Simbody

NTraits.h

Go to the documentation of this file.
00001 #ifndef SimTK_SIMMATRIX_NTRAITS_H_
00002 #define SimTK_SIMMATRIX_NTRAITS_H_
00003 
00004 /* -------------------------------------------------------------------------- *
00005  *                      SimTK Core: SimTK Simmatrix(tm)                       *
00006  * -------------------------------------------------------------------------- *
00007  * This is part of the SimTK Core biosimulation toolkit originating from      *
00008  * Simbios, the NIH National Center for Physics-Based Simulation of           *
00009  * Biological Structures at Stanford, funded under the NIH Roadmap for        *
00010  * Medical Research, grant U54 GM072970. See https://simtk.org.               *
00011  *                                                                            *
00012  * Portions copyright (c) 2005-9 Stanford University and the Authors.         *
00013  * Authors: Michael Sherman                                                   *
00014  * Contributors:                                                              *
00015  *                                                                            *
00016  * Permission is hereby granted, free of charge, to any person obtaining a    *
00017  * copy of this software and associated documentation files (the "Software"), *
00018  * to deal in the Software without restriction, including without limitation  *
00019  * the rights to use, copy, modify, merge, publish, distribute, sublicense,   *
00020  * and/or sell copies of the Software, and to permit persons to whom the      *
00021  * Software is furnished to do so, subject to the following conditions:       *
00022  *                                                                            *
00023  * The above copyright notice and this permission notice shall be included in *
00024  * all copies or substantial portions of the Software.                        *
00025  *                                                                            *
00026  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
00027  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,   *
00028  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL    *
00029  * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,    *
00030  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR      *
00031  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE  *
00032  * USE OR OTHER DEALINGS IN THE SOFTWARE.                                     *
00033  * -------------------------------------------------------------------------- */
00034 
00058 #include <cstddef>
00059 #include <cassert>
00060 #include <complex>
00061 #include <iostream>
00062 #include <limits>
00063 
00064 using std::complex;
00065     
00066 namespace SimTK {
00067 
00068 // This is the 3rd type of number, conjugate. It is like complex except that
00069 // the represented value is the conjugate of the value represented by a complex
00070 // number containing the same bit pattern. That is, complex and conjugate both
00071 // contain two real numbers, re and im, with complex(re,im) meaning
00072 // (re + im*i) while conjugate(re,im) means (re - im*i). It is guaranteed that
00073 // our conjugate type and complex type have identical sizes and representations.
00074 // Together, these defininitions and guarantees permit conjugation
00075 // to be done by reinterpretation rather than be computation.
00076 template <class R> class conjugate; // Only defined for float, double, long double
00077 
00078 // Specializations of this class provide information about Composite Numerical 
00079 // Types in the style of std::numeric_limits<T>. It is specialized for the 
00080 // numeric types but can be invoked on any composite numerical type as well.
00081 template <class T> class CNT;
00082 
00083 // NTraits provides information like CNT, but for numeric types only.
00084 template <class N> class NTraits; // allowed only for N=<number>
00085 template <class R> class NTraits< complex<R> >;
00086 template <class R> class NTraits< conjugate<R> >;
00087 template <> class NTraits<float>;
00088 template <> class NTraits<double>;
00089 template <> class NTraits<long double>;
00090 
00091 // This is an adaptor for numeric types which negates the apparent values. A
00092 // negator<N> has exactly the same internal representation as a numeric value N, 
00093 // but it is to be interpreted has having the negative of the value it would 
00094 // have if interpreted as an N. This permits negation to be done by 
00095 // reinterpretation rather than compuation. A full set of arithmetic operators
00096 // are provided involving negator<N>'s and N's. Sometimes we can save an op or
00097 // two this way. For example negator<N>*negator<N> can be performed as an N*N
00098 // since the negations cancel, and we saved two floating point negations.
00099 template <class N> class negator;      // Only defined for numbers
00100 
00101 // This is here so we can provide references to 0's when needed, e.g.
00102 // when returning the imaginary part of a real number. These are local to
00103 // the compilation unit, so the returned addresses will differ in different
00104 // files. There are enough zeroes here for the widest number, 
00105 // complex<long double> (or conjugate<long double>).
00106 static const complex<long double> zeroes(0);
00107 
00115 template <class R1, class R2> struct Widest {/* Only defined for built-ins. */};
00116 template <> struct Widest<float,float>              {typedef float       Type;  typedef float       Precision;};
00117 template <> struct Widest<float,double>             {typedef double      Type;  typedef double      Precision;};
00118 template <> struct Widest<float,long double>        {typedef long double Type;  typedef long double Precision;};
00119 template <> struct Widest<double,float>             {typedef double      Type;  typedef double      Precision;};
00120 template <> struct Widest<double,double>            {typedef double      Type;  typedef double      Precision;};
00121 template <> struct Widest<double,long double>       {typedef long double Type;  typedef long double Precision;};
00122 template <> struct Widest<long double,float>        {typedef long double Type;  typedef long double Precision;};
00123 template <> struct Widest<long double,double>       {typedef long double Type;  typedef long double Precision;};
00124 template <> struct Widest<long double,long double>  {typedef long double Type;  typedef long double Precision;};
00125 template <class R1, class R2> struct Widest< complex<R1>,complex<R2> > { 
00126     typedef complex< typename Widest<R1,R2>::Type > Type; 
00127     typedef typename Widest<R1,R2>::Precision       Precision; 
00128 };
00129 template <class R1, class R2> struct Widest< complex<R1>,R2 > { 
00130     typedef complex< typename Widest<R1,R2>::Type > Type; 
00131     typedef typename Widest<R1,R2>::Precision       Precision;  
00132 };
00133 template <class R1, class R2> struct Widest< R1,complex<R2> > { 
00134     typedef complex< typename Widest<R1,R2>::Type > Type; 
00135     typedef typename Widest<R1,R2>::Precision       Precision; 
00136 };
00137 
00147 template <class R1, class R2> struct Narrowest {/* Only defined for built-ins. */};
00148 template <> struct Narrowest<float,float>              {typedef float  Type;};
00149 template <> struct Narrowest<float,double>             {typedef float  Type;};
00150 template <> struct Narrowest<float,long double>        {typedef float  Type;};
00151 template <> struct Narrowest<double,float>             {typedef float  Type;};
00152 template <> struct Narrowest<double,double>            {typedef double Type;};
00153 template <> struct Narrowest<double,long double>       {typedef double Type;};
00154 template <> struct Narrowest<long double,float>        {typedef float  Type;};
00155 template <> struct Narrowest<long double,double>       {typedef double Type;};
00156 template <> struct Narrowest<long double,long double>  {typedef long double Type;};
00157 template <class R1, class R2> struct Narrowest< complex<R1>,complex<R2> > { 
00158     typedef complex< typename Narrowest<R1,R2>::Type >  Type; 
00159     typedef typename Narrowest<R1,R2>::Precision        Precision;
00160 };
00161 template <class R1, class R2> struct Narrowest< complex<R1>,R2 > { 
00162     typedef complex< typename Narrowest<R1,R2>::Type >  Type; 
00163     typedef typename Narrowest<R1,R2>::Precision        Precision; 
00164 };
00165 template <class R1, class R2> struct Narrowest< R1,complex<R2> > { 
00166     typedef complex< typename Narrowest<R1,R2>::Type >  Type; 
00167     typedef typename Narrowest<R1,R2>::Precision        Precision; 
00168 };
00169 
00171 template <class R> class RTraits {/* Only defined for real types */};
00172 template <> class RTraits<float> {
00173 public:
00175     static const float& getEps()         {static const float c=std::numeric_limits<float>::epsilon(); return c;}
00177     static const float& getSignificant() {static const float c=std::pow(getEps(), 0.875f); return c;}
00179     static double getDefaultTolerance()  {return (double)getSignificant();}
00180 };
00181 template <> class RTraits<double> {
00182 public:
00183     static const double& getEps()         {static const double c=std::numeric_limits<double>::epsilon(); return c;}
00184     static const double& getSignificant() {static const double c=std::pow(getEps(), 0.875); return c;}
00185     static double getDefaultTolerance()   {return getSignificant();}
00186 };
00187 template <> class RTraits<long double> {
00188 public:
00189     static const long double& getEps()         {static const long double c=std::numeric_limits<long double>::epsilon(); return c;}
00190     static const long double& getSignificant() {static const long double c=std::pow(getEps(), 0.875L); return c;}
00191     static double getDefaultTolerance()        {return (double)getSignificant();}
00192 };
00193 
00210 // See negator.h for isNaN() applied to negated scalars.
