Simbody  3.3
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SimTK::Optimizer Class Reference

API for SimTK Simmath's optimizers. More...

#include <Optimizer.h>

Classes

class  OptimizerRep
 

Public Member Functions

 Optimizer ()
 
 Optimizer (const OptimizerSystem &sys)
 
 Optimizer (const OptimizerSystem &sys, OptimizerAlgorithm algorithm)
 
 ~Optimizer ()
 
void setConvergenceTolerance (Real accuracy)
 Sets the relative accuracy used determine if the problem has converged. More...
 
void setConstraintTolerance (Real tolerance)
 Sets the absolute tolerance used to determine whether constraint violation is acceptable. More...
 
void setMaxIterations (int iter)
 Set the maximum number of iterations allowed of the optimization method's outer stepping loop. More...
 
void setLimitedMemoryHistory (int history)
 Set the maximum number of previous hessians used in a limitied memory hessian approximation. More...
 
void setDiagnosticsLevel (int level)
 Set the level of debugging info displayed. More...
 
void setOptimizerSystem (const OptimizerSystem &sys)
 
void setOptimizerSystem (const OptimizerSystem &sys, OptimizerAlgorithm algorithm)
 
bool setAdvancedStrOption (const char *option, const char *value)
 Set the value of an advanced option specified by a string. More...
 
bool setAdvancedRealOption (const char *option, const Real value)
 Set the value of an advanced option specified by a real value. More...
 
bool setAdvancedIntOption (const char *option, const int value)
 Set the value of an advanced option specified by an integer value. More...
 
bool setAdvancedBoolOption (const char *option, const bool value)
 Set the value of an advanced option specified by an boolean value. More...
 
void setDifferentiatorMethod (Differentiator::Method method)
 Set which numerical differentiation algorithm is to be used for the next useNumericalGradient() or useNumericalJacobian() call. More...
 
Differentiator::Method getDifferentiatorMethod () const
 Return the differentiation method last supplied in a call to setDifferentiatorMethod(), not necessarily the method currently in use. More...
 
void useNumericalGradient (bool flag, Real estimatedAccuracyOfObjective=SignificantReal)
 Enable numerical calculation of gradient, with optional estimation of the accuracy to which the objective function is calculated. More...
 
void useNumericalJacobian (bool flag, Real estimatedAccuracyOfConstraints=SignificantReal)
 Enable numerical calculation of the constraint Jacobian, with optional estimation of the accuracy to which the constraint functions are calculated. More...
 
Real optimize (Vector &)
 Compute optimization. More...
 
const OptimizerSystemgetOptimizerSystem () const
 Return a reference to the OptimizerSystem currently associated with this Optimizer. More...
 
bool isUsingNumericalGradient () const
 Indicate whether the Optimizer is currently set to use a numerical gradient. More...
 
bool isUsingNumericalJacobian () const
 Indicate whether the Optimizer is currently set to use a numerical Jacobian. More...
 
Real getEstimatedAccuracyOfObjective () const
 Return the estimated accuracy last specified in useNumericalGradient(). More...
 
Real getEstimatedAccuracyOfConstraints () const
 Return the estimated accuracy last specified in useNumericalJacobian(). More...
 

Static Public Member Functions

static bool isAlgorithmAvailable (OptimizerAlgorithm algorithm)
 

Friends

class OptimizerRep
 

Detailed Description

API for SimTK Simmath's optimizers.

An optimizer finds a local minimum to an objective function. The optimizer can be constrained to search for a minimum within a feasible region. The feasible region can be defined by setting limits on the parameters of the objective function and/or supplying constraint functions that must be satisfied. The optimizer starts searching for a minimum beginning at a user supplied initial value for the set of parameters.

The objective function and constraints are specified by supplying the Optimizer with a concrete implemenation of an OptimizerSystem class. The OptimizerSystem can be passed to the Optimizer either through the Optimizer constructor or by calling the setOptimizerSystem method. The Optimizer class will select the best optimization algorithm to solve the problem based on the constraints supplied by the OptimizerSystem. A user can also override the optimization algorithm selected by the Optimizer by specifying the optimization algorithm.

Constructor & Destructor Documentation

SimTK::Optimizer::Optimizer ( )
SimTK::Optimizer::Optimizer ( const OptimizerSystem sys)
SimTK::Optimizer::Optimizer ( const OptimizerSystem sys,
OptimizerAlgorithm  algorithm 
)
SimTK::Optimizer::~Optimizer ( )

Member Function Documentation

static bool SimTK::Optimizer::isAlgorithmAvailable ( OptimizerAlgorithm  algorithm)
static
void SimTK::Optimizer::setConvergenceTolerance ( Real  accuracy)

Sets the relative accuracy used determine if the problem has converged.

void SimTK::Optimizer::setConstraintTolerance ( Real  tolerance)

Sets the absolute tolerance used to determine whether constraint violation is acceptable.

void SimTK::Optimizer::setMaxIterations ( int  iter)

Set the maximum number of iterations allowed of the optimization method's outer stepping loop.

