|
| CustomCompoundBondForce (int numParticles, const std::string &energy) |
| Create a CustomCompoundBondForce.
|
|
int | getNumParticlesPerBond () const |
| Get the number of particles used to define each bond.
|
|
int | getNumBonds () const |
| Get the number of bonds for which force field parameters have been defined.
|
|
int | getNumPerBondParameters () const |
| Get the number of per-bond parameters that the interaction depends on.
|
|
int | getNumGlobalParameters () const |
| Get the number of global parameters that the interaction depends on.
|
|
int | getNumFunctions () const |
| Get the number of tabulated functions that have been defined.
|
|
const std::string & | getEnergyFunction () const |
| Get the algebraic expression that gives the interaction energy of each bond.
|
|
void | setEnergyFunction (const std::string &energy) |
| Set the algebraic expression that gives the interaction energy of each bond.
|
|
int | addPerBondParameter (const std::string &name) |
| Add a new per-bond parameter that the interaction may depend on.
|
|
const std::string & | getPerBondParameterName (int index) const |
| Get the name of a per-bond parameter.
|
|
void | setPerBondParameterName (int index, const std::string &name) |
| Set the name of a per-bond parameter.
|
|
int | addGlobalParameter (const std::string &name, double defaultValue) |
| Add a new global parameter that the interaction may depend on.
|
|
const std::string & | getGlobalParameterName (int index) const |
| Get the name of a global parameter.
|
|
void | setGlobalParameterName (int index, const std::string &name) |
| Set the name of a global parameter.
|
|
double | getGlobalParameterDefaultValue (int index) const |
| Get the default value of a global parameter.
|
|
void | setGlobalParameterDefaultValue (int index, double defaultValue) |
| Set the default value of a global parameter.
|
|
int | addBond (const std::vector< int > &particles, const std::vector< double > ¶meters) |
| Add a bond to the force.
|
|
void | getBondParameters (int index, std::vector< int > &particles, std::vector< double > ¶meters) const |
| Get the properties of a bond.
|
|
void | setBondParameters (int index, const std::vector< int > &particles, const std::vector< double > ¶meters) |
| Set the properties of a bond.
|
|
int | addFunction (const std::string &name, const std::vector< double > &values, double min, double max) |
| Add a tabulated function that may appear in the energy expression.
|
|
void | getFunctionParameters (int index, std::string &name, std::vector< double > &values, double &min, double &max) const |
| Get the parameters for a tabulated function that may appear in the energy expression.
|
|
void | setFunctionParameters (int index, const std::string &name, const std::vector< double > &values, double min, double max) |
| Set the parameters for a tabulated function that may appear in algebraic expressions.
|
|
void | updateParametersInContext (Context &context) |
| Update the per-bond parameters in a Context to match those stored in this Force object.
|
|
| Force () |
|
virtual | ~Force () |
|
int | getForceGroup () const |
| Get the force group this Force belongs to.
|
|
void | setForceGroup (int group) |
| Set the force group this Force belongs to.
|
|
This class supports a wide variety of bonded interactions.
It defines a "bond" as a single energy term that depends on the positions of a fixed set of particles. The number of particles involved in a bond, and how the energy depends on their positions, is configurable. It may depend on the positions of individual particles, the distances between pairs of particles, the angles formed by sets of three particles, and the dihedral angles formed by sets of four particles.
We refer to the particles in a bond as p1, p2, p3, etc. For each bond, CustomCompoundBondForce evaluates a user supplied algebraic expression to determine the interaction energy. The expression may depend on the following variables and functions:
-
x1, y1, z1, x2, y2, z2, etc.: The x, y, and z coordinates of the particle positions. For example, x1 is the x coordinate of particle p1, and y3 is the y coordinate of particle p3.
-
distance(p1, p2): the distance between particles p1 and p2 (where "p1" and "p2" may be replaced by the names of whichever particles you want to calculate the distance between).
-
angle(p1, p2, p3): the angle formed by the three specified particles.
-
dihedral(p1, p2, p3, p4): the dihedral angle formed by the four specified particles.
The expression also may involve tabulated functions, and may depend on arbitrary global and per-bond parameters.
To use this class, create a CustomCompoundBondForce object, passing an algebraic expression to the constructor that defines the interaction energy of each bond. Then call addPerBondParameter() to define per-bond parameters and addGlobalParameter() to define global parameters. The values of per-bond parameters are specified as part of the system definition, while values of global parameters may be modified during a simulation by calling Context::setParameter().
Next, call addBond() to define bonds and specify their parameter values. After a bond has been added, you can modify its parameters by calling setBondParameters(). This will have no effect on Contexts that already exist unless you call updateParametersInContext().
As an example, the following code creates a CustomCompoundBondForce that implements a Urey-Bradley potential. This is an interaction between three particles that depends on the angle formed by p1-p2-p3, and on the distance between p1 and p3.
CustomCompoundBondForce* force = new CustomCompoundBondForce(3, "0.5*(kangle*(angle(p1,p2,p3)-theta0)^2+kbond*(distance(p1,p3)-r0)^2)");
This force depends on four parameters: kangle, kbond, theta0, and r0. The following code defines these as per-bond parameters:
force->addPerBondParameter("kangle");
force->addPerBondParameter("kbond");
force->addPerBondParameter("theta0");
force->addPerBondParameter("r0");
Expressions may involve the operators + (add), - (subtract), * (multiply), / (divide), and ^ (power), and the following functions: sqrt, exp, log, sin, cos, sec, csc, tan, cot, asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step, delta. All trigonometric functions are defined in radians, and log is the natural logarithm. step(x) = 0 if x is less than 0, 1 otherwise. delta(x) = 1 if x is 0, 0 otherwise.
In addition, you can call addFunction() to define a new function based on tabulated values. You specify a vector of values, and a natural spline is created from them. That function can then appear in the expression.