00212 inline bool isNaN(const float& x)  {return std::isnan(x);}
00213 inline bool isNaN(const double& x) {return std::isnan(x);}
00214 inline bool isNaN(const long double& x) {return std::isnan(x);}
00215 
00216 template <class P> inline bool
00217 isNaN(const std::complex<P>& x)
00218 {   return isNaN(x.real()) || isNaN(x.imag());}
00219 
00220 template <class P> inline bool
00221 isNaN(const conjugate<P>& x)
00222 {   return isNaN(x.real()) || isNaN(x.negImag());}
00224 
00237 // See negator.h for isFinite() applied to negated scalars.
00239 inline bool isFinite(const float&  x) {return std::isfinite(x);}
00240 inline bool isFinite(const double& x) {return std::isfinite(x);}
00241 inline bool isFinite(const long double& x) {return std::isfinite(x);}
00242 
00243 template <class P> inline bool
00244 isFinite(const std::complex<P>& x)
00245 {   return isFinite(x.real()) && isFinite(x.imag());}
00246 
00247 template <class P> inline bool
00248 isFinite(const conjugate<P>& x)
00249 {   return isFinite(x.real()) && isFinite(x.negImag());}
00251 
00266 // See negator.h for isInf() applied to negated scalars.
00268 inline bool isInf(const float&  x) {return std::isinf(x);}
00269 inline bool isInf(const double& x) {return std::isinf(x);}
00270 inline bool isInf(const long double& x) {return std::isinf(x);}
00271 
00272 template <class P> inline bool
00273 isInf(const std::complex<P>& x) {
00274     return (isInf(x.real()) && !isNaN(x.imag()))
00275         || (isInf(x.imag()) && !isNaN(x.real()));
00276 }
00277 
00278 template <class P> inline bool
00279 isInf(const conjugate<P>& x) {
00280     return (isInf(x.real())    && !isNaN(x.negImag()))
00281         || (isInf(x.negImag()) && !isNaN(x.real()));
00282 }
00284 
00324 
00325 inline bool isNumericallyEqual(const float& a, const float& b, 
00326                                double tol = RTraits<float>::getDefaultTolerance())
00327 {   if (isNaN(a)) return isNaN(b); else if (isNaN(b)) return false;
00328     const float scale = std::max(std::max(std::abs(a),std::abs(b)), 1.f);
00329     return std::abs(a-b) <= scale*(float)tol; }
00331 inline bool isNumericallyEqual(const double& a, const double& b, 
00332                                double tol = RTraits<double>::getDefaultTolerance())
00333 {   if (isNaN(a)) return isNaN(b); else if (isNaN(b)) return false;
00334     const double scale = std::max(std::max(std::abs(a),std::abs(b)), 1.);
00335     return std::abs(a-b) <= scale*tol; }
00337 inline bool isNumericallyEqual(const long double& a, const long double& b, 
00338                                double tol = RTraits<long double>::getDefaultTolerance())
00339 {   if (isNaN(a)) return isNaN(b); else if (isNaN(b)) return false;
00340     const long double scale = std::max(std::max(std::abs(a),std::abs(b)), 1.L);
00341     return std::abs(a-b) <= scale*(long double)tol; }
00342 
00344 inline bool isNumericallyEqual(const float& a, const double& b, 
00345                                double tol = RTraits<float>::getDefaultTolerance())
00346 {   return isNumericallyEqual((double)a, b, tol); }
00348 inline bool isNumericallyEqual(const double& a, const float& b, 
00349                                double tol = RTraits<float>::getDefaultTolerance())
00350 {   return isNumericallyEqual(a, (double)b, tol); }
00352 inline bool isNumericallyEqual(const float& a, const long double& b, 
00353                                double tol = RTraits<float>::getDefaultTolerance())
00354 {   return isNumericallyEqual((long double)a, b, tol); }
00356 inline bool isNumericallyEqual(const long double& a, const float& b, 
00357                                double tol = RTraits<float>::getDefaultTolerance())
00358 {   return isNumericallyEqual(a, (long double)b, tol); }
00360 inline bool isNumericallyEqual(const double& a, const long double& b, 
00361                                double tol = RTraits<double>::getDefaultTolerance())
00362 {   return isNumericallyEqual((long double)a, b, tol); }
00364 inline bool isNumericallyEqual(const long double& a, const double& b, 
00365                                double tol = RTraits<double>::getDefaultTolerance())
00366 {   return isNumericallyEqual(a, (long double)b, tol); }
00367 
00369 inline bool isNumericallyEqual(const float& a, int b,
00370                                double tol = RTraits<float>::getDefaultTolerance())
00371 {   return isNumericallyEqual(a, (double)b, tol); }
00373 inline bool isNumericallyEqual(int a, const float& b,
00374                                double tol = RTraits<float>::getDefaultTolerance())
00375 {   return isNumericallyEqual((double)a, b, tol); }
00377 inline bool isNumericallyEqual(const double& a, int b,
00378                                double tol = RTraits<double>::getDefaultTolerance())
00379 {   return isNumericallyEqual(a, (double)b, tol); }
00381 inline bool isNumericallyEqual(int a, const double& b,
00382                                double tol = RTraits<double>::getDefaultTolerance())
00383 {   return isNumericallyEqual((double)a, b, tol); }
00385 inline bool isNumericallyEqual(const long double& a, int b,
00386                                double tol = RTraits<long double>::getDefaultTolerance())
00387 {   return isNumericallyEqual(a, (long double)b, tol); }
00389 inline bool isNumericallyEqual(int a, const long double& b,
00390                                double tol = RTraits<long double>::getDefaultTolerance())
00391 {   return isNumericallyEqual((long double)a, b, tol); }
00392 
00396 template <class P, class Q>
00397 inline bool isNumericallyEqual
00398   ( const std::complex<P>& a, const std::complex<Q>& b, 
00399     double tol = RTraits<typename Narrowest<P,Q>::Precision>::getDefaultTolerance())
00400 {   return isNumericallyEqual(a.real(),b.real(),tol)
00401         && isNumericallyEqual(a.imag(),b.imag(),tol); }
00402 
00406 template <class P, class Q>
00407 inline bool isNumericallyEqual
00408   ( const conjugate<P>& a, const conjugate<Q>& b, 
00409     double tol = RTraits<typename Narrowest<P,Q>::Precision>::getDefaultTolerance())
00410 {   return isNumericallyEqual(a.real(),b.real(),tol)
00411         && isNumericallyEqual(a.imag(),b.imag(),tol); }
00412 
00416 template <class P, class Q>
00417 inline bool isNumericallyEqual
00418   ( const std::complex<P>& a, const conjugate<Q>& b, 
00419     double tol = RTraits<typename Narrowest<P,Q>::Precision>::getDefaultTolerance())