Most optimizers also have an inner loop ("line search") which is also iterative but is not affected by this setting. Inner loop convergence is typically prescribed by theory, and failure there is often an indication of an ill-formed problem.

void SimTK::Optimizer::setLimitedMemoryHistory ( int  history)

Set the maximum number of previous hessians used in a limitied memory hessian approximation.

void SimTK::Optimizer::setDiagnosticsLevel ( int  level)

Set the level of debugging info displayed.

void SimTK::Optimizer::setOptimizerSystem ( const OptimizerSystem sys)
void SimTK::Optimizer::setOptimizerSystem ( const OptimizerSystem sys,
OptimizerAlgorithm  algorithm 
)
bool SimTK::Optimizer::setAdvancedStrOption ( const char *  option,
const char *  value 
)

Set the value of an advanced option specified by a string.

bool SimTK::Optimizer::setAdvancedRealOption ( const char *  option,
const Real  value 
)

Set the value of an advanced option specified by a real value.

bool SimTK::Optimizer::setAdvancedIntOption ( const char *  option,
const int  value 
)

Set the value of an advanced option specified by an integer value.

bool SimTK::Optimizer::setAdvancedBoolOption ( const char *  option,
const bool  value 
)

Set the value of an advanced option specified by an boolean value.

void SimTK::Optimizer::setDifferentiatorMethod ( Differentiator::Method  method)

Set which numerical differentiation algorithm is to be used for the next useNumericalGradient() or useNumericalJacobian() call.

Choices are Differentiator::ForwardDifference (first order) or Differentiator::CentralDifference (second order) with central the default.

Warning
This has no effect if you have already called useNumericalGradient() or useNumericalJacobian(). Those must be called after setDifferentiatorMethod().
See Also
SimTK::Differentiator
Differentiator::Method SimTK::Optimizer::getDifferentiatorMethod ( ) const

Return the differentiation method last supplied in a call to setDifferentiatorMethod(), not necessarily the method currently in use.

See setDifferentiatorMethod() for more information.

See Also
SimTK::Differentiator
void SimTK::Optimizer::useNumericalGradient ( bool  flag,
Real  estimatedAccuracyOfObjective = SignificantReal 
)

Enable numerical calculation of gradient, with optional estimation of the accuracy to which the objective function is calculated.

For example, if you are calculate about 6 significant digits, supply the estimated accuracy as 1e-6. Providing the estimated accuracy improves the quality of the calculated derivative. If no accuracy is provided we'll assume the objective is calculated to near machine precision. The method used for calculating the derivative will be whatever was previously supplied in a call to setDifferentiatorMethod(), or the default which is to use central differencing (two function evaluations per gradient entry). See SimTK::Differentiator for more information.

See Also
setDifferentiatorMethod(), SimTK::Differentiator
void SimTK::Optimizer::useNumericalJacobian ( bool  flag,
Real  estimatedAccuracyOfConstraints = SignificantReal 
)

Enable numerical calculation of the constraint Jacobian, with optional estimation of the accuracy to which the constraint functions are calculated.

For example, if you are calculating about 6 significant digits, supply the estimated accuracy as 1e-6. Providing the estimated accuracy improves the quality of the calculated derivative. If no accuracy is provided we'll assume the constraints are calculated to near machine precision. The method used for calculating the derivative will be whatever was previously supplied in a call to setDifferentiatorMethod(), or the default which is to use central differencing (two function evaluations per Jacobian column. See SimTK::Differentiator for more information.

See Also
setDifferentiatorMethod(), SimTK::Differentiator
Real SimTK::Optimizer::optimize ( Vector )

Compute optimization.

const OptimizerSystem& SimTK::Optimizer::getOptimizerSystem ( ) const

Return a reference to the OptimizerSystem currently associated with this Optimizer.

bool SimTK::Optimizer::isUsingNumericalGradient ( ) const

Indicate whether the Optimizer is currently set to use a numerical gradient.

bool SimTK::Optimizer::isUsingNumericalJacobian ( ) const

Indicate whether the Optimizer is currently set to use a numerical Jacobian.

Real SimTK::Optimizer::getEstimatedAccuracyOfObjective ( ) const

Return the estimated accuracy last specified in useNumericalGradient().

Real SimTK::Optimizer::getEstimatedAccuracyOfConstraints ( ) const

Return the estimated accuracy last specified in useNumericalJacobian().

Friends And Related Function Documentation

friend class OptimizerRep
friend

The documentation for this class was generated from the following file: