90° flexion
 w/ 20 N compression force
 measurement of kinematics-kinetics

JOINT MECHANICS

Patellofemoral Joint Mechanics

@ 0°,15°,30°,45°,90° flexion
20 N, 100 - 600 N quadriceps force
w/ 100 N increments
measurement of kinematics-kinetics
measurement of contact pressures

TISSUE MECHANICS

Tissue Mechanics

Cartilage

unconfined compression confined compression tension

medial – lateral femoral condyle medial – lateral tibial plateau femoral groove - patella

Meniscus

unconfined compression confined compression tension

medial - lateral

Ligament

tension

anterior – posterior cruciate medial – lateral collateral patellar transverse

Tendon

quadriceps

Tissue Sampling

Uniaxial Testing

Stress Relaxation

multi-step stress relaxation tests measurement of displacement – force measurement of sample size image capture (tension samples)

UTILITY FOR MODELING

For mature and developing standard operating procedures, refer to http://wiki.simtk.org/openknee/Specifications.

CONCLUDING REMARKS

- A comprehensive data collection scheme specifically targeted for the development of high fidelity models of the knee
- In-depth heterogeneous data as the foundation for authentic virtual knees

different knees

 \rightarrow variability within population

anatomical imaging

→ specimen-specific geometry

tissue mechanics

→ specimen-specific tissue material properties

joint kinematics-kinetics

→ specimen-specific evaluation of joint mechanics

CONCLUDING REMARKS

 A comprehensive data collection scheme specifically targeted for the development of high fidelity models of the knee

open & freely available virtual knee population for design, evaluation & regulation of interventions

→ specimen-specific geometry

tissue mechanics

→ specimen-specific tissue material properties

joint kinematics-kinetics

→ specimen-specific evaluation of joint mechanics

HOW CAN YOU CONTRIBUTE?

VISIT http://wiki.simtk.org/openknee

ACKNOWLEDGMENTS

OPEN KNEE - GENERATION 1

Modeling

Craig Bennetts Ahmet Erdemir Randy Heydon Scott Sibole

Data

Bhushan Borotikar Antonie J. van den Bogert

Simulation Software

Ben Ellis Steve Maas David Rawlins Jeff Weiss

NIH/NIBIB R01EB009643 NIH/NIGMS R01GM083925 NIH/NIAMS R01AR049735 Simbios

OPEN KNEE(S) – GENERATION 2

Cleveland Clinic

Dylan Beckler Craig Bennetts Tara Bonner Snehal Chokhandre Robb Colbrunn Ahmet Erdemir Jason Halloran

Stanford University

Scott Delp Joy Ku Henry Kwong

University of Utah

Ben Ellis Steve Maas Jeff Weiss

CWRU Chris Flask Shannon Donnola

Community

Elvis Danso Katie Stemmer Cara Sullivan

Advisory Board

Jack Andrish Yasin Dhaher Trent Guess Morgan Jones Rami Korhonen Paul Saluan Carl Winalski

NIH/NIGMS R01GM104139

https://simtk.org/home/openknee

CONTACT

Ahmet Erdemir erdemira@ccf.org +1 (216) 445 9523

Laboratory: http://www.lerner.ccf.org/bme/erdemir/lab Open Knee(s): https://simtk.org/home/openknee Open Knee(s) Wiki: http://wiki.simtk.org/openknee

LICENSING

Copyright (c) 2015 Open Knee(s) Development Team

Unless noted otherwise or labeled as **fair use***, all components of this document and the accompanying source code and binary files are licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/; or, (b) send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

*Slides labeled as 'fair use' likely have copyrighted material qualifying as 'fair use' as a result of nonprofit educational purpose of this document and the limited amount of enclosed information when compared to the whole body of external work. Any other use of material from these slides here or elsewhere, may be copyright infringement.

TRADEMARKS & OWNERSHIPS

The trademarks and copyrights (registered or not) listed in this document are the property of their respective owners and are protected by national and international laws on intellectual property, copyrights and trademarks.