00420 {   return isNumericallyEqual(a.real(),b.real(),tol)
00421         && isNumericallyEqual(a.imag(),b.imag(),tol); }
00422 
00426 template <class P, class Q>
00427 inline bool isNumericallyEqual
00428   ( const conjugate<P>& a, const std::complex<Q>& b, 
00429     double tol = RTraits<typename Narrowest<P,Q>::Precision>::getDefaultTolerance())
00430 {   return isNumericallyEqual(a.real(),b.real(),tol)
00431         && isNumericallyEqual(a.imag(),b.imag(),tol); }
00432 
00434 template <class P> inline bool 
00435 isNumericallyEqual(const std::complex<P>& a, const float& b, 
00436                    double tol = RTraits<float>::getDefaultTolerance())
00437 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.f,tol); }
00439 template <class P> inline bool 
00440 isNumericallyEqual(const float& a, const std::complex<P>& b,
00441                    double tol = RTraits<float>::getDefaultTolerance())
00442 {   return isNumericallyEqual(b,a,tol); }
00444 template <class P> inline bool 
00445 isNumericallyEqual(const std::complex<P>& a, const double& b, 
00446                    double tol = RTraits<typename Narrowest<P,double>::Precision>::getDefaultTolerance())
00447 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.,tol); }
00449 template <class P> inline bool 
00450 isNumericallyEqual(const double& a, const std::complex<P>& b,
00451                    double tol = RTraits<typename Narrowest<P,double>::Precision>::getDefaultTolerance())
00452 {   return isNumericallyEqual(b,a,tol); }
00454 template <class P> inline bool 
00455 isNumericallyEqual(const std::complex<P>& a, const long double& b, 
00456                    double tol = RTraits<P>::getDefaultTolerance())
00457 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.L,tol); }
00459 template <class P> inline bool 
00460 isNumericallyEqual(const long double& a, const std::complex<P>& b, 
00461                    double tol = RTraits<P>::getDefaultTolerance())
00462 {   return isNumericallyEqual(b,a,tol); }
00464 template <class P> inline bool 
00465 isNumericallyEqual(const std::complex<P>& a, int b, 
00466                    double tol = RTraits<P>::getDefaultTolerance())
00467 {   typedef typename Widest<P,double>::Precision W; return isNumericallyEqual(a,(W)b,tol); }
00469 template <class P> inline bool 
00470 isNumericallyEqual(int a, const std::complex<P>& b, 
00471                    double tol = RTraits<P>::getDefaultTolerance())
00472 {   return isNumericallyEqual(b,a,tol); }
00473 
00475 template <class P> inline bool 
00476 isNumericallyEqual(const conjugate<P>& a, const float& b, 
00477                    double tol = RTraits<float>::getDefaultTolerance())
00478 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.f,tol); }
00480 template <class P> inline bool 
00481 isNumericallyEqual(const float& a, const conjugate<P>& b,
00482                    double tol = RTraits<float>::getDefaultTolerance())
00483 {   return isNumericallyEqual(b,a,tol); }
00485 template <class P> inline bool 
00486 isNumericallyEqual(const conjugate<P>& a, const double& b, 
00487                    double tol = RTraits<typename Narrowest<P,double>::Precision>::getDefaultTolerance())
00488 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.,tol); }
00490 template <class P> inline bool 
00491 isNumericallyEqual(const double& a, const conjugate<P>& b,
00492                    double tol = RTraits<typename Narrowest<P,double>::Precision>::getDefaultTolerance())
00493 {   return isNumericallyEqual(b,a,tol); }
00495 template <class P> inline bool 
00496 isNumericallyEqual(const conjugate<P>& a, const long double& b, 
00497                    double tol = RTraits<P>::getDefaultTolerance())
00498 {   return isNumericallyEqual(a.real(),b,tol) && isNumericallyEqual(a.imag(),0.L,tol); }
00500 template <class P> inline bool 
00501 isNumericallyEqual(const long double& a, const conjugate<P>& b, 
00502                    double tol = RTraits<P>::getDefaultTolerance())
00503 {   return isNumericallyEqual(b,a,tol); }
00505 template <class P> inline bool 
00506 isNumericallyEqual(const conjugate<P>& a, int b, 
00507                    double tol = RTraits<P>::getDefaultTolerance())
00508 {   typedef typename Widest<P,double>::Precision W; return isNumericallyEqual(a,(W)b,tol); }
00510 template <class P> inline bool 
00511 isNumericallyEqual(int a, const conjugate<P>& b, 
00512                    double tol = RTraits<P>::getDefaultTolerance())
00513 {   return isNumericallyEqual(b,a,tol); }
00514 
00516 
00517 
00518 template <class N> class NTraits { 
00519     // only the specializations below are allowed 
00520 };
00521 
00524 template <class R> class NTraits< complex<R> > {
00525     typedef complex<R>  C;
00526 public:
00527     typedef C                T;
00528     typedef negator<C>       TNeg;            // type of this after *cast* to its negative
00529     typedef C                TWithoutNegator; // type of this ignoring negator (there isn't one!)
00530 
00531     typedef R                TReal;
00532     typedef R                TImag;
00533     typedef C                TComplex;    
00534     typedef conjugate<R>     THerm;     // this is a recast
00535     typedef C                TPosTrans;
00536     typedef R                TSqHermT;  // ~C*C
00537     typedef R                TSqTHerm;  // C*~C (same)
00538     typedef C                TElement;
00539     typedef C                TRow;
00540     typedef C                TCol;
00541 
00542     typedef C                TSqrt;
00543     typedef R                TAbs;
00544     typedef C                TStandard; // complex is a standard type
00545     typedef C                TInvert;   // this is a calculation, so use standard number
00546     typedef C                TNormalize;
00547 
00548     typedef C                Scalar;
00549     typedef C                ULessScalar;
00550     typedef C                Number;
00551     typedef C                StdNumber;
00552     typedef R                Precision;
00553     typedef R                ScalarNormSq;
00554 
00555     // For complex scalar C, op result types are:
00556     //   Typeof(C*P) = Typeof(P*C)
00557     //   Typeof(C/P) = Typeof(inv(P)*C)
00558     //   Typeof(C+P) = Typeof(P+C)
00559     //   typeof(C-P) = Typeof(P::TNeg + C)
00560     // These must be specialized for P=real, complex, conjugate.
00561     template <class P> struct Result { 
00562         typedef typename CNT<P>::template Result<C>::Mul Mul;
00563         typedef typename CNT< typename CNT<P>::THerm >::template Result<C>::Mul Dvd;
00564         typedef typename CNT<P>::template Result<C>::Add Add;
00565         typedef typename CNT< typename CNT<P>::TNeg >::template Result<C>::Add Sub;
00566     };
00567 
00568     // Shape-preserving element substitution (easy for scalars!)
00569     template <class P> struct Substitute {
00570         typedef P Type;
00571     };
00572 
00573     enum {
00574         NRows               = 1,
00575         NCols               = 1,
00576         RowSpacing          = 1,
00577         ColSpacing          = 1,
00578         NPackedElements     = 1,      // not two!
00579         NActualElements     = 1,
00580         NActualScalars      = 1,
00581         ImagOffset          = 1,
00582         RealStrideFactor    = 2,      // double stride when casting to real or imaginary
00583         ArgDepth            = SCALAR_DEPTH,
00584         IsScalar            = 1,
00585         IsULessScalar       = 1,
00586         IsNumber            = 1,
00587         IsStdNumber         = 1,
00588         IsPrecision         = 0,
00589         SignInterpretation  = 1       // after cast to Number, what is the sign?
00590     }; 
00591     static const T* getData(const T& t) { return &t; } 
00592     static T*       updData(T& t)       { return &t; }
00593     static const R& real(const T& t) { return (reinterpret_cast<const R*>(&t))[0]; }
00594     static R&       real(T& t)       { return (reinterpret_cast<R*>(&t))[0]; }
00595     static const R& imag(const T& t) { return (reinterpret_cast<const R*>(&t))[1]; }
00596     static R&       imag(T& t)       { return (reinterpret_cast<R*>(&t))[1]; }
00597 
00598     static const TNeg& negate(const T& t) {return reinterpret_cast<const TNeg&>(t);}
00599     static       TNeg& negate(T& t)       {return reinterpret_cast<TNeg&>(t);}
00600 
00601     static const THerm& transpose(const T& t) {return reinterpret_cast<const THerm&>(t);}
00602     static       THerm& transpose(T& t)       {return reinterpret_cast<THerm&>(t);}
00603 
00604     static const TPosTrans& positionalTranspose(const T& t)
00605         {return reinterpret_cast<const TPosTrans&>(t);}
00606     static       TPosTrans& positionalTranspose(T& t)
00607         {return reinterpret_cast<TPosTrans&>(t);} 
00608 
00609     static const TWithoutNegator& castAwayNegatorIfAny(const T& t)
00610         {return reinterpret_cast<const TWithoutNegator&>(t);}
00611     static       TWithoutNegator& updCastAwayNegatorIfAny(T& t)
00612         {return reinterpret_cast<TWithoutNegator&>(t);}
00613 
00614     static ScalarNormSq scalarNormSqr(const T& t)
00615         { return t.real()*t.real() + t.imag()*t.imag(); }
00616     static TSqrt    sqrt(const T& t)
00617         { return std::sqrt(t); }
00618     static TAbs     abs(const T& t)
00619         { return std::abs(t); } // no, not just sqrt of scalarNormSqr()!
00620     static const TStandard& standardize(const T& t) {return t;} // already standard
00621     static TNormalize normalize(const T& t) {return t/abs(t);}
00622     static TInvert    invert(const T& t)    {return TReal(1)/t;}
00623 
00624     static const T& getNaN() {
00625         static const T c=T(NTraits<R>::getNaN(), NTraits<R>::getNaN());
00626         return c;
00627     }
00628     static const T& getInfinity() {
00629         static const T c=T(NTraits<R>::getInfinity(),NTraits<R>::getInfinity());
00630         return c;
00631     }
00632 
00633     static const T& getI() {
00634         static const T c = T(0,1);
00635         return c;
00636     }
00637 
00638     static bool isFinite(const T& t) {return SimTK::isFinite(t);}
00639     static bool isNaN(const T& t) {return SimTK::isNaN(t);}
00640     static bool isInf(const T& t) {return SimTK::isInf(t);}
00641 
00642     static double getDefaultTolerance() {return RTraits<R>::getDefaultTolerance();}
00643 
00644     template <class R2> static bool isNumericallyEqual(const T& a, const complex<R2>& b)
00645     {   return SimTK::isNumericallyEqual(a,b); }
00646     template <class R2> static bool isNumericallyEqual(const T& a, const complex<R2>& b, double tol)
00647     {   return SimTK::isNumericallyEqual(a,b,tol); }
00648     template <class R2> static bool isNumericallyEqual(const T& a, const conjugate<R2>& b)
00649     {   return SimTK::isNumericallyEqual(a,b); }
00650     template <class R2> static bool isNumericallyEqual(const T& a, const conjugate<R2>& b, double tol)
00651     {   return SimTK::isNumericallyEqual(a,b,tol); }
00652 
00653     static bool isNumericallyEqual(const T& a, const float& b) {return SimTK::isNumericallyEqual(a,b);}
00654     static bool isNumericallyEqual(const T& a, const float& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00655     static bool isNumericallyEqual(const T& a, const double& b) {return SimTK::isNumericallyEqual(a,b);}
00656     static bool isNumericallyEqual(const T& a, const double& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00657     static bool isNumericallyEqual(const T& a, const long double& b) {return SimTK::isNumericallyEqual(a,b);}
00658     static bool isNumericallyEqual(const T& a, const long double& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00659     static bool isNumericallyEqual(const T& a, int b) {return SimTK::isNumericallyEqual(a,b);}
00660     static bool isNumericallyEqual(const T& a, int b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00661 
00662     // The rest are the same as the real equivalents, with zero imaginary part.              
00663     static const T& getZero()         {static const T c(NTraits<R>::getZero());         return c;}
00664     static const T& getOne()          {static const T c(NTraits<R>::getOne());          return c;}
00665     static const T& getMinusOne()     {static const T c(NTraits<R>::getMinusOne());     return c;}
00666     static const T& getTwo()          {static const T c(NTraits<R>::getTwo());          return c;}
00667     static const T& getThree()        {static const T c(NTraits<R>::getThree());        return c;}
00668     static const T& getOneHalf()      {static const T c(NTraits<R>::getOneHalf());      return c;}
00669     static const T& getOneThird()     {static const T c(NTraits<R>::getOneThird());     return c;}
00670     static const T& getOneFourth()    {static const T c(NTraits<R>::getOneFourth());    return c;}
00671     static const T& getOneFifth()     {static const T c(NTraits<R>::getOneFifth());     return c;}
00672     static const T& getOneSixth()     {static const T c(NTraits<R>::getOneSixth());     return c;}
00673     static const T& getOneSeventh()   {static const T c(NTraits<R>::getOneSeventh());   return c;}
00674     static const T& getOneEighth()    {static const T c(NTraits<R>::getOneEighth());    return c;}
00675     static const T& getOneNinth()     {static const T c(NTraits<R>::getOneNinth());     return c;}
00676     static const T& getPi()           {static const T c(NTraits<R>::getPi());           return c;}
00677     static const T& getOneOverPi()    {static const T c(NTraits<R>::getOneOverPi());    return c;}
00678     static const T& getE()            {static const T c(NTraits<R>::getE());            return c;}
00679     static const T& getLog2E()        {static const T c(NTraits<R>::getLog2E());        return c;}
00680     static const T& getLog10E()       {static const T c(NTraits<R>::getLog10E());       return c;}
00681     static const T& getSqrt2()        {static const T c(NTraits<R>::getSqrt2());        return c;}
00682     static const T& getOneOverSqrt2() {static const T c(NTraits<R>::getOneOverSqrt2()); return c;}
00683     static const T& getSqrt3()        {static const T c(NTraits<R>::getSqrt3());        return c;}
00684     static const T& getOneOverSqrt3() {static const T c(NTraits<R>::getOneOverSqrt3()); return c;}
00685     static const T& getCubeRoot2()    {static const T c(NTraits<R>::getCubeRoot2());    return c;}
00686     static const T& getCubeRoot3()    {static const T c(NTraits<R>::getCubeRoot3());    return c;}
00687     static const T& getLn2()          {static const T c(NTraits<R>::getLn2());          return c;}
00688     static const T& getLn10()         {static const T c(NTraits<R>::getLn10());         return c;}
00689 };
00690 
00691 
00692 // Specialize NTraits<complex>::Results for <complex> OP <scalar>. Result type is
00693 // always just the complex type of sufficient precision.
00694 #define SimTK_BNTCMPLX_SPEC(T1,T2)  \
00695 template<> template<> struct NTraits< complex<T1> >::Result<T2> {      \
00696     typedef Widest< complex<T1>,T2 >::Type W;                      \
00697     typedef W Mul; typedef W Dvd; typedef W Add; typedef W Sub;         \
00698 };                                                                      \
00699 template<> template<> struct NTraits< complex<T1> >::Result< complex<T2> > {  \
00700     typedef Widest< complex<T1>,complex<T2> >::Type W;        \
00701     typedef W Mul; typedef W Dvd; typedef W Add; typedef W Sub;         \
00702 };                                                                      \
00703 template<> template<> struct NTraits< complex<T1> >::Result< conjugate<T2> > {  \
00704     typedef Widest< complex<T1>,complex<T2> >::Type W;        \
00705     typedef W Mul; typedef W Dvd; typedef W Add; typedef W Sub;         \
00706 }
00707 SimTK_BNTCMPLX_SPEC(float,float);SimTK_BNTCMPLX_SPEC(float,double);SimTK_BNTCMPLX_SPEC(float,long double);
00708 SimTK_BNTCMPLX_SPEC(double,float);SimTK_BNTCMPLX_SPEC(double,double);SimTK_BNTCMPLX_SPEC(double,long double);
00709 SimTK_BNTCMPLX_SPEC(long double,float);SimTK_BNTCMPLX_SPEC(long double,double);SimTK_BNTCMPLX_SPEC(long double,long double);
00710 #undef SimTK_BNTCMPLX_SPEC
00711 
00712 
00713 // conjugate -- should be instantiated only for float, double, long double.
00714 template <class R> class NTraits< conjugate<R> > {
00715     typedef complex<R>          C;
00716 public:
00717     typedef conjugate<R>        T;
00718     typedef negator<T>          TNeg;            // type of this after *cast* to its negative
00719     typedef conjugate<R>        TWithoutNegator; // type of this ignoring negator (there isn't one!)
00720     typedef R                   TReal;
00721     typedef negator<R>          TImag;
00722     typedef conjugate<R>        TComplex;     
00723     typedef complex<R>          THerm;      // conjugate evaporates
00724     typedef conjugate<R>        TPosTrans;  // Positional transpose of scalar does nothing
00725     typedef R                   TSqHermT;   // C*C~
00726     typedef R                   TSqTHerm;   // ~C*C (same)
00727     typedef conjugate<R>        TElement;
00728     typedef conjugate<R>        TRow;
00729     typedef conjugate<R>        TCol;
00730 
00731     typedef complex<R>          TSqrt;
00732     typedef R                   TAbs;
00733     typedef complex<R>          TStandard;
00734     typedef conjugate<R>        TInvert;
00735     typedef conjugate<R>        TNormalize;
00736 
00737     typedef conjugate<R>        Scalar;
00738     typedef conjugate<R>        ULessScalar;
00739     typedef conjugate<R>        Number;
00740     typedef complex<R>          StdNumber;
00741     typedef R                   Precision;
00742     typedef R                   ScalarNormSq;
00743 
00744     // Typeof( Conj<S>*P ) is Typeof(P*Conj<S>)
00745     // Typeof( Conj<S>/P ) is Typeof(inv(P)*Conj<S>)
00746     // Typeof( Conj<S>+P ) is Typeof(P+Conj<S>)
00747     // Typeof( Conj<S>-P ) is Typeof(P::TNeg+Conj<S>)
00748     // Must specialize for P=real or P=complex or P=conjugate
00749     template <class P> struct Result {
00750         typedef typename CNT<P>::template Result<T>::Mul Mul;
00751         typedef typename CNT<typename CNT<P>::THerm>::template Result<T>::Mul Dvd;
00752         typedef typename CNT<P>::template Result<T>::Add Add;
00753         typedef typename CNT<typename CNT<P>::TNeg>::template Result<T>::Add Sub;
00754     };
00755 
00756     // Shape-preserving element substitution (easy for scalars!)
00757     template <class P> struct Substitute {
00758         typedef P Type;
00759     };
00760 
00761     enum {
00762         NRows               = 1,
00763         NCols               = 1,
00764         RowSpacing          = 1,
00765         ColSpacing          = 1,
00766         NPackedElements     = 1,      // not two!
00767         NActualElements     = 1,
00768         NActualScalars      = 1,
00769         ImagOffset          = 1,
00770         RealStrideFactor    = 2,      // double stride when casting to real or imaginary
00771         ArgDepth            = SCALAR_DEPTH,
00772         IsScalar            = 1,
00773         IsULessScalar       = 1,
00774         IsNumber            = 1,
00775         IsStdNumber         = 0,
00776         IsPrecision         = 0,
00777         SignInterpretation  = 1       // after cast to Number, what is the sign?
00778     }; 
00779 
00780     static const T*     getData(const T& t) { return &t; } 
00781     static T*           updData(T& t)       { return &t; }
00782     static const TReal& real(const T& t) { return t.real(); }
00783     static TReal&       real(T& t)       { return t.real(); }
00784     static const TImag& imag(const T& t) { return t.imag(); }
00785     static TImag&       imag(T& t)       { return t.imag(); }
00786 
00787     static const TNeg& negate(const T& t) {return reinterpret_cast<const TNeg&>(t);}
00788     static       TNeg& negate(T& t)       {return reinterpret_cast<TNeg&>(t);}
00789 
00790     static const THerm& transpose(const T& t) {return t.conj();}
00791     static       THerm& transpose(T& t)       {return t.conj();}
00792 
00793     static const TPosTrans& positionalTranspose(const T& t)
00794         {return reinterpret_cast<const TPosTrans&>(t);}
00795     static       TPosTrans& positionalTranspose(T& t)
00796         {return reinterpret_cast<TPosTrans&>(t);} 
00797 
00798     static const TWithoutNegator& castAwayNegatorIfAny(const T& t)
00799         {return reinterpret_cast<const TWithoutNegator&>(t);}
00800     static       TWithoutNegator& updCastAwayNegatorIfAny(T& t)
00801         {return reinterpret_cast<TWithoutNegator&>(t);}
00802 
00803     static ScalarNormSq scalarNormSqr(const T& t)
00804         { return t.real()*t.real() + t.negImag()*t.negImag(); }
00805     static TSqrt    sqrt(const T& t)
00806         { return std::sqrt(C(t)); } // cast to complex (one negation)
00807     static TAbs     abs(const T& t)
00808         { return std::abs(t.conj()); }  // no, not just sqrt of scalarNormSqr()!
00809     static TStandard standardize(const T& t)
00810         { return TStandard(t); }        // i.e., convert to complex
00811     static TNormalize normalize(const T& t) {return TNormalize(t/abs(t));}
00812 
00813     // 1/conj(z) = conj(1/z), for complex z.
00814     static TInvert invert(const T& t)    
00815     {   const typename NTraits<THerm>::TInvert cmplx(NTraits<THerm>::invert(t.conj()));
00816         return reinterpret_cast<const TInvert&>(cmplx); } // recast complex to conjugate it
00817 
00818     // We want a "conjugate NaN", NaN - NaN*i, meaning both reals should
00819     // be positive NaN.
00820     static const T& getNaN() { 
00821         static const T c=T(NTraits<R>::getNaN(),NTraits<R>::getNaN());
00822         return c;
00823     }
00824     // We want a "conjugate infinity", Inf - Inf*i, meaning both stored reals
00825     // are positive Inf.
00826     static const T& getInfinity() {
00827         static const T c=T(NTraits<R>::getInfinity(),NTraits<R>::getInfinity());
00828         return c;
00829     }
00830     // But we want the constant i (=sqrt(-1)) to be the same however we represent it,
00831     // so for conjugate i = 0 - (-1)i.
00832     static const T& getI() {
00833         static const T c = T(0,-1);
00834         return c;
00835     }
00836 
00837     static bool isFinite(const T& t) {return SimTK::isFinite(t);}
00838     static bool isNaN(const T& t) {return SimTK::isNaN(t);}
00839     static bool isInf(const T& t) {return SimTK::isInf(t);}
00840 
00841     static double getDefaultTolerance() {return RTraits<R>::getDefaultTolerance();}
00842 
00843     template <class R2> static bool isNumericallyEqual(const T& a, const conjugate<R2>& b)
00844     {   return SimTK::isNumericallyEqual(a,b); }
00845     template <class R2> static bool isNumericallyEqual(const T& a, const conjugate<R2>& b, double tol)
00846     {   return SimTK::isNumericallyEqual(a,b,tol); }
00847     template <class R2> static bool isNumericallyEqual(const T& a, const complex<R2>& b)
00848     {   return SimTK::isNumericallyEqual(a,b); }
00849     template <class R2> static bool isNumericallyEqual(const T& a, const complex<R2>& b, double tol)
00850     {   return SimTK::isNumericallyEqual(a,b,tol); }
00851 
00852     static bool isNumericallyEqual(const T& a, const float& b) {return SimTK::isNumericallyEqual(a,b);}
00853     static bool isNumericallyEqual(const T& a, const float& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00854     static bool isNumericallyEqual(const T& a, const double& b) {return SimTK::isNumericallyEqual(a,b);}
00855     static bool isNumericallyEqual(const T& a, const double& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00856     static bool isNumericallyEqual(const T& a, const long double& b) {return SimTK::isNumericallyEqual(a,b);}
00857     static bool isNumericallyEqual(const T& a, const long double& b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00858     static bool isNumericallyEqual(const T& a, int b) {return SimTK::isNumericallyEqual(a,b);}
00859     static bool isNumericallyEqual(const T& a, int b, double tol) {return SimTK::isNumericallyEqual(a,b,tol);}
00860 
00861     // The rest are the same as the real equivalents, with zero imaginary part.              
00862     static const T& getZero()         {static const T c(NTraits<R>::getZero());         return c;}
00863     static const T& getOne()          {static const T c(NTraits<R>::getOne());          return c;}
00864     static const T& getMinusOne()     {static const T c(NTraits<R>::getMinusOne());     return c;}
00865     static const T& getTwo()          {static const T c(NTraits<R>::getTwo());          return c;}
00866     static const T& getThree()        {static const T c(NTraits<R>::getThree());        return c;}
00867     static const T& getOneHalf()      {static const T c(NTraits<R>::getOneHalf());      return c;}
00868     static const T& getOneThird()     {static const T c(NTraits<R>::getOneThird());     return c;}
00869     static const T& getOneFourth()    {static const T c(NTraits<R>::getOneFourth());    return c;}
00870     static const T& getOneFifth()     {static const T c(NTraits<R>::getOneFifth());     return c;}
00871     static const T& getOneSixth()     {static const T c(NTraits<R>::getOneSixth());     return c;}
00872     static const T& getOneSeventh()   {static const T c(NTraits<R>::getOneSeventh());   return c;}
00873     static const T& getOneEighth()    {static const T c(NTraits<R>::getOneEighth());    return c;}
00874     static const T& getOneNinth()     {static const T c(NTraits<R>::getOneNinth());     return c;}
00875     static const T& getPi()           {static const T c(NTraits<R>::getPi());           return c;}
00876     static const T& getOneOverPi()    {static const T c(NTraits<R>::getOneOverPi());    return c;}
00877     static const T& getE()            {static const T c(NTraits<R>::getE());            return c;}
00878     static const T& getLog2E()        {static const T c(NTraits<R>::getLog2E());        return c;}
00879     static const T& getLog10E()       {static const T c(NTraits<R>::getLog10E());       return c;}
00880     static const T& getSqrt2()        {static const T c(NTraits<R>::getSqrt2());        return c;}
00881     static const T& getOneOverSqrt2() {static const T c(NTraits<R>::getOneOverSqrt2()); return c;}
00882     static const T& getSqrt3()        {static const T c(NTraits<R>::getSqrt3());        return c;}
00883     static const T& getOneOverSqrt3() {static const T c(NTraits<R>::getOneOverSqrt3()); return c;}
00884     static const T& getCubeRoot2()    {static const T c(NTraits<R>::getCubeRoot2());    return c;}
00885     static const T& getCubeRoot3()    {static const T c(NTraits<R>::getCubeRoot3());    return c;}
00886     static const T& getLn2()          {static const T c(NTraits<R>::getLn2());          return c;}
00887     static const T& getLn10()         {static const T c(NTraits<R>::getLn10());         return c;}
00888 };
00889 
00890 // Any op involving conjugate & a real is best left as a conjugate. However,
00891 // an op involving conjugate & a complex or conjugate can lose the conjugate at zero cost
00892 // and return just a complex in some cases. Also, we prefer negator<complex> to conjugate.
00893 //
00894 // Conj op complex
00895 //   a-bi * r+si = (ar+bs) + (as-br)i               (complex)
00896 //   a-bi / r+si = hairy and slow anyway; we'll convert to complex
00897 //   a-bi + r+si = (a+r) + (s-b)i                   (complex)
00898 //   a-bi - r+si = (a-r) - (b+s)i = -[(r-a)+(b+s)i] (negator<complex>)
00899 //
00900 // Conj op Conj
00901 //   a-bi * r-si = (ar-bs) - (as+br)i = -[(bs-ar)+(as+br)i] (negator<complex>)
00902 //   a-bi / r-si = hairy and slow anyway; we'll convert to complex
00903 //   a-bi + r-si = (a+r) - (b+s)i  (conjugate)
00904 //   a-bi - r-si = (a-r) + (s-b)i  (complex)
00905 
00906 #define SimTK_NTRAITS_CONJ_SPEC(T1,T2)                                      \
00907 template<> template<> struct NTraits< conjugate<T1> >::Result<T2> {         \
00908   typedef conjugate<Widest<T1,T2>::Type> W;                                 \
00909   typedef W Mul; typedef W Dvd; typedef W Add; typedef W Sub;               \
00910 };                                                                          \
00911 template<> template<> struct NTraits< conjugate<T1> >::Result<complex<T2> >{\
00912   typedef Widest<complex<T1>,complex<T2> >::Type W;               \
00913   typedef W Mul; typedef W Dvd; typedef W Add; typedef negator<W> Sub;      \
00914 };                                                                          \
00915 template<> template<> struct NTraits< conjugate<T1> >::Result<conjugate<T2> >{\
00916     typedef Widest<T1,T2>::Type W; typedef complex<W> WC;              \
00917     typedef negator<WC> Mul; typedef WC Dvd; typedef conjugate<W> Add; typedef WC Sub;\
00918 }
00919 SimTK_NTRAITS_CONJ_SPEC(float,float);SimTK_NTRAITS_CONJ_SPEC(float,double);
00920 SimTK_NTRAITS_CONJ_SPEC(float,long double);
00921 SimTK_NTRAITS_CONJ_SPEC(double,float);SimTK_NTRAITS_CONJ_SPEC(double,double);
00922 SimTK_NTRAITS_CONJ_SPEC(double,long double);
00923 SimTK_NTRAITS_CONJ_SPEC(long double,float);SimTK_NTRAITS_CONJ_SPEC(long double,double);
00924 SimTK_NTRAITS_CONJ_SPEC(long double,long double);
00925 #undef SimTK_NTRAITS_CONJ_SPEC 
00926 
00927 
00928 // Specializations for real numbers.
00929 // For real scalar R, op result types are:
00930 //   Typeof(R*P) = Typeof(P*R)
00931 //   Typeof(R/P) = Typeof(inv(P)*R)
00932 //   Typeof(R+P) = Typeof(P+R)
00933 //   typeof(R-P) = Typeof(P::TNeg + R)
00934 // These must be specialized for P=Real and P=Complex.
00935 #define SimTK_DEFINE_REAL_NTRAITS(R)            \
00936 template <> class NTraits<R> {                  \
00937 public:                                         \
00938     typedef R                T;                 \
00939     typedef negator<T>       TNeg;              \
00940     typedef T                TWithoutNegator;   \
00941     typedef T                TReal;             \
00942     typedef T                TImag;             \
00943     typedef complex<T>       TComplex;          \
00944     typedef T                THerm;             \
00945     typedef T                TPosTrans;         \
00946     typedef T                TSqHermT;          \
00947     typedef T                TSqTHerm;          \
00948     typedef T                TElement;          \
00949     typedef T                TRow;              \
00950     typedef T                TCol;              \
00951     typedef T                TSqrt;             \
00952     typedef T                TAbs;              \
00953     typedef T                TStandard;         \
00954     typedef T                TInvert;           \
00955     typedef T                TNormalize;        \
00956     typedef T                Scalar;            \
00957     typedef T                ULessScalar;       \
00958     typedef T                Number;            \
00959     typedef T                StdNumber;         \
00960     typedef T                Precision;         \
00961     typedef T                ScalarNormSq;      \
00962     template <class P> struct Result {          \
00963         typedef typename CNT<P>::template Result<R>::Mul Mul;   \
00964         typedef typename CNT< typename CNT<P>::THerm >::template Result<R>::Mul Dvd;    \
00965         typedef typename CNT<P>::template Result<R>::Add Add;   \
00966         typedef typename CNT< typename CNT<P>::TNeg >::template Result<R>::Add Sub;     \
00967     };                                          \
00968     template <class P> struct Substitute {      \
00969         typedef P Type;                         \
00970     };                                          \
00971     enum {                                      \
00972         NRows               = 1,                \
00973         NCols               = 1,                \
00974         RowSpacing          = 1,                \
00975         ColSpacing          = 1,                \
00976         NPackedElements     = 1,                \
00977         NActualElements     = 1,                \
00978         NActualScalars      = 1,                \
00979         ImagOffset          = 0,                \
00980         RealStrideFactor    = 1,                \
00981         ArgDepth            = SCALAR_DEPTH,     \
00982         IsScalar            = 1,                \
00983         IsULessScalar       = 1,                \
00984         IsNumber            = 1,                \
00985         IsStdNumber         = 1,                \
00986         IsPrecision         = 1,                \
00987         SignInterpretation  = 1                 \
00988     };                                          \
00989     static const T* getData(const T& t) { return &t; }  \
00990     static T*       updData(T& t)       { return &t; }  \
00991     static const T& real(const T& t) { return t; }      \
00992     static T&       real(T& t)       { return t; }      \
00993     static const T& imag(const T&)   { return reinterpret_cast<const T&>(zeroes); }   \
00994     static T&       imag(T&)         { assert(false); return *reinterpret_cast<T*>(0); } \
00995     static const TNeg& negate(const T& t) {return reinterpret_cast<const TNeg&>(t);}        \
00996     static       TNeg& negate(T& t) {return reinterpret_cast<TNeg&>(t);}                    \
00997     static const THerm& transpose(const T& t) {return reinterpret_cast<const THerm&>(t);}   \
00998     static       THerm& transpose(T& t) {return reinterpret_cast<THerm&>(t);}               \
00999     static const TPosTrans& positionalTranspose(const T& t)                 \
01000         {return reinterpret_cast<const TPosTrans&>(t);}                     \
01001     static       TPosTrans& positionalTranspose(T& t)                       \
01002         {return reinterpret_cast<TPosTrans&>(t);}                           \
01003     static const TWithoutNegator& castAwayNegatorIfAny(const T& t)          \
01004         {return reinterpret_cast<const TWithoutNegator&>(t);}               \
01005     static       TWithoutNegator& updCastAwayNegatorIfAny(T& t)             \
01006         {return reinterpret_cast<TWithoutNegator&>(t);}                     \
01007     static ScalarNormSq scalarNormSqr(const T& t) {return t*t;}             \
01008     static TSqrt        sqrt(const T& t) {return std::sqrt(t);}             \
01009     static TAbs         abs(const T& t) {return std::abs(t);}               \
01010     static const TStandard& standardize(const T& t) {return t;}             \
01011     static TNormalize normalize(const T& t) {return (t>0?T(1):(t<0?T(-1):getNaN()));} \
01012     static TInvert invert(const T& t) {return T(1)/t;}                      \
01013     /* properties of this floating point representation, with memory addresses */     \
01014     static const T& getEps()          {return RTraits<T>::getEps();}                                    \
01015     static const T& getSignificant()  {return RTraits<T>::getSignificant();}                            \
01016     static const T& getNaN()          {static const T c=std::numeric_limits<T>::quiet_NaN(); return c;} \
01017     static const T& getInfinity()     {static const T c=std::numeric_limits<T>::infinity();  return c;} \
01018     static const T& getLeastPositive(){static const T c=std::numeric_limits<T>::min();       return c;} \
01019     static const T& getMostPositive() {static const T c=std::numeric_limits<T>::max();       return c;} \
01020     static const T& getLeastNegative(){static const T c=-std::numeric_limits<T>::min();      return c;} \
01021     static const T& getMostNegative() {static const T c=-std::numeric_limits<T>::max();      return c;} \
01022     static const T& getSqrtEps()      {static const T c=std::sqrt(getEps());                 return c;} \
01023     static const T& getTiny()         {static const T c=std::pow(getEps(), (T)1.25L);        return c;} \
01024     static bool isFinite(const T& t) {return SimTK::isFinite(t);}   \
01025     static bool isNaN   (const T& t) {return SimTK::isNaN(t);}      \
01026     static bool isInf   (const T& t) {return SimTK::isInf(t);}      \
01027     /* Methods to use for approximate comparisons. Perform comparison in the wider of the two */                \
01028     /* precisions, using the default tolerance from the narrower of the two precisions.       */                \
01029     static double getDefaultTolerance() {return RTraits<T>::getDefaultTolerance();}                             \
01030     static bool isNumericallyEqual(const T& t, const float& f) {return SimTK::isNumericallyEqual(t,f);}         \
01031     static bool isNumericallyEqual(const T& t, const double& d) {return SimTK::isNumericallyEqual(t,d);}        \
01032     static bool isNumericallyEqual(const T& t, const long double& l) {return SimTK::isNumericallyEqual(t,l);}   \
01033     static bool isNumericallyEqual(const T& t, int i) {return SimTK::isNumericallyEqual(t,i);}                  \
01034     /* Here the tolerance is given so we don't have to figure it out. */                                                        \
01035     static bool isNumericallyEqual(const T& t, const float& f, double tol){return SimTK::isNumericallyEqual(t,f,tol);}          \
01036     static bool isNumericallyEqual(const T& t, const double& d, double tol){return SimTK::isNumericallyEqual(t,d,tol);}         \
01037     static bool isNumericallyEqual(const T& t, const long double& l, double tol){return SimTK::isNumericallyEqual(t,l,tol);}    \
01038     static bool isNumericallyEqual(const T& t, int i, double tol){return SimTK::isNumericallyEqual(t,i,tol);}                   \
01039     /* Carefully calculated constants with convenient memory addresses. */               \
01040     static const T& getZero()         {static const T c=(T)(0);               return c;} \
01041     static const T& getOne()          {static const T c=(T)(1);               return c;} \
01042     static const T& getMinusOne()     {static const T c=(T)(-1);              return c;} \
01043     static const T& getTwo()          {static const T c=(T)(2);               return c;} \
01044     static const T& getThree()        {static const T c=(T)(3);               return c;} \
01045     static const T& getOneHalf()      {static const T c=(T)(0.5L);            return c;} \
01046     static const T& getOneThird()     {static const T c=(T)(1.L/3.L);         return c;} \
01047     static const T& getOneFourth()    {static const T c=(T)(0.25L);           return c;} \
01048     static const T& getOneFifth()     {static const T c=(T)(0.2L);            return c;} \
01049     static const T& getOneSixth()     {static const T c=(T)(1.L/6.L);         return c;} \
01050     static const T& getOneSeventh()   {static const T c=(T)(1.L/7.L);         return c;} \
01051     static const T& getOneEighth()    {static const T c=(T)(0.125L);          return c;} \
01052     static const T& getOneNinth()     {static const T c=(T)(1.L/9.L);         return c;} \
01053     static const T& getPi()           {static const T c=(T)(SimTK_PI);        return c;} \
01054     static const T& getOneOverPi()    {static const T c=(T)(1.L/SimTK_PI);    return c;} \
01055     static const T& getE()            {static const T c=(T)(SimTK_E);         return c;} \
01056     static const T& getLog2E()        {static const T c=(T)(SimTK_LOG2E);     return c;} \
01057     static const T& getLog10E()       {static const T c=(T)(SimTK_LOG10E);    return c;} \
01058     static const T& getSqrt2()        {static const T c=(T)(SimTK_SQRT2);     return c;} \
01059     static const T& getOneOverSqrt2() {static const T c=(T)(1.L/SimTK_SQRT2); return c;} \
01060     static const T& getSqrt3()        {static const T c=(T)(SimTK_SQRT3);     return c;} \
01061     static const T& getOneOverSqrt3() {static const T c=(T)(1.L/SimTK_SQRT3); return c;} \
01062     static const T& getCubeRoot2()    {static const T c=(T)(SimTK_CBRT2);     return c;} \
01063     static const T& getCubeRoot3()    {static const T c=(T)(SimTK_CBRT3);     return c;} \
01064     static const T& getLn2()          {static const T c=(T)(SimTK_LN2);       return c;} \
01065     static const T& getLn10()         {static const T c=(T)(SimTK_LN10);      return c;} \
01066     /* integer digit counts useful for formatted input and output */                     \
01067     static const int getNumDigits()         {static const int c=(int)(std::log10(1/getEps()) -0.5); return c;} \
01068     static const int getLosslessNumDigits() {static const int c=(int)(std::log10(1/getTiny())+0.5); return c;} \
01069 }; \
01070 template<> struct NTraits<R>::Result<float> \
01071   {typedef Widest<R,float>::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;};    \
01072 template<> struct NTraits<R>::Result<double> \
01073   {typedef Widest<R,double>::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;};    \
01074 template<> struct NTraits<R>::Result<long double> \
01075   {typedef Widest<R,long double>::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;};    \
01076 template<> struct NTraits<R>::Result<complex<float> > \
01077   {typedef Widest<R,complex<float> >::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}; \
01078 template<> struct NTraits<R>::Result<complex<double> > \
01079   {typedef Widest<R,complex<double> >::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}; \
01080 template<> struct NTraits<R>::Result<complex<long double> > \
01081   {typedef Widest<R,complex<long double> >::Type Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}; \
01082 template<> struct NTraits<R>::Result<conjugate<float> > \
01083   {typedef conjugate<Widest<R,float>::Type> Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}; \
01084 template<> struct NTraits<R>::Result<conjugate<double> > \
01085   {typedef conjugate<Widest<R,double>::Type> Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}; \
01086 template<> struct NTraits<R>::Result<conjugate<long double> > \
01087   {typedef conjugate<Widest<R,long double>::Type> Mul;typedef Mul Dvd;typedef Mul Add;typedef Mul Sub;}
01088 SimTK_DEFINE_REAL_NTRAITS(float);
01089 SimTK_DEFINE_REAL_NTRAITS(double);
01090 SimTK_DEFINE_REAL_NTRAITS(long double);
01091 #undef SimTK_DEFINE_REAL_NTRAITS
01092 
01094 template <class R> class CNT< complex<R> > : public NTraits< complex<R> > { };
01095 template <class R> class CNT< conjugate<R> > : public NTraits< conjugate<R> > { };
01096 template <> class CNT<float> : public NTraits<float> { };
01097 template <> class CNT<double> : public NTraits<double> { };
01098 template <> class CNT<long double> : public NTraits<long double> { };
01099 
01100 
01101 } // namespace SimTK
01102 
01103 #endif //SimTK_SIMMATRIX_NTRAITS_H_
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines